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ABSTRACT
Hadapt is a start-up company currently commercializing
the Yale University research project called HadoopDB. The
company focuses on building a platform for Big Data analyt-
ics in the cloud by introducing a storage layer optimized for
structured data and by providing a framework for executing
SQL queries efficiently.

This work considers processing data warehousing queries
over very large datasets. Our goal is to maximize perfor-
mance while, at the same time, not giving up fault tolerance
and scalability. We analyze the complexity of this problem
in the split execution environment of HadoopDB. Here, in-
coming queries are examined; parts of the query are pushed
down and executed inside the higher performing database
layer; and the rest of the query is processed in a more generic
MapReduce framework.

In this paper, we discuss in detail performance-oriented
query execution strategies for data warehouse queries in split
execution environments, with particular focus on join and
aggregation operations. The efficiency of our techniques
is demonstrated by running experiments using the TPC-
H benchmark with 3TB of data. In these experiments we
compare our results with a standard commercial parallel
database and an open-source MapReduce implementation
featuring a SQL interface (Hive). We show that HadoopDB
successfully competes with other systems.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query process-
ing

General Terms
Performance, Algorithms, Experimentation

Keywords
Query Execution, MapReduce, Hadoop

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

1. INTRODUCTION
MapReduce [19] is emerging as a leading framework for

performing scalable parallel analytics and data mining.
Some of the reasons for the popularity of MapReduce
include the availability of a free and open source implemen-
tation (Hadoop) [2], impressive ease-of-use experience [30],
as well as Google’s, Yahoo!’s, and Facebook’s wide usage
[19, 25] and evangelization of this technology. Moreover,
MapReduce has been shown to deliver stellar performance
on extreme-scale benchmarks [17, 3]. All these factors have
resulted in the rapid adoption of MapReduce for many
different kinds of data analysis and processing [15, 18, 32,
29, 25, 11].

Historically, the main applications of the MapReduce
framework included Web indexing, text analytics, and
graph data mining.

Now, however, as MapReduce is steadily developing into
the de facto data analysis standard, it repeatedly becomes
employed for querying structured data — an area tradition-
ally dominated by relational databases in data warehouse
deployments. Even though many argue that MapReduce
is not optimal for analyzing structured data [21, 30], it is
nonetheless used increasingly frequently for that purpose
because of a growing tendency to unify the data manage-
ment platform. Thus, the standard structured data analysis
can proceed side-by-side with the complex analytics that
MapReduce is well-suited for. Moreover, data warehous-
ing in this new platform enjoys the superior scalability of
MapReduce [9] at a lower price. For example, Facebook
famously ran a proof of concept comparing several paral-
lel relational database vendors before deciding to run their
2.5 petabyte clickstream data warehouse using Hadoop [27]
instead.

Consequently, in recent years a significant amount of re-
search and commercial activity has focused on integrating
MapReduce and relational database technology [31, 9, 24,
16, 34, 33, 22, 14]. There are two approaches to this prob-
lem: (1) Starting with a parallel database system and adding
some MapReduce features [24, 16, 33], and (2) Starting with
MapReduce and adding database system technology [31, 34,
9, 22, 14]. While both options are valid routes towards the
integration, we expect that the second approach will ulti-
mately prevail. This is because while there exists no widely
available open source parallel database system, MapReduce
is offered as an open source project. Furthermore, it is ac-
companied by a plethora of free tools, as well as cluster
availability and support.

HadoopDB [9] follows the second of the approaches men-



tioned above. The technology developed at Yale University
is commercialized by Hadapt [1]. The research project re-
vealed that many of Hadoop’s problems with performance
on structured data can be attributed to a suboptimal stor-
age layer. The default Hadoop storage layer, HDFS, is the
distributed file system. When HDFS was replaced with mul-
tiple instances of a relational database system (one instance
per node in a shared-nothing cluster), HadoopDB outper-
formed Hadoop’s default configuration by up to an order of
magnitude. The reason for the performance improvement
can be attributed to leveraging decades’ worth of research
in the database systems community. Some optimizations
developed during this period include the careful layout of
data on disk, indexing, sorting, shared I/O, buffer manage-
ment, compression, and query optimization. By combin-
ing the job scheduler, task coordination, and parallelization
layer of Hadoop, with the storage layer of the DBMS, we
were able to retain the best features of both systems. While
achieving performance on structured data analysis compara-
ble with commercial parallel database systems, we maitained
Hadoop’s fault tolerance, scalability, ability to handle het-
erogeneous node performance, and query interface flexibility.

In this paper, we describe several query execution and
storage layer strategies that we developed to improve per-
formance by yet another order of magnitude in comparison
to the original research project. As a result, HadoopDB
performs up to two orders of magnitude better than stan-
dard Hadoop. Furthermore, these modifications enabled
HadoopDB to efficiently process significantly more compli-
cated SQL queries. These include queries from the TPC-
H benchmark — the most commonly used benchmark for
comparing modern parallel database systems. The tech-
niques we employ range from integrating with a column-
store database system (in particular, one based on the Mon-
etDB/X100 project), introducing referential partitioning to
maximize the number of single-node joins, integrating semi-
joins into the Hadoop Map phase, preparing aggregated data
before performing joins, and combining joins and aggrega-
tion in a single Reduce phase.

Some of the strategies we discuss have been previously
used or are currently available in commercial parallel
database systems. What is interesting about these strate-
gies in the context of HadoopDB, however, is the relative
importance of the different techniques in a split query
execution environment where both relational database sys-
tems and MapReduce are responsible for query processing.
Futhermore, many commercial parallel DBMS vendors
do not publish their query execution techniques in the
research community. Therefore, while not necessarily new
to implementation, some of the techniques presented in this
paper are nevertheless new to publication.

In general, there are two heuristics that guide our opti-
mizations:

1. Database systems can process data at a faster rate
than Hadoop.

2. Each MapReduce job typically involves many I/O op-
erations and network transfers. Thus, it is important
to minimize the number of MapReduce jobs in a series
into which a SQL query is translated.

Consequently, HadoopDB attempts to push as much pro-
cessing as possible into single-node database systems and

to perform as many relational query operators as possible
in each “Map” and “Reduce” task. Our focus in this pa-
per is on the processing of SQL queries by splitting their
execution across Hadoop and DBMS. HadoopDB, however,
also retains its ability to accept queries written directly in
MapReduce.

In order to measure the relative effectiveness of our dif-
ferent query execution techniques, we selectively turn them
on and off and measure the effect on the performance of
HadoopDB for the TPC-H benchmark. Our primary com-
parison points are the first version of HadoopDB (without
these techniques), and Hive, the currently dominant SQL
interface to Hadoop. For continuity of comparison, we also
benchmark against the same commercial parallel database
system used in the original HadoopDB paper. HadoopDB
shows consistently impressive performance that positions it
as a legitimate player in the rapidly emerging market of “Big
Data” analytics.

In addition to bringing high performance SQL to Hadoop,
Hadapt adjusts on the fly to changing conditions in cloud
environments. Hadapt is the only analytical database plat-
form designed from scratch for cloud deployments. This pa-
per does not discuss the cloud-based innovations of Hadapt.
Rather, the sole focus is on the recent performance-oriented
innovations developed in the Yale HadoopDB project.

2. BACKGROUND AND RELATED WORK

2.1 Hive and Hadoop
Hive [4] is an open-source data warehousing infrastructure

built on top of Hadoop [2]. Hive accepts queries expressed
in a SQL-like language called HiveQL and executes them
against data stored in the Hadoop Distributed File System
(HDFS).

A big limitation of the current implementation of Hive
is its data storage layer. Because it is typically deployed
on top of a distributed file system, Hive is unable to use
hash-partitioning on a join key for the colocation of related
tables — a typical strategy that parallel databases exploit
to minimize data movement across nodes. Moreover, Hive
workloads are very I/O heavy due to lack of native index-
ing. Furthermore, because the system catalog lacks statis-
tics on data distribution, cost-based algorithms cannot be
implemented in Hive’s optimizer. We expect that Hive’s
developers will resolve these shortcomings in the future1.

The original HadoopDB research project replaced HDFS
with many single-node database systems. Besides yielding
short-term performance benefits, this design made it easier
to implement some standard parallel database techniques.
Having achieved this, we can now focus on the more ad-
vanced split query execution techniques presented in this
paper. We describe the original HadoopDB research in more
detail in the following subsection.

2.2 HadoopDB
In this section we overview the architecture and rel-

evant query execution strategies implemented in the
HadoopDB [9, 10] project.

1In fact, the most recent version (0.7.0) introduced some of
the missing features. Unfortunaly, it was released after we
completed our experiments.



2.2.1 HadoopDB Architecture
The central idea behind HadoopDB is to create a single

system by connecting multiple independent single-node
databases deployed across a cluster (see our previous
work [9] for more details). Figure 1 presents the architec-
ture of the system. Queries are parallelized using Hadoop,
which serves as a coordination layer. To achieve high
efficiency, performance sensitive parts of query processing
are pushed into underlying database systems. HadoopDB
thus resembles a shared-nothing parallel database where
Hadoop provides runtime scheduling and job management
that ensures scalability up to thousands of nodes.

Figure 1: The HadoopDB Architecture

The main components of HadoopDB include:

1. Database Connector that allows Hadoop jobs to access
multiple database systems by executing SQL queries
via a JDBC interface.

2. Data Loader that hash-partitions and splits data into
smaller chunks and coordinates their parallel load into
the database systems.

3. Catalog which contains both metadata about the lo-
cation of database chunks stored in the cluster and
statistics about the data.

4. Query Interface which allows queries to be submitted
via a MapReduce API or SQL.

In the original HadoopDB paper [9], the prototype was
built using PostgreSQL as the underlying DBMS layer.
By design, HadoopDB may leverage any JDBC-compliant
database system. Our solution is able to transform a
single-node DBMS into a highly scalable parallel data
analytics platform that can handle very large datasets and
provide automatic fault tolerance and load balancing. In
this paper, we demonstrate our flexibility by integrating
with a new columnar database engine described in the
following section.

2.2.2 VectorWise/X100 Database
We used an early version of the VectorWise (VW) en-

gine [7], a single-node DBMS based on the MonetDB/X100
research project [13, 35]. VW provides high performance in
analytical queries due to vectorized operations on in-cache
data and efficient I/O.

The unique feature of the VW/X100 database engine is its
ability to take advantage of modern CPU capabilities such
as SIMD instructions. This allows a data processing opera-
tion such as a predicate evaluation to be applied to several
values from a column simultaneously on a single processor.
Furthermore, in contrast to the tuple-at-a-time iterators tra-
ditionally employed by database systems, X100 processes
multiple values (typically vectors of length 1024) at once.
Moreover, VW makes an effort to keep the processed vec-
tors in cache to reduce unnecessary RAM access.

In the storage layer, VectorWise is a flexible column-store
that allows for finer-grained I/O, enabling the system to
spend time reading only those attributes which are rele-
vant to a particular query. To further reduce I/O, auto-
matic lightweight compression is applied. Finally, cluster-
ing indices and the exploitation of data correlations through
sparse MinMax indices allow even more savings in disk ac-
cess.

2.2.3 HadoopDB Query Execution
The basic strategy of implementing queries in HadoopDB

involves pushing those parts of query processing that can
be performed independently into single-node database sys-
tems by issuing SQL statements. This approach is effective
for selection, projection, and partial aggregation — process-
ing that Hadoop typically performs during the Map and
Combine phases. Employing a database system for these
operations generally results in higher performance because
a DBMS provides more efficient operator implementation,
better I/O handling, and clustering/indexing.

Moreover, when tables are co-partitioned (e.g., hash par-
titioned on the join attribute), join operations can also be
processed inside the database system. The benefit here is
twofold. First, joins become local operarations which elim-
inates the necessity of sending data over the network. Sec-
ond, joins are performed inside the DBMS which typically
implements these operations very efficiently.

The initial release of HadoopDB included the implemen-
tation of Hadoop’s InputFormat interface, which allowed, in
a given job, accessing either a single table or a group of co-
partitioned tables. In other words, HadoopDB’s Database
Connector supported only streams of tuples with an identical
schema. In this paper, however, we discuss more advanced
execution plans where some joins require data redistribu-
tion before computing and therefore cannot be performed
entirely within single-node database systems. To accomo-
date such plans, we extended the Database Connector to
give Hadoop access to multiple database tables within the
Map phase of a single job. After repartitioning on the join
key, related records are sent to the Reduce phase in which
the actual join is computed.

Furthermore, in order to handle even more complicated
queries that include multi-stage jobs, we enabled HadoopDB
to consume records from a combined input consisting of data
from both database tables and HDFS files. In addition, we
enhanced HadoopDB so that, at any point during process-



ing, jobs can issue additional SQL queries via an extension
we call SideDB (a “database task done on the side”).

Apart from the SideDB extention, all query execution in
HadoopDB beyond the Map phase is carried out inside the
Hadoop framework. To achieve high performance along the
entire execution path, further optimizations are necessary.
These are described in detail in the next section.

3. SPLIT QUERY EXECUTION
In this section we discuss four techniques that optimize

the execution of data warehouse queries across Hadoop and
single-node database systems installed on every node in a
shared-nothing network. We further discuss implementation
details within HadoopDB.

3.1 Referential Partitioning
Distributed joins are expensive, especially in Hadoop, be-

cause they require one extra MR job [30, 34, 9] to repartition
data on a join key. In general, database system developers
spend a lot of time optimizing the performance of joins which
are very common and costly operations. Typically, joins
computed within a database system will involve far fewer
reads and writes to disk than joins computed across multi-
ple MapReduce jobs inside Hadoop. Hence, for performance
reasons, HadoopDB strongly prefers to compute joins com-
pletely inside the database engine deployed on each node.

To be performed completely inside the database layer in
HadoopDB, a join must be local i.e. each node must join
data from tables stored locally without shipping any data
over the network. When data needs to be sent across a
cluster, Hadoop takes over query processing, which means
that the join is not done inside the database engines. If
two tables are hash partitioned on the join attribute (e.g.,
both employee and department tables on department id),
then a local join is possible since each single-node database
system can compute a join on its partition of data without
considering partitions stored on other nodes.

As a rule, traditional parallel database systems prefer lo-
cal joins over repartitioned joins since the former are less
expensive. This discrepancy in cost between local and repar-
titioned joins is even greater in HadoopDB due to the per-
formance difference in join implementation between DBMS
and Hadoop. For this reason, HadoopDB is willing to sac-
rifice certain performance benefits, such as quick load time,
in exchange for local joins.

In order to push as many joins as possible into single node
database systems inside HadoopDB, we perform “aggres-
sive” hash-partitioning. Typically, database tables are hash-
partitioned on an attribute selected from a given table. This
method, however, limits the degree of co-partitioning, since
tables can be related to each other via many steps of foreign-
key/primary-key references. For example, in TPC-H, the
lineitem table contains a foreign-key to the orders table via
the order key attribute, while the orders table contains a
foreign-key to the customer table via the customer key at-
tribute. If the lineitem table could be partitioned by the
customer who made the order, then any of the straightfor-
ward join combinations of the customer, orders, and lineitem
tables would be local to each node.

Yet, since the lineitem table does not contain the customer
key attribute, direct partitioning is impossible. HadoopDB
was, therefore, extended to support referential partitioning.
Although a similarly named technique was recently made

available in Oracle 11g [23], it served a different purpose
than in our project where this partitioning scheme facilitates
joins across a shared-nothing network.

Obviously, this method can be extended to an arbitrary
number of tables referenced in a cascading way. During data
load, referential partitioning involves the additional step of
joining with a parent table to retrieve its foreign key. This,
however, is a one time cost that gets amortized quickly by
superior performance on join queries. This technique bene-
fits TPC-H queries 3, 5, 7, 8, 10, and 18, all of which need
joins between the customer, orders, and lineitem tables.

3.2 Split MR/DB Joins
For tables that are not co-partitioned the join is generally

performed using the MapReduce framework. This usually
takes place in the Reduce phase of a job. The Map phase
reads each table partition and, for each tuple, outputs the
join attribute intended to automatically repartition the ta-
bles between the Map and Reduce phases.

Therefore, the same Reduce task is responsible for pro-
cessing all tuples with the same join key. Natural joins and
equi-joins require no further network communication — the
Reduce tasks simply perform the join on their partition of
data.

The above algorithm works similarly to a partitioned par-
allel join described in parallel database literature [28, 20].
In general this method requires repartitioning both tables
across nodes. In several specific cases, however, the latter
operation is unnecessary — a situation that parallel DBMS
implementations take advantage of whenever possible. Two
common join optimizations are the directed join and the
broadcast join. The former is applicable when one of the ta-
bles is already partitioned by the join key. In this case only
the other table has to be distributed using the same parti-
tioning function. The join can proceed locally on each node.
The broadcast join is used when one table is much larger
than the other. The large table should be left in its original
location while the entire small table ought to be shipped to
every node in the cluster. Each partition of the larger table
can then be joined locally with the smaller table.

Unfortunately, implementing directed and broadcast joins
in Hadoop requires computing the join in the Map phase.
This is not a trivial task2 since reading multiple data sets
with an algorithm that might require multiple passes does
not fit well into the Map sequential scan model. Further-
more, HDFS does not promise to keep different datasets
co-partitioned between jobs. Therefore, a Map task can-
not assume that two different datasets partitioned using the
same hash function are actually stored on the same node.

For this reason, previous work on adding specialized joins
to the MapReduce framework typically focused on the rela-
tively simple broadcast join. This algorithm is implemented
in Hive, Pig, and a recent research paper [12]3. Since none
of the abovementioned systems implement cost-based query
optimizers, a hint must be included in the query to let the
system know that a broadcast join algorithm should be used.

2Unless both tables are already sorted by the join key, in
which case one can use Hadoop’s merge join operator.
3This work goes quite a bit farther than Hive and Pig, imple-
menting several optimizations on top of the basic broadcast
join, though each optimization maintains the single-pass se-
quential scan requirement of the larger table during the Map
phase.



The implementation of the broadcast join in these systems
is as follows. Each Map worker reads the smaller table from
HDFS and stores it in an in-memory hash table. This has
the effect of replicating the small table to each local node. A
sequential scan of the larger table follows. As in a standard
simple hash-join, the in-memory hash map is probed with
each tuple of this larger table to check for a matching key
value. The reading of both tables helps avoid the difficulties
of implementing a multi-pass algorithm. Since the join is
computed in the Map phase, it is called a Map-side join.

Split execution environments enable the implementation
of a variety of joins in the Map phase and reveal some in-
teresting new tradeoffs. First, take the case of the broad-
cast join. There are two ways that the latter can be imple-
mented in a split execution framework. The first way is to
use the standard Map-side join discussed above. The sec-
ond way, possible only in HadoopDB, involves writing the
smaller table to a temporary table in the database system
on each node. Then the join is computed completely inside
the DBMS and the resulting tuples are read by the Map
tasks for further processing.

The significance of the tradeoff between these two ap-
proaches depends on the DBMS software used. A partic-
ularly important factor is the cost of writing to a temporary
table and sharing this table across multiple partitions on
the same node. In general, as long as this cost is not too
high, computing the join inside the DBMS will yield better
performance than computing it in the Java code of the Map
task. This is explored further in Section 4.

Another type of join enabled by split execution environ-
ments is the directed join. Here, HadoopDB runs a stan-
dard MapReduce job to repartition the second table. First
we look up in the HadoopDB catalog how the first table
was distributed and use this function to repartition the sec-
ond table. Any selection operations on the second table are
performed in the Map phase of this job. The OutputFor-
mat feature of Hadoop is then used to circumvent HDFS
and write the output of this repartitioning directly into the
database systems located on each node. HadoopDB provides
native support for keeping data co-partitioned between jobs.
Therefore, once both tables are partitioned on the same at-
tribute inside the HadoopDB storage layer, the next MapRe-
duce job can compute the join by pushing it entirely into the
database systems. The resulting tuples get fed to the Map
phase as a single stream.

In the experimental results presented later in this paper,
we will further explore the performance of split MR/DB
joins. This technique proved to be particularly beneficial in
TPC-H queries 11, 16, and 17.

3.2.1 Split MR/DB Semijoin
A semijoin is one more type of join that can be split into

two MapReduce jobs, the second of which computes the join
in the Map phase. Here, not only does the first MapReduce
job perform selection operations on the table, but it also
projects the join attribute. The resulting column is then
replicated as in a Map-side join. If the projected column
is very small (for example, the key from a dictionary ta-
ble or a table after applying a very selective predicate), the
Map-side join is replaced with a selection predicate using
the SQL clause ’foreignKey IN (listOfValues)’ and pushed
into the DBMS. This allows the join to be performed inside

the database system without first loading the data into a
temporary table inside the DBMS.

Furthermore, in some cases, HadoopDB’s SideDB exten-
sion can be used to entirely eliminate the first MapReduce
job for a split semijoin. At job setup a SideDB query ex-
tractes the projected join key column instead of running a
seperate MapReduce job.

The SideDB extension is also helpful for looking up and
extracting attributes from small tables such as dictionary
tables. Such a situation typically occurs at the very end
of the query plan, right before outputting the results. For
example, integer identifiers that were carried through the
query execution, are replaced by actual text values (e.g.,
names of the nations replacing the nation identifier in TPC-
H). A similar concept in column-store databases is known
as late materialization [8, 26].

The query rewrite version of the map-side split semijoin
technique is commonly used in HadoopDB’s implementa-
tion of TPC-H to satisfy the benchmark rules forbidding the
replication of tables. All queries that include joins with re-
gion and nation tables are implemented using the selection-
predicate-rewriting and SideDB optimizations.

3.3 Post-join Aggregation
In HadoopDB, since aggregation operations can be exe-

cuted in database engines, there is usually no need for a
MapReduce Combiner.

Still there exists no standard way of performing post-
Reduce aggregation. While Reduce is meant for aggrega-
tion by design, it can only be applied if the repartitioning
between the Map and Reduce phases is performed on the
grouping attribute(s) specified in the query. If, however, the
partitioning is done on a join key (in order to join two differ-
ent tables), then another partitioning is needed to compute
the aggregation, since, in general, the grouping attribute is
different from the join key. The new partitioning therefore
requires another MapReduce job and all its associated over-
head.

In such situations, hash-based partial aggregation is done
at the end of each Reduce task. The grouping attribute ex-
tracted from each result of the Reduce task is used to probe
a hash table in order to update the appropriate running ag-
gregation. This procedure can save significant I/O, since
the output of Reduce tasks is written redundantly to HDFS
whereas the output of Map tasks is written only locally.
Hence, by outputting partially aggregated data instead of
raw values, we reduce the amount of data to be written to
HDFS. TPC-H queries that benefit from this technique in-
clude 5, 7, 8, and 9.

A similar technique is applied to TOP N selections, where
the list of the top N entries is maintained in an in-memory
tree map throughout the Reduce phase and outputted at
the end. In-memory data structures are also used for com-
bining an ORDER BY clause with another operator inside
the same Reduce task, again saving an extra MapReduce
job. Examples where this technique is beneficial are TPC-H
queries 2, 3, 10, 13, and 18.

3.4 Pre-join Aggregation
Whereas in most database systems aggregations are typ-

ically performed after a join, in HadoopDB they sometimes
get transformed into partial aggregation operators and com-
puted before a join. This happens when the join cannot be



pushed into the database system and therefore must be per-
formed by Hadoop which is much slower than DBMS. When
the product of the cardinalities of the group-by and join-key
columns is smaller than the cardinality of the entire table, it
becomes beneficial to push the aggregation past the join so
that it can be performed inside the database layer. Later,
there might be a need to drop some of the computed aggre-
gates for which the join condition is not satisfied. This extra
work is rewarded, however, with savings in I/O and network
traffic.

3.5 Constructing a query plan in HadoopDB
Figure 2 illustrates the split execution plan HadoopDB

executes for TPC-H Query 20. The original SQL statement

Figure 2: Query 20 Execution Plan

(see Appendix) is decomposed into four simpler independent
SQL statements based on the partitioning information.

In the first stage (Job 1), HadoopDB begins by fetching
the nation dictionary using the SideDB extension. The value
of the nation key for Canada is used to apply the split semi-
join (via query rewrite) to the supplier table processed by
the first group of map tasks. The second group executes the
SQL statement against the part and partsupp tables which
are co-partitioned on the partkey. To compute a join in Re-
duce both types of map tasks output the resulting records
with supplier key as the key and the remaining attributes as
the value.

In the second stage (Job 2), one group of Map tasks reads
the result of Job 1 and applies a simple identity function
while the other group reads lineitem records filtered by a
predicate on ship-date. Thanks to repartitioning on a com-
posite key (suppkey and partkey) between Map and Reduce,
the join between two incoming streams of tuples is achieved
in the same job as the post-join aggregation and the appli-
cation of a predicate on the quantity threshold. The last
stage (Job 3) sorts the final result by supplier name within
a single reducer.

4. EXPERIMENTS
Using a TPC-H benchmark with a scaling factor 3000

(3TB of data) on a 45-node cluster, we evaluated three data
processing systems: HadoopDB with PostgreSQL (HDB-
PSQL) and VectorWise (HDB-VW), DBMS-X (a commer-
cial parallel row-oriented database system), and Hive with
HDFS. The details of the configuration and data load pro-
cess are presented in subsequent sections.

4.1 Cluster configuration
Each node in the cluster has a single 2.40 GHz Intel Core

2 Duo processor running 64-bit Red Hat Enterprise Linux
5 (kernel version 2.6.18) with 4GB RAM and two 250GB
SATA-I hard disks. According to hdparm, the hard disks
deliver 74MB/sec for buffered reads. All nodes are on the
same rack, connected via 1Gbps network to a Cisco Catalyst
3750E-48TD switch.

4.2 Benchmarked Systems

4.2.1 DBMS-X
We installed a recent release of DBMS-X, a parallel row-

oriented SQL DBMS from a major relational database com-
pany. The official TPC-H benchmark conducted by the
DBMS-X vendor used the same version of the system. Con-
sequently, in our installation of DBMS-X we followed, as far
as possible, the parameters specified in the report published
at the TPC website. Since the vendor ran the benchmark
with considerably more RAM and hard drives per node than
in our cluster, to reflect our resources we had to scale down
the values of some parameters. The system is installed on
each node and configured to use 4GB shared memory seg-
ments for the buffer pool and other temporary space. Fur-
thermore, because our entire benchmark is read-only, we did
not enable the replication features in DBMS-X, since rather
than improving performance this would have complicated
the installation process.

4.2.2 Hive and Hadoop
For experiments in this paper, we used Hive version 0.4.1

and Hadoop version 0.19.2, running on Java 1.6.0. We con-
figured both systems according to the suggestions offered by
members of Hive’s development team in their report on run-
ning TPC-H on Hive [5]. To reflect our hardware capacity,
we adjusted the number of map and reduce slots to 2. In
addition, the HDFS block size was set to 256MB. We also
enabled compression of query intermediate data with the
LZO native library version 2.03.

4.2.3 HadoopDB
The Hadoop part of HadoopDB was configured similarly

to Hadoop for Hive. The only difference is the number of
task slots, which we set to one. Thus, on each worker node,
Hadoop processes were able to use up to 2GB of RAM. The
other half of memory was designated to the DBMS, which
was installed on each machine independently. We used Post-
greSQL version 8.4.4 and increased its memory settings: the
shared buffers to 512 MB and the working memory size to
1GB. The remaining 512MB served as disk cache managed
by OS. In the case of VectorWise, the buffer pool was set to
400MB and the rest was available for query processing. All
other parameters of database servers remained unchanged.

4.3 TPC-H Benchmark
TPC-H [6] is a decision support benchmark that consists

of a set of complex business analysis queries. The dataset
models a global distribution company and includes the fol-
lowing tables: nation, region, supplier, part, partsupp, cus-
tomer, orders, and lineitem. We ran the benchmark at scal-
ing factor SF = 3000 (about 3TB).



4.4 Data Preparation and Loading
The benchmark data were generated using the dbgen pro-

gram provided by TPC, running in parallel on every node.
We used the appropriate parameters to produce a consis-
tent dataset across the cluster. Each of the 45 nodes in our
cluster received about 76GB of raw data.

4.4.1 DBMS-X
We followed the DBMS-X vendor suggestions and used the

DDL scripts from their TPC-H report to create the tables
and indices, and to define data distribution. All tables were
globally hash-partitioned across the nodes on their primary
key, except for the partsupp and lineitem relations, which
were hash-partitioned on only the first of the two columns
that make up their primary key. The supplier and customer
relations are indexed on their respective nation keys, and
the nation table was indexed on its region column. Finally,
on each node of the cluster, DBMS-X organized the lineitem
and orders relations by the month of their date columns for a
partial ordering by date. The optimizer of DBMS-X is aware
of the partial ordering and with the appropriate predicates
can eliminate portions of the table from consideration.

The loading process consists of two steps. First, data are
repartitioned and shuffled; second, the repartitioned data
are bulk-loaded on each node. The DBMS-X loading util-
ity, which we invoked on each node, can directly consume
and transform data produced by the TPC-H data generator.
The partitioning phase can proceed in parallel, but DBMS-
X serializes each load phase and does not make full use of
the available disk bandwidth. DBMS-X does not reliably
indicate the time spent in the two phases, so we report only
total load time which was 33h3min.

4.4.2 Hive and Hadoop
Hadoop’s filesystem utility was run in parallel on all nodes

and copied unaltered data files into HDFS under a separate
directory for each table. Each file was automatically bro-
ken into 256MB blocks and stored on a local DataNode. In
addition, we executed Hive DDL scripts to put relational
mapping on the files. Thanks to its simplicity, the entire
process took only 49 minutes.

4.4.3 HadoopDB
In the first step, HadoopDB also loaded raw data into

HDFS. Then, HadoopDB Data Loader utilities, imple-
mented as MR jobs, performed global hash-partitioning of
each data file across the cluster. In the case of the lineitem
table, this two-step process involved a join with the orders
table to retrieve the customer key attribute needed for
referential partitioning. Next, each node downloaded its
partitions into a local filesystem. Finally, each group of
co-partitioned tables was broken into smaller chunks, which
observe referential integrity constraints with the maximum
size of 3.5GB. The entire partitioning process took 11h4min.
Referential hash-partitioning was the most expensive part
(6h42min).

The chunked files were bulk-loaded in parallel into each
instance of the VectorWise server using the standard SQL
COPY command. During this process data were also sorted
according to the clustering index and VW’s internal indices
were created. In the last step, the VW optimizedb tool was
run to generate statistics and histograms to be used by the

optimizer during query execution. Loading data into the
databases took 3h47min.

The data layout for HadoopDB with VectorWise (HDB-
VW) is as follows. The customer, orders, and lineitem tables
were partitioned by the customer key and clustered by the
nation key, order date, and order key, respectively. The
part key attribute was used both to hash-partition and to
cluster the part and partsupp tables. The supplier table
was partitioned by its primary key and clustered on the na-
tion key. Small dictionary tables, region and nation, were
not partitioned and located on a single node. Despite their
small size, they were not replicated since this violates TPC-
H benchmarking rules. Their clustering indices were created
using the region key attribute. We followed the advice of
the VectorWise team on the most beneficial indices for their
database system.

In short, the HadoopDB data layout was identical to the
DBMS-X setup, except for the use of referential partition-
ing, slightly different indices, and chunking data into smaller
partitions per node4.

In HadoopDB combined with PostgreSQL (HDB-PSQL)
data are partitioned in the same way as in the setup with
VW. We clustered the lineitem table on ship date, however,
because we found this index more beneficial for PostgreSQL.
Loading and indexing the databases took 7h13min.

4.5 Benchmark Execution
We ran TPC-H queries from 1 to 20. For DBMS-X and

Hive we executed the statements as suggested by the ven-
dors. We noted that since the HiveQL syntax is a subset of
SQL, in many cases the original TPC-H queries were rewrit-
ten by the Hive team into a series of simpler statements that
produce the desired output in the last step. HadoopDB im-
plemented the queries using its API to ensure the employ-
ment of the execution strategies we discuss in this paper. All
queries were parametrized using substitution values specified
by TPC-H for result validation.

Despite trying multiple configuration settings we could
not get Q10 running on Hive because it repeatedly crashed
during the join operation due to an “out of memory” error.
We managed, however, to run every other query in that sys-
tem. When adjusted to the larger dataset and weaker hard-
ware, our results were in line with the numbers published
by the Hive team.

4.6 General Comparison
The results of benchmarking all three systems are shown

in Figure 3 while the table below presents the numbers (all
times are in seconds).

First, it is worth noting that DBMS-X significantly out-
performs Hive in all queries. This is not surprising, since
the Hive development team found a similar difference when
comparing their system with DBMS-X [5]. The main rea-
son for Hive’s inferior performance is the lack of partitioning
and indexing. As a result of this limitation, every selection
becomes a full data scan and most of the joins involve repar-
titioning and shuffling all records across the cluster.

Previous work showed that HadoopDB combined with
PostgreSQL was able to approach but not quite reach the
performance level of parallel databases [9]. As a result of

4Chunking slows down the performance slightly, but is nec-
essary to maintain HadoopDB’s fault tolerance guarantees
[9].



Figure 3: TPC-H Query Performance (SF = 3000)

the techniques we described in Section 3, the new version
of HadoopDB (also with PostgreSQL) is able not only to
match, but in some cases to significantly outperform the
parallel database. The query execution enhancements that
led to this improvement will be examined in detail in the
subsequent sections.

Q DBMS-X HDB-PSQL HDB-VW HIVE

1 1367 1921 171 2323
2 822 358 118 1599
3 1116 2443 106 10219
4 1387 1383 92 8240
5 1515 1520 209 12352
6 224 601 102 1702
7 6133 1504 207 15398
8 1564 1739 357 12451
9 12463 6436 4685 35145

10 1022 1424 134 —
11 205 715 263 1780
12 1613 1606 139 8200
13 453 428 199 2147
14 73 198 178 6550
15 98 337 235 6743
16 364 385 220 2092
17 2746 1426 327 18493
18 4288 3130 149 22530
19 1423 1397 482 12491
20 4154 1100 841 7972

It is interesting to note that the biggest bottleneck in
HadoopDB is the underlying database. Switching from a
previous-generation row-store to a highly optimized column-
store resulted in a considerable performance improvement
for HadoopDB (approximately a factor of seven on average).
This achievement highlights the benefits of the plug-and-
play design which allows the use of different database sys-

tems. As a result, HadoopDB can improve at the same rate
as the research on the performance of analytical database
systems.

For the class of low-latency queries (such as Q11, Q14
and Q15) HadoopDB is not bottlenecked by the underly-
ing database system. The real problem for these queries is
the block-level scheduling overhead since Hadoop-based sys-
tems are optimized for batch-oriented processing rather than
realtime analytics. The Hadoop community is working on
eliminating some of these limitations for low latency queries,
and we expect improvements in this area in the near future.

Overall, HadoopDB (with VW) outperforms DBMS-X by
a factor of 7.8 on average and Hive by a factor of 42 on
average. When PostgreSQL is used, HadoopDB matches
the performance of the commercial DBMS.

4.7 Split Execution Techniques Breakdown
In this section, we choose several representative queries

to explore in more detail the performance of the split query
execution techniques described in Section 3. The SQL state-
ments for those queries are listed in the Appendix.

4.7.1 Query 5
Query 5 requires joining six tables: customer, orders,

lineitem, supplier, nation, and region. The fully optimized
version makes use of most of the split query execution
techniques discussed in this paper, including referential
partitioning, split semijoin, and post-join aggregation. It
involves only one repartitioned join (the join with the
supplier table). The implementation of this query consists
of two MR jobs. The first one performs the join and partial
aggregation, while the second one computes the global sum
of revenue per nation.

Figure 4 shows the query running time with each opti-
mization turned off one by one. The first optimization we
turn off is the post-join aggregation on the nation key. We
observe that the amount of data that needs to be written



Figure 4: Q5 Breakdown for VW Figure 5: Q8 Breakdown for VW Figure 6: Q17 Breakdown for VW

Figure 7: Q5 Breakdown for PSQL Figure 8: Q8 Breakdown for PSQL Figure 9: Q17 Breakdown for PSQL

to HDFS between the two jobs increases from 5.2KB to
83.8MB. In an isolated experiment like ours, the effect on
query running time is quite insignificant. The extra I/O be-
comes more of a problem in production settings where there
is far more competition for I/O from many concurrent jobs.

The next optimization we turn off is the split semijoin
technique (used for the joins of both the customer and sup-
plier tables with the nation and region tables). HadoopDB
replaces the split semijoin with a regular Map-side join. This
results in a slowdown of about 50% . The reason is that now
the joins are performed outside of the database system and
therefore cannot take advantage of clustering indices on the
nation key.

Finally, we turn off the Map-side join and replace it with
the join done in the Reduce phase. This causes query run-
ning time to double. Overall, we reach almost a factor of
three slowdown versus the fully optimized version. It is
worth noting that the entire operation of joining all the ta-
bles is still achieved within one MR job, thanks to the fact
that the dictionary tables can be brought into memory using
the SideDB extension.

Turning off optimization techniques has a relatively
smaller effect on HDB-PSQL (Fig. 7) since the total
running time is dominated by the slower performing
PostgreSQL.

To explore the impact of referential partitioning, we im-
plemented in HadoopDB an alternative query execution plan
which assumes only standard partitioning as used in DBMS-
X. In this plan, before the join with the supplier table is per-
formed, one extra MR job is required to compute the join
between the customer and orders/lineitem tables. This ex-
tra join causes the total query performance to become slower
by a factor of four versus the layout with referential parti-
tioning. The reason is that, internally, that extra job needs
to send about 47GB of intermediate data over the network
and write an additional 12GB to HDFS.

4.7.2 Query 8
We observe that, like in Query 5, moving the join op-

eration to a later stage within a MapReduce job decreases
performance. The results are illustrated in Figure 5. Here,
employing split semijoin (to restrict nations to the region
of America) gives a speedup by a factor of 2 over the Map-
side join and by a factor of 3.6 over the Reduce join. When
the less efficient PostgreSQL is used underneath HadoopDB,
the contribution of optimization techniques (Fig. 8) is again
smaller.

More specifically, switching to the Map-side join resulted
in a total of 5.5M of rows returned by all the databases com-
bined (5 times more than in the split semijoin version). In
both the split semijoin and the regular Map-side join cases,
the same amount of intermediate data (around 315GB) is
written to disk by the Hadoop framework between the Map
and Reduce phases. The amount increases to 1.7TB when
we perform a repartitioned join in the Reduce phase.

4.7.3 Query 17
Query 17 involves a join between the lineitem and part

tables which are not copartitioned. This query would nor-
mally involve repartitioning both tables and performing the
join in Reduce. In Q17, however, very selective predicates
are applied to the part table (69GB of raw data), resulting in
only about 6MB of data (around 600 thousand integer iden-
tifiers). This small size gives HadoopDB the opportunity
to employ the split MR/DB join technique. Note that this
is not the semijoin version as in the previous two queries,
since there are too many values to perform the “foreignKey
IN (listOfValues)” rewrite. Instead, the result of the selec-
tion query on the part table is broadcasted to all nodes,
and loaded into the database servers where the join is com-
puted. In this way, HadoopDB performs the join in the Map
phase, thereby avoiding the repartitioning of the lineitem ta-
ble. The gain is about a factor of 2.5 in total running time
for HDB-PSQL and an order of magnitude for HDB-VW.



In order to compare the split MR/DB join technique with
a standard Map-side join, we implemented the latter as
an alternative execution plan. The results are shown in
Figures 6 and 9. Surprisingly, the speedup resulting from
pushing the join into the DBMS is greater for VectorWise
than for PostgreSQL. We believe that this is due to the
vectorized processing and cache-conscious query executor in
VW/X100. PostgreSQL follows the tuple-at-a-time iterator
model, which results in similar performance as that of the
Java hashtable lookups in the Map-side join implementation.
Hence, even if the broadcasted table can fit in memory, it
may prove better to write the table to an optimized DBMS
and perform the join there, than to perform it in the stan-
dard way in the Map phase.

4.8 Analysis of Other Interesting Queries
In this section we analyze several additional queries that

are notable in some way, usually because they deviate from
our expectations. This helps to further understand the dif-
ferent tradeoffs and performance characteristics of the sys-
tems.

4.8.1 Query 3
Query 3 is similar to Query 5 in that referential parti-

tioning eliminates a significant amount of disk and network
I/O. We expected both HadoopDB combined with Vector-
Wise and HadoopDB combined with PostgreSQL to signifi-
cantly outperform DBMS-X which does not have the benefit
of referential partitioning. This is indeed the case for VW,
but the results are quite different for PostgreSQL, as HDB-
PSQL is 2 times slower than DBMS-X. A close investigation
revealed that the date predicates are not very selective, re-
turning half of the records from both the lineitem and orders
tables. Those records need to be joined with about a fifth of
the rows from the customer table. The PostgreSQL’s EX-
PLAIN command indicates that the hash join algorithm is
applied. Given the large number of records, PostgreSQL is
not able to keep all the intermediate data in memory and
therefore needs to swap to disk. In contrast, VectorWise
employs an efficient merge join algorithm and is able to pro-
cesses each chunk without spilling intermediate results to
disk.

4.8.2 Query 9
This query poses difficulties for each system we bench-

marked. Six tables need to be joined and there is only one
selection predicate (on the part table) to reduce the size
of the data read from disk. Thus, the query requires shuf-
fling most of the data over the network to compute joins.
Both HadoopDB setups benefit from pushing three out of
five joins into the local databases thanks to the partition-
ing of data. VectorWise outperforms PostgreSQL because
the former is a column-store and in total only 15 out of 46
columns need to be read off disk. The column-store advan-
tages are somewhat dimished here, however, due to the high
cost of tuple reconstruction caused by the large number of
returned rows.

4.8.3 Query 18
In this query HadoopDB with PostgreSQL is about 37%

faster than the parallel database and 7 times more efficient
than Hive. HDB-VW outperforms DBMS-X by a factor of
28.8 and Hive by a factor of 151. HadoopDB’s highly ef-

ficient execution plan for this query again benefits greatly
from referential partitioning, requiring only one MR job to
produce the desired output. DBMS-X needs to perform one
non-local join (with customer table) but is still able to com-
pute the complex subquery in the WHERE clause thanks
to partitioning on the order key. Hive first runs an extra
job for that subquery and then joins all tables using the
repartitioned join algorithm.

The relatively high difference in performance between the
VW/X100 and PostgreSQL setups deserves closer investiga-
tion. It turns out that PostgreSQL spends 75% of the time
computing the subquery responsible for the aggregation of
the lineitem table via sorting by order key. Due to insuf-
ficient memory an external disk merge sort is needed. In
contrast, VW, besides being far more computationally ef-
ficient in general, also takes advantage of the fact that the
lineitem table is already clustered on the order key attribute.

5. CONCLUSION
When the query execution environment is split across

MapReduce and database systems, there appear some inter-
esting tradeoffs not present in each system separately. By
carefully designing HadoopDB’s query engine to operate in
this split execution environment, we achieved a substantial
performance improvement. After equipping HadoopDB
with an efficient single-node columnar DBMS, along with
several new query execution strategies, we outperformed a
popular commercial parallel database system by almost an
order of magnitude, and the state of the art Hadoop-based
data warehouse by significantly more than an order of
magnitude. By integrating with Hadoop for job scheduling
and network communication, we transformed a single-node
DBMS into a scalable parallel data analytics platform. Our
system successfully competes in the most commonly used
data warehouse benchmark against established commercial
solutions.
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APPENDIX
TPC-H Query 3

select first 10

l_orderkey, sum(l_extendedprice * (1 - l_discount)) as revenue,

o_orderdate, o_shippriority

from

customer, orders, lineitem

where

c_mktsegment = ’BUILDING’

and c_custkey = o_custkey

and l_orderkey = o_orderkey

and o_orderdate < date ’1995-03-15’

and l_shipdate > date ’1995-03-15’

group by

l_orderkey, o_orderdate, o_shippriority

order by

revenue desc, o_orderdate

TPC-H Query 5

select

n_name, sum(l_extendedprice * (1 - l_discount)) as revenue

from

customer, orders, lineitem, supplier, nation, region

where

c_custkey = o_custkey

and l_orderkey = o_orderkey

and l_suppkey = s_suppkey

and c_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’ASIA’

and o_orderdate >= date ’1994-01-01’

and o_orderdate < date ’1994-01-01’

+ interval ’1’ year

group by

n_name

order by

revenue desc

TPC-H Query 7

select

supp_nation, cust_nation, l_year, sum(volume) as revenue

from

(

select

n1.n_name as supp_nation, n2.n_name as cust_nation,

extract(year from l_shipdate) as l_year,

l_extendedprice * (1 - l_discount) as volume

from

supplier, lineitem, orders, customer, nation n1, nation n2

where

s_suppkey = l_suppkey

and o_orderkey = l_orderkey

and c_custkey = o_custkey

and s_nationkey = n1.n_nationkey

and c_nationkey = n2.n_nationkey

and (

(n1.n_name = ’FRANCE’ and n2.n_name = ’GERMANY’)

or (n1.n_name = ’GERMANY’ and n2.n_name = ’FRANCE’)

)

and l_shipdate between date ’1995-01-01’

and date ’1996-12-31’

) as shipping

group by

supp_nation, cust_nation, l_year

order by

supp_nation, cust_nation, l_year

TPC-H Query 8

select

o_year, sum(case when nation = ’BRAZIL’ then volume

else 0 end) / sum(volume) as mkt_share

from

(

select

extract(year from o_orderdate) as o_year,

l_extendedprice * (1 - l_discount) as volume,

n2.n_name as nation

from

part, supplier, lineitem, orders,

customer, nation n1, nation n2, region

where

p_partkey = l_partkey

and s_suppkey = l_suppkey

and l_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = n1.n_nationkey

and n1.n_regionkey = r_regionkey

and r_name = ’AMERICA’

and s_nationkey = n2.n_nationkey

and o_orderdate between date ’1995-01-01’

and date ’1996-12-31’

and p_type = ’ECONOMY ANODIZED STEEL’

) as all_nations

group by

o_year

order by

o_year

TPC-H Query 9

select

nation, o_year, sum(amount) as sum_profit

from

(

select



n_name as nation,

extract(year from o_orderdate) as o_year,

l_extendedprice * (1 - l_discount)

- ps_supplycost * l_quantity as amount

from

part, supplier, lineitem, partsupp, orders, nation

where

s_suppkey = l_suppkey

and ps_suppkey = l_suppkey

and ps_partkey = l_partkey

and p_partkey = l_partkey

and o_orderkey = l_orderkey

and s_nationkey = n_nationkey

and p_name like ’%green%’

) as profit

group by

nation, o_year

order by

nation, o_year desc

TPC-H Query 17

select

sum(l_extendedprice) / 7.0 as avg_yearly

from

lineitem, part

where

p_partkey = l_partkey

and p_brand = ’Brand#23’

and p_container = ’MED BOX’

and l_quantity < (

select

0.2 * avg(l_quantity)

from

lineitem

where

l_partkey = p_partkey

)

TPC-H Query 18

select first 100

c_name, c_custkey, o_orderkey,

o_orderdate, o_totalprice, sum(l_quantity)

from

customer, orders, lineitem

where

o_orderkey in (

select

l_orderkey

from

lineitem

group by

l_orderkey

having

sum(l_quantity) > 300

)

and c_custkey = o_custkey

and o_orderkey = l_orderkey

group by

c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice

order by

o_totalprice desc, o_orderdate

TPC-H Query 20

select

s_name, s_address

from

supplier, nation

where

s_suppkey in (

select

ps_suppkey

from

partsupp

where

ps_partkey in (

select

p_partkey

from

part

where

p_name like ’forest%’

)

and ps_availqty > (

select

0.5 * sum(l_quantity)

from

lineitem

where

l_partkey = ps_partkey

and l_suppkey = ps_suppkey

and l_shipdate >= date ’1994-01-01’

and l_shipdate < date ’1994-01-01’

+ interval ’1’ year

)

)

and s_nationkey = n_nationkey

and n_name = ’CANADA’

order by

s_name


