Sinew: A SQL System for Multi-Structured Data

Daniel Tahara
_ Yale University
daniel.tahara@yale.edu

ABSTRACT

As applications are becoming increasingly dynamic, the no-
tion that a schema can be created in advance for an appli-
cation and remain relatively stable is becoming increasingly
unrealistic. This has pushed application developers away
from traditional relational database systems and away from
the SQL interface, despite their many well-established ben-
efits. Instead, developers often prefer self-describing data
models such as JSON, and NoSQL systems designed specif-
ically for their relaxed semantics.

In this paper, we discuss the design of a system that en-
ables developers to continue to represent their data using
self-describing formats without moving away from SQL and
traditional relational database systems. Our system stores
arbitrary documents of key-value pairs inside physical and
virtual columns of a traditional relational database system,
and adds a layer above the database system that automati-
cally provides a dynamic relational view to the user against
which fully standard SQL queries can be issued. We demon-
strate that our design can achieve an order of magnitude
improvement in performance over alternative solutions, in-
cluding existing relational database JSON extensions, Mon-
goDB, and shredding systems that store flattened key-value
data inside a relational database.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

Keywords
dynamic schema; SQL; RDBMS; NoSQL; JSON; MongoDB

1. INTRODUCTION

A major appeal of NoSQL database systems such as Mon-
goDB, CouchDB, Riak, Cassandra, or HBase as the storage
backend for modern applications is their flexibility to load,
store, and access data without having to define a schema

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22-27, 2014, Snowbird, UT, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2376-5/14/06...$15.00
http://dx.doi.org/10.1145/2588555.2612183.

Thaddeus Diamond
Hadapt

thaddeus@hadapt.com

815

Daniel J. Abadi
Yale University and Hadapt

dna@cs.yale.edu

ahead of time. By removing this up-front data manage-
ment effort, developers can more quickly get their applica-
tion up and running without having to worry in advance
about which attributes will exist in their datasets or about
their domains, types, and dependencies.

Some argue that this ‘immediate gratification’ style of ap-
plication development will result in long-term problems of
code maintenance, sharing, and performance. However, pro-
ponents of the NoSQL approach argue that for rapidly evolv-
ing datasets, the costs of maintaining a schema are simply
too high. Whichever side of the debate one falls on, in prac-
tice, the amount of production data represented using key-
value and other semi-structured data formats is increasing,
and as the volume and strategic importance of this data
increases, so too does the requirement to analyze it.

Some NoSQL database systems support primitives that en-
able the stored data to be analyzed. For example, Mon-
goDB currently provides a series of aggregation primitives
as well as a proprietary MapReduce framework to analyze
data, whereas other NoSQL databases, such as Cassandra
and HBase, connect to Hadoop directly, leveraging Hadoop
MapReduce and other execution frameworks such as Apache
Tez to analyze data.

Unfortunately there are significant drawbacks to using any
of the options provided by the NoSQL databases. Local
primitives are a step away from the SQL standard, which
renders a large number of third party analysis and busi-
ness intelligence tools (such as SAP Business Objects, IBM
Cognos, Microstrategy, and Tableau) unusable. Meanwhile,
while there are several projects in the Hadoop ecosystem
that provide a SQL interface to data stored in Hadoop (such
as Hadapt, Hive, and Impala), they require the user to create
a schema before the data can be analyzed via SQL, which
eliminates a major reason why the NoSQL database was
used in the first place. In some cases, a schema can be added
after the fact fairly easily, but in many other cases signifi-
cant processing, ETL, and cleaning work must be performed
in order to make the data fit into a usable schema.

This paper describes the design of a layer above a tra-
ditional relational database system that enables standard
SQL-compliant queries to be issued over multi-structured
data (relational, key-value, or other types of semi-structured
data) without having to define a schema at any point in the
analytics pipeline. The basic idea is to give the user a logi-
cal view of a universal relation [13, 15] where a logical table
exists that contains one column for each unique key that
exists in the dataset. Nested data is flattened into sepa-

rate columns, which can result in the logical table having
potentially hundreds or thousands of columns.

Since physically storing data in this way is impractical,
the physical representation differs from the logical repre-
sentation. Data is stored in a relational database system
(RDBMS), but only a subset of the logical columns are ma-
terialized as actual columns in the RDBMS, while the re-
maining columns are serialized into a single binary column
in the database system. These columns are then transpar-
ently rendered to the user by internally extracting the cor-
responding values from the serialized data.

The primary contribution of our work is a complete system
architecture that enables a practical implementation of this
vision. This architecture contains the following components:
a relational storage layer, catalog, schema analyzer, column
materializer, loader, query rewriter, and inverted text in-
dex. This paper describes the design, implementation, and
interaction of these components.

We also build a prototype of our proposed system, and
compare it against several alternatives for storing and ana-
lyzing multi-structured data: (1) MongoDB (2) a JSON ex-
tension of Postgres and (3) storing key-value pairs in entity-
attribute-value ‘triple’ format in a table in an RDBMS. We
find that our prototype consistently outperforms these alter-
natives (often by as much as an order of magnitude) while
providing a more standard SQL interface.

2. RELATED WORK

Analytical systems that do not require a user to define
a schema when data is loaded into the system generally fall
into two categories: (1) systems that are specialized for non-
relational data models and that do not have a SQL interface
(2) more general systems that offer a SQL or SQL-like inter-
face to the data at the cost of requiring the user to define the
structure of the underlying data before data can be queried.

In exchange for programming convenience or flexibility,
systems in the first category often require that the consumer
of the data sacrifice performance on some subset of process-
ing tasks and/or learn a custom query language. For exam-
ple, Jaql offers a modular data processing platform through
the use of higher-order functions, but despite its extensibil-
ity, it is not optimized for performing relational operations
[6]. MongoDB, although it accepts any data representable
as JSON, requires that the user learn its JavaScript-based
query language, which does not natively support operations
such as relational joins®.

In the second category are systems that allow a user to
define a schema on arbitrary, external data and query that
data using a relational query engine. Most database systems
support this functionality through external tables, with for-
eign data wrappers transforming data from a non-relational
format to a relational format as it is read [17]. These ex-
ternal tables can also be indexed to improve performance or
transparently loaded into the database system [4, 2]. Many
SQL projects within the Hadoop ecosystem (such as Hive
and Impala) use a similar concept, providing a relational
query engine without a separate storage module. Data re-
mains in Hadoop’s filesystem (HDFS), and the user registers
a schema for stored HDFS data with the SQL-on-Hadoop
solution. After registering this schema, the user may issue

Thttp://docs.mongodb.org/manual/reference,/

816

queries, and data is read from HDFS and processed by the
SQL-on-Hadoop solution according to this schema.

Although these systems are more flexible than systems that
require a user to define a schema at load time, they are
still limited by the requirement that, in order to issue SQL
queries, the user must pre-define a target schema over which
to execute those queries. Sinew drops this requirement, and
automatically presents a logical view of the data to the user
based on data rather than user input.

Google Tenzing [10], Google Dremel [16], and Apache Drill?
offer the ability to query data through SQL without first
defining a schema. Tenzing, which is a SQL-on-MapReduce
system similar to Hive, infers a relational schema from the
underlying data but can only do so for flat structures that
can be trivially mapped into a relational schema. In con-
trast, Dremel and Drill (and Sinew) support nested data.
However, the design of Drill and Dremel differ from Sinew
in that Drill and Dremel are only query execution engines,
designed purely for analysis. In contrast, Sinew is designed
as an extension of a traditional RDBMS, adding support
for semi-structured and other key-value data on top of ex-
isting relational support. With this design, Sinew is able
to support transactional updates, storage-integrated access-
control, and read/write concurrency control. Furthermore,
since it integrates with an RDBMS, Sinew can also bene-
fit from the RDBMS’s statistics gathering and cost-based
query optimization capabilities. This makes Sinew similar
to Pathfinder [8], a processing stack designed to convert from
XML and XQuery to relational tuples and SQL, but Sinew
differs in that it is more broadly purposed to support any
form of multi-structured data and explicitly attempts to pro-
vide a SQL interface to that data.

In addition to transparently providing a fully-featured re-
lational interface to multi-structured data, Sinew introduces
a novel approach to storing multi-structured data inside an
RDBMS. One common approach, historically used by XML
databases, is to create a ‘shredder’ that transforms docu-
ments into RDBMS records [5, 7, 14], often relying on some
variation on the edge model in order to map documents into
relational tuples [5]. However, even when the underlying re-
lational schema is optimized for relational primitives such
as projection and selection (e.g. by partitioning data into
tables by attributes [14]), the performance of the systems
is limited by the fact that reconstructing any single record
requires multiple joins.

More recently, work examining the storage of large datasets
generated by e-commerce and other online applications has
suggested using a row-per-object data mapping. This map-
ping requires that objects be flattened into tuples corre-
sponding to every possible key in the collection and uses
wide (i.e. having many columns) tables for storing such data
[1, 11]. Often, however, the data in question contain a sig-
nificant number of sparse keys [3, 18], so the wide-table ap-
proach requires an RDBMS for which null values do not
cause excessive space utilization or performance reduction.
Column-oriented RDBMSs satisfy this criteria, but they run
into difficulty in reconstructing nested objects because the
objects themselves are not explicitly represented, only the
sets of keys that appear in them. We will discuss the spar-
sity problem more extensively (and present a solution) in
Section 3.1.1.

Zhttps://cwiki.apache.org/confluence/x/sDnVAQ

, USER
Loader Query Rewriter LAYER
STORAGE
Serializer — Catalog

| LAYER

Schema Analyzer

Text |

Index —
RDBMS

Column Materializer

Figure 1: System Architecture
3. SYSTEM ARCHITECTURE

Fundamentally, Sinew differs from previous work in that
it is a system that can both query and manipulate multi-
structured data without requiring the user to define a schema
at any point in the query process. Furthermore, it offers per-
formant reads and writes by leveraging existing database
functionality and delegating query optimization and execu-
tion to an underlying RDBMS whenever possible.

Although we rely heavily on an RDBMS in our design, we
constrain the design to not require changes to the RDBMS
code. This greatly expands the applicability of Sinew, al-
lowing it to be used in concert with most existing relational
database systems (preferably object-relational systems) in-
stead of requiring a transition to a new database system.
Sinew therefore should be thought of as a layer that sits
above a database system.

The architecture of Sinew is shown in Figure 1. At the
highest level, the system comprises the following compo-
nents, which will be detailed in the remainder of this section:

An RDBMS with a ‘hybrid’ physical schema (Section 3.1.1)
A catalog (Section 3.1.2)

A database schema analyzer (Section 3.1.3)

A column materializer (Section 3.1.4)

A loader (Section 3.2.1)

A query rewriter (Section 3.2.2)

An (optional) text index (Section 4.3)

For ease of discussion we will assume that data is input to
Sinew in JSON format. In general, any data that is repre-
sented as a combination of required, optional, nested, and
repeated fields is supported, even if the types vary across
fields of the same name.

3.1 Storage Layer

3.1.1 Hybrid Schema

Given a collection of input data, which takes the form of
documents comprising a set of potentially nested key-value
pairs, Sinew automatically generates a logical, user-facing
view and maintains it separately from the underlying schema
of the data in RDBMS relations. We first discuss the log-
ical view (an evolving schema that is created based on the
data loaded thus far, against which the user can issue SQL
queries) and then discuss its physical manifestation.

In the logical view, Sinew presents a universal relation
where each document corresponds to one row. Each unique
top-level key found in any document is exposed to the client
as a column in the universal schema with the traditional

817

“url""www.sample-site.com”, “date™"8/19/13",

“hits™ 22, “ip""123.45.67.89",
“avg_site_visit™ 128.5, “url""www.sample-site2.com”,
“country™ “pl” “hits™ 15,

} “owner™: “John P. Smith”

}

Figure 2: Example key-value data

url hits avg_site_visit country date ip owner

www.sample-site.com 22 128.5 pl

www.sample-site2.com 15 8/19/13 123.45.67.89 John P. Smith

Figure 3: User view of data from Figure 2

modes of access provided by SQL. Therefore, for each key-
value pair from a document, the value will be (logically)
stored in the row corresponding to the document and the
(logical) column corresponding to the key. If the document
contains a nested object, its subkeys are also referenceable as
distinct columns using a dot-delimited name with the sub-
key preceded by the key of the parent object. As with other
database primitives such as strings and integers, the nested
object remains referenceable by the original key. (Arrays are
less straightforward and are discussed in Section 4.2).

For example, given the dataset given in Figure 2, the user
would have the view shown in Figure 3, and the following

query:
SELECT url FROM webrequests WHERE hits > 20;

would return the set of all values associated with appear-
ances of the key ‘url’ in objects with more than 20 ‘hits’.

There are two ways of storing attributes of the logical
schema in the RDBMS, and we use the terms physical and
virtual to describe the two cases. A physical column is any
column in the logical view that is also stored as a physical
column in the database system. In contrast, a virtual col-
umn is a column in the logical view that does not exist as
a physical column in the database system; instead, it is ac-
cessed by runtime extraction from a serialized representation
(described in Section 4.1) of the raw key-value pairs.

Accordingly, there are two extremes for mapping the logical
schema to a physical schema: (1) storing all columns as
physical columns or (2) storing all columns virtually. In (1),
we have a physical database schema identical to the logical
schema described above (i.e. a wide table containing one
column for every unique key that exists in the data set),
whereas in (2), we have a single-column table with the key-
value pairs for each object serialized (as text or binary) and
stored in that column (one object per row).

The all-physical column option offers a simpler system de-
sign but can run into problems handling datasets with many,
potentially sparse attributes or those with large nested ob-
jects. For example, row-oriented RDBMSs allocate at least
1 bit of storage space for each schema attribute for every row
in the table. This space is reserved either in the tuple header
or in the body of the tuple with the rest of the data. This
preallocated space per attribute (whether or not a non-null
value for the attribute exists) can lead to storage bloat for
sparse data, which can significantly degrade performance.

To better understand the problems of an all-physical ap-
proach, consider the present version of the Twitter API®.

3https://dev.twitter.com/docs/platform-objects/tweets

Query

1 SELECT DISTINCT “user.id” FROM tweets;

SELECT SUM (retweet_count) FROM tweets
GROUP BY “user.id”;

SELECT “user.id” FROM tweets t1, deletes d1, deletes d2
WHERE t1l.id_str = d1.“delete.status.id_str” AND
dl.“delete.status.user_id” = d2.“delete.status.user_id” AND
t1.“user.lang” = ‘msa’;

SELECT t1.“user.screen_name”; t2.“user.screen_name”
FROM tweets t1, tweets t2, tweets t3

WHERE t1.“user.screen_name” = t3.“user.screen_name” AND
t1.“user.screen_name” = t2.in_reply_to_screen_name AND
t2.“user.screen_name” = t3.in_reply_to_screen_name;

Table 1: Twitter Queries

The API specifies that tweets have 13 nullable, top-level at-
tributes, which expand into 23 keys when fully flattened.
Adding in nested user objects (which can optionally contain
a tweet), hashtags, symbols, urls, user mentions, and media,
the flattened version of the original tweet can contain up-
wards of 150 optional attributes. If we attempted to store
this representation in InnoDB, a popular storage engine for
MySQL, this would amount to at least 300 bytes of addi-
tional storage overhead per record (InnoDB headers include
2 bytes per attribute®). For a minimal tweet (just text with
no additional entities or metadata), this header overhead
can actually be larger than the size of the data itself. Even
in RDBMSs with efficient NULL representations (such as
Postgres, which uses a bitmap to indicate the presence of
NULLs), there is a non-negligible system cost to keeping
track of sparse data. Therefore, as a practical limitation,
and to simplify the design of the catalog, most row-oriented
RDBMSs place a hard limit on the number of columns that
a schema may declare.

Column-oriented database systems do not have the same
storage bloat problem for wide, sparse data [1] and can flat-
ten data to a larger degree than row-stores. However, a fully
flattened physical representation is often not optimal. Re-
ferring again to the Twitter API, a common query pattern
might be to retrieve the ‘user’ who posted a given tweet
(Twitter nests an entire user object as an attribute of a
tweet). In a fully flattened representation, parent objects of
nested keys no longer exist explicitly; rather, they are the
result of merging all columns whose attribute names are an
extension of the desired parent object. In order to return the
parent object, the system must first compute the proper set
of columns and then pay the cost of merging them together.
For nested keys that are frequently accessed together, it is
better to store them as a single collection than as individual
elements.

Given the sparsity overhead of the “all-physical-column”
approach, one may be tempted to go to the other extreme,
the “all-virtual-column” approach described above. Although
the cost of key-value extraction from the column containing
the serialized data can be kept small (see Section 4.1 and
Appendix B), storing all attributes serialized within a sin-
gle column degrades the ability of the RDBMS optimizer
to produce efficient query plans. This is because, given our
stipulation of not modifying underlying database code, the
optimizer cannot maintain statistics on an attribute-level.
As far as the optimizer is concerned, virtual columns do not
exist.

“http://dev.mysql.com/doc/refman/5.5/en/innodb-table-and-
index.html#innodb-physical-record

818

Column With Virtual Column With Physical Column
1 user.id HashAggregate Unique
2 user.id HashAggregate GroupAggregate
3 user. 1. Merge join: d1 =d2 1. Filter
lang 2. Filter 2. Merge join: t1 = d1
3. Merge join: t1 = d1 3. Merge join: d1 = d2
4 user. 1. Merge join: t2 = t3 1. Merge join: t2 = t3
screen- 2. Merge join: t1 = t2 2. Hash join: t1 = t3
_name

Table 2: Effect of Virtual Columns on Query Plans

_id key_name key_type _id count materialized dirty
1 url text 1 2 t f
2 hits integer 2 2 t f
3 avg_site_visit real G 1 f t
4 country text 4 1 f t
5 ip text 5 1 f t
6 owner text 6 i f t

(a) (b)
Figure 4: Example Catalog

To demonstrate the potential differences in query plans,
we performed the queries listed in Table 1 over a set of 10
million tweets from Twitter. Each tweet has the attributes
described above, the sparsity of which vary between less than
1% all the way up to 100%. (See Section 6 for our experi-
mental setup). The query plans generated by the optimizer
in both conditions are presented in Table 2. These plans
contain differences in the operators used for the UNIQUE
and GROUP BY queries, and also differences in the JOIN
order for both join queries. The differences can be attributed
to the fact that the optimizer assumes a fixed selectivity for
queries over virtual columns (200 rows out of 10 million in
these experiments). In cases when the selectivity is in fact
much lower (i.e. more tuples match a given predicate), the
resulting query plan will be suboptimal, which can have sig-
nificant performance implications depending on the dataset
and system configuration. For example, the self-join saw
an order of magnitude improvement when querying over a
physical column versus over a virtual one, with an originally
50-minute query completing in just over 4 minutes.

In order to take advantage of the performance benefits of
the column-per-attribute mapping as well as the space ef-
ficiency and extensibility of single-column serialization, we
opt for a combination of the two mappings. Under our hybrid
schema, we create columns for some attributes and store the
remainder in a special serialized column that we now refer
to as the column reservoir. This allows us to attain the ben-
efits of leveraging physical columns in the database system
when they are most helpful, while keeping the sparsest and
least frequently accessed keys as virtual columns.

3.1.2 Catalog

In order to maintain a correct mapping between the logical
and physical schemas and facilitate optimizations in the rest
of the system, Sinew carefully documents attribute names,
types, and methods of storage (physical or virtual column).
This metadata is kept in a catalog, which records the follow-
ing information:

e What keys have been observed
e Key type information that has been derived from the data
e The number of occurrences of each key

e Whether the column is physical or virtual
e A ‘dirty’ flag (discussed in Section 3.1.4)

In practice, this catalog is divided into two parts. The first,
as shown in the example in Figure 4(a) contains a global list
of attributes appearing in any document across all relations
as a set of id, name, type triples. This global table aids data
serialization (described in Section 4.1) by serving as the dic-
tionary that maps every attribute to an ID, thereby pro-
viding a compact key representation whenever a particular
attribute must be referred to inside the storage layer. The
second part of the catalog (see Figure 4(b)) is maintained
on a per-table basis (instead of globally across tables) and
contains the rest of the information mentioned above.

With this information, Sinew is able to identify both the
logical schema and current physical schema, enabling the
query transformer to resolve references to virtual columns
into statements that match the underlying RDBMS schema.
The statistics (both the number of unique keys and number
of occurrences of each key), are used by the schema analyzer
(described in Section 3.1.3) to dynamically make decisions
about which columns to materialize and which to leave in
the column reservoir. We discuss this interaction below.

3.1.3 Schema Analyzer

In order to adapt to evolving data models and query pat-
terns, a schema analyzer periodically evaluates the current
storage schema defined in the catalog in order to decide the
proper distribution of physical and virtual columns. The
primary goal in selecting which columns to materialize as
physical columns is to minimize the overall system cost of
materialization and associated system overhead of maintain-
ing tables with many attributes, while maximizing the cor-
responding increase in system performance.

Dense (i.e. frequently appearing) attributes and those with
a cardinality that significantly differs from the RDBMS op-
timizer’s default assumption are good candidates for mate-
rialization. A simple threshold is used for both cases. At-
tributes with a density above the first threshold or with a
cardinality difference above the second threshold are mate-
rialized as physical columns, while the remaining attributes
are left as virtual columns.

As new data is loaded into the system, the density and
cardinality characteristics of columns may change. There-
fore, the schema analyzer also checks already materialized
columns to see if they are still above threshold. If not, they
are marked for dematerialization.

3.1.4 Column Materializer

The column materializer is responsible for maintaining the
dynamic physical schema by moving data from the column
reservoir to physical columns (or vice-versa). Our goal in
the design of the materializer is for it to be a background
process that is running only when there are spare resources
available in the system. A critical requirement necessary to
achieve this goal is for materialization to be an incremental
process that can stop when other queries are running and
pick up where it left off when they finish and resources be-
come free. Therefore, our design does not force a column
to be materialized in entirety—rather, some values for a key
may exist in the reservoir while others exist in the corre-
sponding physical column. We call such a column dirty and
ensure that the dirty bit in the catalog is set for that column
in this situation. When the dirty bit is set, both the physical

819

column and the reservoir must be checked for values for a
particular key for any query that accesses that key (this is
done via the COALESCE function—see Section 3.2.2).

The materializer works as follows. Whenever the schema
analyzer decides to turn a virtual column into a physical
column or vice-versa, it sets the dirty bit for that column
to true inside the catalog in anticipation of data movement.
Periodically, the materializer polls the catalog for columns
marked as dirty, and for any such column, it checks the
catalog to see if the column is now supposed to be physical
or virtual (this determines the direction of data movement).
Then, it iterates row-by-row, and for any row where it finds
data in the reservoir when it is supposed to be in a physical
column (or vice-versa) it performs an atomic update of that
row (and only that row) to move the value to its correct
location. The materializer and loader are not allowed to
run concurrently (which we implement via a latch in the
catalog), so when the iteration reaches the end of the table, it
can be guaranteed that all data is now in its correct location.
The materializer then sets the dirty bit to false, and the
process is complete.

As mentioned above, the important feature of this design
is that although each row-update is atomic, the entire ma-
terialization process is not. At any point, the materializer
can be stopped and queries processed against the partially
materialized column. These queries run slightly slower than
queries against non-dirty columns, due to the need to add
the COALESCE function to query processing. The precise
slowdown is dependent on the how the underlying database
system implements COALESCE. In our PostgreSQL-based
implementation (see Section 5), we observed a maximum
slowdown of 10% for queries that access columns that must
be coalesced. For disk-bandwidth limited workloads, we ob-
served no slowdown at all.

3.2 User Layer

3.2.1 Loader

A bulk load is completed in two steps, serialization and in-
sertion. In the first step, the loader parses each document to
ensure that its syntax is valid and then serializes it into the
format described in Section 4.1. As the serialization takes
place, the loader aggregates information about the presence,
type, and sparsity of the keys appearing in the dataset and
adds that information to the catalog. More precisely, for ev-
ery key-value pair that is loaded, the loader infers the data
type and looks up the resulting key and type (the combi-
nation of which we call an attribute) in the catalog to get
its attribute ID. If the attribute does not exist in the cata-
log, the serializer inserts it into the catalog, receives a newly
generated ID, and serializes the key-value pair into the col-
umn reservoir along with the rest of the data. Thus, virtual
columns for new keys are created automatically at load time
during serialization, and the cost of adding a new attribute
to the schema is just the cost to insert the new attribute
into the catalog during serialization the first time it appears
in the dataset (an invisible cost to the user).

On insertion, all of the serialized data gets placed into the
column reservoir regardless of the current schema of the un-
derlying physical relation. Sinew then sets the dirty flag in
the catalog to true for all affected columns, and their data
are eventually moved to the appropriate physical columns
when the column materializer notices the dirty bit and ma-

terializes the newly loaded data. This design decision is
motivated by the desire to keep the system components as
modular as possible. By always loading into the column
reservoir, the loader does not need to be aware of the phys-
ical schema, and does not need to interact with the schema
analyzer and column materializer components of the system.

3.2.2 Query Rewriter

Sinew’s hybrid storage solution necessitates that queries
over the user-facing, logical schema be transformed to match
the underlying physical schema. Therefore, Sinew has a
query rewriter that modifies queries before sending them to
the storage layer for execution. Specifically, after convert-
ing a given query into an abstract syntax tree, the rewriter
validates all column references against the information in
the catalog. Any column reference that cannot be resolved,
whether because it refers to a virtual column or because it
refers to a dirty, physical column, gets rewritten. For exam-
ple, given the query:

SELECT url, owner
FROM webrequests
WHERE ip IS NOT NULL;

the reference to the virtual column, ‘owner,” will be trans-
formed to a function that extracts the key from the column
reservoir based on the serialization format chosen by the sys-
tem (we give a sample implementation of one such function
in Section 4.1):

SELECT url, extract_key_txt(data, ‘owner’)
FROM webrequests
WHERE ip IS NOT NULL;

In the case when ‘owner’ is dirty (i.e. not fully materialized),
the column reference will be transformed instead as a SQL
COALESCE over the physical column and key extraction:

SELECT url, COALESCE(owner, extract_key_txt(data, ‘owner’))

FROM webrequests
WHERE ip IS NOT NULL;

In addition to the desired key, the extraction function takes
a type argument (the above is syntactic sugar for passing
‘text’ as an argument), which is determined dynamically by
the query rewriter based on type constraints present in the
semantics of the original query. The extraction function
then applies to only those values of the correct type. This
behavior allows Sinew to elegantly handle situations where
the same key corresponds to values of multiple types—rather
than throwing an exception for type mismatches (e.g. if the
value is an argument to a function that expects an integer),
it will instead selectively extract the integer values and re-
turn NULL for strings, booleans, or values of other types.
On the other hand, in the common case where the expected
type of an attribute cannot be determined from the query
semantics (e.g. the case of a projection), the function will
simply return the value downcast to a string type.

4. ENHANCEMENTS

4.1 Custom Serialization Format

There are a number of options for storing serialized ob-
ject data, but most are not well suited to performing com-
mon RDBMS operations. One approach is to keep the data
in its original string form and store it a single text field.
This makes loading trivial (no transformation needs to be

820

attributes aid, aid,

offs,

offs, offs, ;

data

Figure 5: Serialization Format

performed prior to the load), but manipulating the data is
expensive because the system must convert it to a logical
representation before performing any computation.

An alternative approach is to use a serialization format
such as Apache Avro or Google Protocol Buffers, which
represent objects as blocks of binary, rather than text. In
general, both formats eliminate the syntactic redundancy of
human-readable text representations and offer faster itera-
tion over the individual keys, in particular by memoizing
the schema of the serialized data. However, both formats,
like JSON, are ‘sequential’, meaning that random reads on
the original data are not supported. In order to extract a
single key from a given datum, the application must either
(1) deserialize the entire datum into a logical form and then
dereference the appropriate attribute or (2) read through the
serialized datum one attribute at a time until reaching the
desired attribute or the end of the datum (if the attribute
does not exist).

Since attribute extraction (projection in relational algebra)
is an extremely common operation for SQL queries, we de-
cided to use a custom serialization format instead of either
of the above, which are focused more on data transfer and
platform independence than analytics. In particular, our
format reduces the cost of extracting attributes stored in a
serialized object by allowing random reads on the data. We
explore the exact performance differences between Sinew’s
format, Avro, and Protocol Buffers in Appendix A.

Much like a standard RDBMS tuple, our serialization for-
mat has a header that includes object metadata and a body
that holds the actual data. Specifically, the header, the
structure of which is shown in Figure 5, is composed of an
integer indicating the number of attributes present in the
record, followed by a sorted sequence of integers correspond-
ing to the attribute IDs (as specified by the catalog) of the
keys present. After the list of attribute IDs is a second se-
ries of integers indicating the byte offset of each attribute’s
value within the data. The body contains the binary repre-
sentation of the actual data.

By separating the document structure from its data, our
serialization format enables Sinew to quickly locate a key
or identify its absence without reading the entirety of the
serialized data. To find a key, Sinew simply needs to check
the list of attribute IDs, and if the search ends up empty, it
concludes that the key does not exist in the document. If it
finds the key, it will look up the offset in the list of offsets,
and jump to the correct location in the data to retrieve the
typed value. We chose to separate the list of keys from
the list of offsets (rather than including offset information
right next to the key) in order to maximize cache locality
for binary searches for attribute IDs within the header.

Key extraction is straightforward. Given a desired key, the
extraction module retrieves the corresponding attribute ID
and type information from the dictionary in the catalog. For
each record, it then performs a binary search on the attribute
ID list in the header and, if the ID is present, retrieves its

offset from the list that follows the attribute IDs. With the
offset information combined with the offset information of
the next attribute, the module can compute the attribute
length and retrieve the value in its appropriate type. The
cost of doing a read is O(logn) in the number of attributes
present in a given datum, since it does a binary search in
the header for a reference to the offset and length of the
desired value. Because of this, it will perform significantly
better than the other aforementioned serialization formats
which have a worst-case cost of O(n). The attribute search
also has better constant factors due to the cache benefits of
storing all attribute IDs consecutively.

It is worth noting that column-oriented serialization for-
mats such as RCFiles or Parquet permit random access and
could therefore be used to serialize the data in the col-
umn reservoir. However, given the hybrid design of our
storage solution where some attributes are stored in phys-
ical columns and others serialized in a reservoir column,
the reservoir should match the orientation of the physical
columns. Hence, if Sinew’s underlying database system is
a column-store, RCFiles or Parquet may be used instead of
our custom serialization format. However, if the underlying
database system is a row-store, a column-oriented data for-
mat does not integrate well with a per-row reservoir, and our
custom, object-centric serialization format should be used.

4.2 Nested Objects and Arrays

In our hybrid storage schema, nested objects and arrays
can cause performance bottlenecks even if they are mate-
rialized since the contents of the collections remain opaque
to the optimizer. We explore a few techniques for improv-
ing the physical representation of nested collections in this
section.

For nested objects, there are a few alternatives. Although
Sinew will catalog the sub-attributes of any nested object
that is materialized and mark them for materialization if
necessary, a fully flattened data representation is not nec-
essarily optimal (as discussed in Section 3.1.1). Therefore,
while Sinew defaults to a single table containing one docu-
ment per row (using a universal relation schema), the system
does allow some relaxation of this extreme. If there are log-
ical groups that can be formed within the set of documents
(e.g. in the case of nested objects), the user can specify that
these be put in separate tables and joined together at query
time.

In the case of arrays, the user can opt for one of a variety
of options depending on the significance of the array syn-
tax (e.g. unordered set, ordered list, etc.). By default, the
system stores the array as an RDBMS array datatype, but
if the number of elements in the array is fixed (and small),
it can instead store each position in the array as a sepa-
rate column (as suggested by Deutsch et. al. [12]). This
mechanism can offer significant performance improvements
for array containment and other predicates, since the pred-
icates reduce to trivial filters over the external table.

Alternatively, if the array is intended to be an unordered
collection or if it comprises a list of nested objects, the user
can specify that the array elements be stored in a separate
table as tuples of the form parent object id, index, element.
Maintaining a separate table not only decreases the com-
plexity of cataloging, but also ensures that Sinew maintains
aggregate statistics on the collection of array elements rather
than segmenting those statistics by position in the array.

821

Furthermore, when the array is a collection of nested ob-
jects, the ‘element’ can be divided into separate columns,
one for each attribute within the nested object. For situa-
tions in which these nested objects are homogeneous, this
helps Sinew to create a more optimal physical schema and
in turn, offer better query performance.

4.3 Inverted Index and Text Search

Since most implementations of text indexes include mech-
anisms to offer performant range queries, partial matching,
and fuzzy matching, we can further enhance Sinew’s per-
formance and the expressivity of its queries by including an
external text index over the data stored in the RDBMS.

Inverted indexes are particularly useful for queries over vir-
tual columns. At a high level, an inverted text index tok-
enizes the input data and compiles a vector of terms together
with a list of IDs corresponding to the records that contain
that term. Additionally, it can give the option of faceting
its term vectors by strongly typed fields. Sinew leverages
this functionality by associating a field with each attribute
in its catalog and rewriting predicates over virtual columns
into queries of the text index. The results of the search (a
set of matching record IDs) can then be applied as a filter
over the original relation.

Although our main motivation for incorporating inverted
indexes was to speed up evaluation of queries containing
standard SQL WHERE clause predicates on virtual columns,
Sinew also uses them to support text search over the entire
data set. Users can search for text that may appear in any
column (physical or virtual), and Sinew leverages the in-
verted indexes to find the set of rows that contain the text.

Not only does the full text search capability enable Sinew
to offer a more expressive set of predicates on semi-structured
and relational data, but it also allows Sinew to handle com-
pletely unstructured data alongside that data by simply stor-
ing the unstructured data in a generic text column and pro-
viding access to it through the text indexes. However, be-
cause unstructured data has no analogy for relational at-
tributes (unlike semi-structured data, whose keys can corre-
spond to attributes), the interface to this unstructured data
is not ‘pure’ SQL; rather, Sinew includes a special function
which can be invoked in the WHERE clause of a SQL state-
ment and takes two parameters: (1) the keys over which the
search should be performed (‘*’ means all keys) and (2) the
search string.

A sample query is shown below:

SELECT *
FROM webrequests

WHERE matches(‘*’, "full text query or regex");

5. IMPLEMENTATION

Although Sinew is RDBMS-agnostic, we use Postgres as
the underlying RDBMS for our experiments, since it has a
history of usage in the literature and is therefore a good
reference point for a comparative evaluation. Furthermore,
as mentioned in Section 3.1.1, Postgres’s efficient handling
of null values® makes it particularly well-suited for the task
of storing sparse data. Each tuple stored by Postgres varies
in size based on the attributes actually present, rather than

5Postgres uses a bitmap to indicate which attributes are null for
a given tuple, so a null value occupies just a single bit rather than
the entire width of a column.

being stored in a fixed, pre-allocated block based on the
schema.

Both the schema analyzer and column materializer are im-
plemented as Postgres background processes. The manage-
ment of the background process is delegated entirely to the
Postgres server backend, which simplifies the implementa-
tion but does not impact functionality.

The data serialization is implemented through a set of user-
defined functions (UDFs) to convert to and from JSON, as
well as functions to extract an individual value correspond-
ing to a given key (see Section 3.2.2). Implementing the se-
rialization using UDFs does not impose a high performance
cost (we quantify this cost in Appendix B) and allows Sinew
to push down query logic completely into the RDBMS. Al-
though the ability to define UDF's is a feature of most mod-
ern RDBMSs, some systems do not support UDFs. For those
systems, Sinew can perform serialization and key extraction
completely outside of the RDBMS (at reduced performance).
Therefore, the use of UDF's is an implementation detail and
does not reduce the generality of our overall design.

For the external text index, we use Apache Solr, a search
index that is highly optimized for full text search and data
discovery. The Solr API is exposed to Postgres using a
UDF that returns the Postgres row IDs corresponding to
the records that match a given Solr query in a specific table.
The result set is then applied as a filter on the original table
as part of the execution of the query.

6. EXPERIMENTS

Our experiments compare performance of Sinew versus pop-
ular NoSQL solutions and RDBMS-based alternatives for
querying and manipulating multi-structured data. We ran
all 11 queries from the NoBench NoSQL benchmark suite
developed at the University of Wisconsin [9]°. We chose
this suite as opposed to developing our own benchmark be-
cause it comprises a fairly diverse analytics workload, and
is therefore a good reference point for future systems. How-
ever, NoBench does not include update tasks, so we added
a random update task to the NoBench suite (see Section
6.6) in order to evaluate the full read-write capabilities of
the benchmarked systems. For our experiments, we used
NoBench to generate two datasets of 16 million and 64 mil-
lion records (10GB and 40GB, respectively). Each record
has approximately fifteen keys, ten of which are randomly
selected from a pool of 1000 possible keys, and the remainder
of which are either a string, integer, boolean, nested array,
or nested document. Two dynamically typed columns, dynl
and dyn2, take either a string, integer, or boolean value
based on a distribution determined during data generation.

Our benchmarking system has a 3.6 GHz, quad-core, In-
tel Xeon E5-1620 processor with 32 GB of memory and 128
GB of solid-state storage. We observed read speeds of 250-
300MB/s. We executed each of the 12 queries (11 from
NoBench plus the update task) 4 times and took the aver-
age of the results. All queries were performed with warmed
caches to simulate a typical analytics environment where
analysis is run continuously; therefore, queries over the small
data set (16 million records) are never I/O bottlenecked
(since the data fits entirely in memory). The larger data
set (64 million records) is larger than memory, and queries

5The full set of queries can be found on page 9 of the extended
paper: http://pages.cs.wisc.edu/~chasseur/argo-long.pdf.

822

over this dataset can potentially be I/O limited if the I/O
cost of bringing in the table from storage outweighs the pro-
cessing CPU cost.

6.1 Benchmarked Systems

We evaluated the performance of Sinew versus three alter-
natives: MongoDB, a shredding system using the Entity-
Attribute-Value model, and Postgres with JSON support.

Sinew: Our experimental version of Sinew is built on top
of Postgres version 9.3 beta 2, and our installation preserves
the default configuration parameters, including a 128 MB
limit on shared memory usage. As described in Section 5, we
installed the remaining features of Sinew as Postgres exten-
sions. Although our integration of Solr into Sinew is com-
plete, and Sinew therefore supports the full range of text
indexing described in Section 4.3, we chose not to use text
indexes for this benchmark since we are primarily interested
in the evaluating queries that do not involve full text search.

The column materialization policy was simple: a column
was marked for materialization if it was present in at least
60% of objects and had a cardinality greater than 200. This
policy resulted in materialization for strl, num, nested_array,
nested_object (itself a serialized data column), and thou-
sandth. The other ten keys, including the dynamic and
sparse keys remained as virtual columns.

MongoDB: MongoDB is the most popular NoSQL database
system”, deployed in hundreds of well-known production
systems®. For our benchmarks we ran MongoDB 2.4.7 with
a default configuration. Notably, MongoDB does not restrict
its memory usage, so it was not uncommon to see upwards
of 90% memory usage during execution of our queries.

Entity-Attribute-Value (EAV): A common target for
systems that shred XML, key-value, or other semi-structured
data and store them in an RDBMS is the EAV model [3].
Under this model, each object is flattened into sets of in-
dividual key-value pairs, with the object id added in front
of each key value pair to produce a series of object id, key,
value triples (the object id is referred to as an ‘entity’ and
the key as an ‘attribute’).

It is therefore fairly straightforward to store multi-structured
data in a relational database using the EAV model [9]. By
adding a mapping layer on top of an RDBMS, we can trans-
late queries over specific attributes into queries over the un-
derlying table, which, in the case of our implementation, is
a 5-column relation of object id, key name, and key value
(with one column for each primitive type, string, numerical,
and boolean). As with Sinew, the EAV prototype runs on
Postgres 9.3 beta 2 with the same system configuration.

Postgres JSON: Starting with Postgres 9.3, Postgres in-
cludes support for a JSON datatype, including built-in func-
tions for performing key dereferences and other data manip-
ulations. Given that this is built-in functionality and that
we built Sinew on top of Postgres, we felt this was an im-
portant point of comparison to demonstrate what effect our
architecture and optimizations would have on performance.
Additionally, Postgres JSON is representative of commercial
systems such as IBM DB2, which recently added support for
JSON as an extension to its core RDBMS functionality®.
The installation was identical to the installation for Sinew.

"http://db-engines.com/en/ranking

8http://vvwvv.mongodb.org/about/production—deployments/
9http://www.ibm.com/developerworks/data,/library /techarticle/dm-
1306nosqlforjsonl

MongoDB ———1
350 Sinew EX=Z3
EAV =
PG JSON mmmmm
300
=
g 250
=
c 200
.2
=]
g 150
i
100
50
O L. = .
1 2 3 4 5 6 7 8 9 10
(a) 16 Million Records
16 million records 64 million records
System Load (s) | Size (GB) | Load (s) | Size (GB)
MongoDB | 522.24 10.1 2170.13 | 40.9
Sinew 527.79 9.2 2155.12 | 33.0
EAV 1835.18 | 22.0 9910.87 | 87.0
PG JSON | 284.11 10.2 1420.86 | 42.0
Original 10.5 38.1

Table 3: Load Time and Storage Size
6.2 Load and Data Size

Before executing the NoBench queries, we measured both
load time and database size for each system. Our results are
summarized in Table 3. Postgres JSON loads faster than
the three other systems primarily because it only does sim-
ple syntax validation during the load process whereas each
of the other three systems require some sort of data trans-
formation. For MongoDB, this transformation is to BSON,
for Sinew, to our custom serialization, and the EAV system,
to the 5-column schema described above (which required an
average of over 20 new tuples per record).

For data size, Sinew’s data representation is the most com-
pact, since the replacement of keys with key identifiers in
the header serves as a type of dictionary encoding. Postgres
JSON does not transform the JSON data, and so is approx-
imately the same size as the input. MongoDB states in its
specification that its BSON serialization may in fact increase
data size because it adds additional type information into its
serialization, and we observed this on our 64 million record
data set. The EAV system is significantly larger than ei-
ther of the previous three, since its representation requires
one tuple per flattened key, with not only the key name and
value, but also a reference to a parent object. For our two
NoBench datasets of 16 and 64 million objects, this resulted
in 360 million and 1.44 billion tuples in the underlying table.

It should be noted that neither Postgres nor MongoDB sup-
port traditional database compression without additional
configuration. Therefore the data sizes reported in Table 3
are only the consequence of the data transformations and
no further compression. It is reasonable to expect that com-
pressing data would reduce the data size of all four systems.

6.3 Projections

Queries 1 through 4 are basic column projections over com-
mon top-level keys, common nested keys, and sparse keys.

823

1600

1400

1200

1000

800

600

Execution Time (s)

(b) 64 Million Records
Figure 6: NoBench Query Performance (Q1-Q10)

As Figure 6a shows, on the 16 million record dataset, Sinew
outperforms both the Postgres JSON-based solution and the
Entity-Attribute-Value data transformation by an order of
magnitude. Postgres JSON stores JSON data as raw text.
Therefore it must execute a significant amount of code in
order to extract the projected attributes from the string
representation, including parsing and string manipulation.
In fact, the CPU cost of dereferencing a JSON key in the
Postgres JSON implementation is so high that these projec-
tion queries (and the selection queries in the next section),
which should be I/O bound due to their simplicity, are in
fact CPU bound. This was verified when we performed the
same query with cold caches and observed an identical ex-
ecution time. In contrast, Sinew’s binary representation of
data (as described in Section 4.1 and further explored in Ap-
pendices A and B), is optimized for random attribute access
and requires less extraction effort at query time.

The EAV system performs poorly because it adds a join
on top of the original projection operation in order to re-
construct the objects from the set of flattened EAV tuples.

Sinew also performs these projection operations faster than
MongoDB. The difference is an order of magnitude for queries
1 and 2 (projections over keys present in every object) and
significant, but smaller for queries 3 and 4 (projections over
sparse keys appearing in about 1% of objects). From these
results, we draw two conclusions. First, despite the fact
that BSON is a binary serialization, there is still a signifi-
cant CPU cost to extracting an individual key or set of keys
from a BSON object. For queries 1 and 2, this extraction
cost must be paid for every object, but for queries 3 and
4, this cost must be paid only for the 1% of objects that
actually contain the key. Second, checking whether or not
a key exists in BSON is significantly faster than extracting
the key (hence MongoDB’s improved relative performance
for projection over sparse columns), but is still slower than
the equivalent operations over Sinew’s storage.

The results are similar for the larger, 64 million record
(40 GB) dataset, when the data can no longer fit into main
memory. Although the speedups for Sinew are no longer an
order of magnitude, it is clear that projection operations in
the three other systems have significant CPU costs, while
Sinew queries become I/O bound. Whereas the query time
for Sinew increases by about a factor of 10, the others saw
only an approximately linear increase in execution time rel-
ative to the number of additional records.

6000

MongoDB ——
Sinew EXxx3

EAV e
PG JSON s

5000

4000

3000

2000

Execution Time (s)

1000

16 Million Records 64 Million Records

Figure 7: Join (NoBench Q11) Performance

6.4 Selections

Queries 5 through 9 each select objects from the database
on the basis of either an equality, range, or array contain-
ment predicate. Once again, we see similar performance
differences among the systems, with more than an order of
magnitude improvement in performance for Sinew and Mon-
goDB when compared to the Postgres JSON and the EAV
system and with Sinew outperforming MongoDB by between
40 and 75% (with one exception explained below).

There are two interesting results for Query 7 (range pred-
icate on the multi-typed key, ‘dynl’). First, for the smaller
of the two datasets, MongoDB outperforms Sinew by about
40%. Whereas Postgres rewrites the BETWEEN predi-
cate as two comparisons (>=, <) without precomputing
the value and substituting the result into both comparisons,
MongoDB appears to precompute the value before applying
the comparison operators. This saves the cost of one de-
serialization per record. For the larger dataset, both Sinew
and MongoDB are I/O bound, and since Sinew’s data repre-
sentation is about 25% more compact than BSON, it takes
less time to read the data from disk and thus less time to
perform the query.

The second notable aspect of Query 7 is that it cannot be
executed in the Postgres JSON system, because extracting a
key corresponding to multiple types is not valid within Post-
gres’s grammar. That is, since the JSON extraction operator
in Postgres returns a datum of the ‘JSON’ datatype rather
than a string, integer, float, or boolean, the datum must be
type-cast before being used in another function or operator.
Since Postgres raises an error if it encounters a malformed
string representation for a given type (e.g. ‘twenty’ for an
integer), the query will never complete if a key maps to
values of two or more distinct types (except for projection,
which simply returns the result). Although it is technically
possible to return the values in Postgres’s generic JSON-text
datatype and then apply a function to filter out values of the
desired type after the fact, the operation not only requires
additional user code, but also digging into the rewrite phase
of Postgres’s abstract syntax tree generation in order to pro-
vide the function information about the type expected.

Neither Query 8 nor Query 9 completed on the EAV sys-
tem because each ran out of disk space when attempting to
execute the query. The times shown are the points at which
the system terminated execution.

6.5 Joins and Aggregations

Queries 10 and 11 evaluated the performance of a GROUP
BY and JOIN operation across the four systems, respec-
tively. The results for Query 10 are alongside the results

824

600

MongoDB ——
Sinew E2xx3

EAV xR
PG JSON

500

400

300

200

Execution Time (s)

100

16 Million Records

64 Million Records

Figure 8: Random Update Performance

for Queries 1-9 in Figures 6a and 6b, and the results for
Query 11 are given separately (for reasons discussed below)
in Figure 7. The results for Query 10 resemble the results for
the previous 9 queries with the exception of Postgres JSON,
which lags behind even the EAV system. Despite JSON
being a built-in type, the Postgres optimizer has no under-
standing of, or statistics on, individual keys stored within
the JSON objects. Therefore, when it produces a query
plan for the GROUP BY, it miscalculates the selectivity
of the GROUP BY predicate and produces a sub-optimal
query plan (HashAggregate instead of a sort). Sinew avoids
this pitfall by selectively and automatically materializing
columns, which provides the optimizer with a more correct
view of the overall data.

For Query 11, Sinew is again the fastest of the SQL op-
tions. However, unlike the previous queries, MongoDB lags
far behind each of the other three systems and is an order of
magnitude slower than Sinew. MongoDB has no native join
support, so the query must be implemented in user code us-
ing a custom JavaScript extension combined with multiple
explicitly defined intermediate collections. The execution
is thus not only slow, but also uses a significant amount
of disk. In the case of the 64 million record dataset, the
query required so much intermediate storage that it could
not complete on our benchmark systems. The EAV system
also could not complete the join for lack of adequate disk
space. As for Query 9 (Section 6.4), the times shown in the
graph are the points at which the system terminated execu-
tion, which make it clear that even discounting the lack of
disk space, MongoDB and the EAV system lag significantly
behind Sinew’s performance.

6.6 Updates

As mentioned above, we added a random update task to
the NoBench benchmark in order to evaluate the full read-
write capabilities of our system. In particular, we ran the
following statement which affects approximately 1 in 10000
records and updates one of the sparse keys generated by
NoBench:

UPDATE test
SET sparse_588 = ‘DUMMY’

Figure 8 shows the results of this experiment. MongoDB
does not provide transactional semantics, and therefore has
to keep fewer guarantees relative to the PostgreSQL-based
systems. Hence, we expected MongoDB to perform the best
for this task. However, as explained above, MongoDB’s
predicate evaluation is 40% slower than Sinew’s. The addi-

tional overhead of the predicate evaluation associated with
this update task outweighed Sinew’s overhead to maintain
transactional guarantees, and therefore Sinew ended up out-
performing MongoDB for this task.

Of the RDBMS-based solutions (which all share the same
transactional overhead), the performance characteristics fol-
low fairly naturally from the object mappings. Postgres
JSON is slower than Sinew because, despite a fairly simi-
lar execution path, the CPU overhead of serializing and de-
serializing text-formatted JSON is large when compared to
Sinew’s customized key-value format. The EAV system lags
even further behind because any query that touches multi-
ple keys from a single record requires a self-join on the ID
of the containing object.

6.7 Discussion

Although MongoDB offers high performance for single-
object reads by object ID, it falls short in a number of other
areas that severely limit its usefulness as an analytics so-
lution. The lack of native join support can lead to a mas-
sive headache as user-generated joins take nearly an order
of magnitude longer than an RDBMS join, and require large
amounts of scratch space for intermediate results. Thus, de-
spite its utility in systems needing high throughput write
operations and single-key object lookups, it is not an ideal
platform for analysis of that data.

Of the RDBMS-based alternatives to Sinew, each have sig-
nificant drawbacks. The EAV system, despite its concep-
tual elegance, requires large amounts of extra logic in order
to provide a transparent SQL experience to the user, and
also requires more storage space and self joins during query
execution (which reduces performance).

Postgres JSON requires no additional user logic, but in ex-
change, it has a number of deficiencies that prevent its usage
as an analytics system for multi-structured data. Distinct
keys that correspond to values of multiple types can lead to
runtime exceptions. Array predicates are inexpressible since
JSON array syntax and Postgres array syntax are mutually
incompatible, and to our knowledge, Postgres does not pro-
vide a built-in mechanism for converting between the two
(for our experiments, we used the approximate, but techni-
cally incorrect LIKE predicate over the text representation
of the array). Although these deficiencies may be remedied
with Postgres’s recent announcement of jsonb (a novel bi-
nary format), a more systemic deficiency is the opaqueness
of the JSON type to the optimizer, which renders the system
incapable of producing efficient query plans without signifi-
cant modifications to the Postgres optimizer.

7. CONCLUSION

In this paper, we have described the architecture and sam-
ple implementation of Sinew, a SQL system for storage and
analytics of multi-structured data. In order to accommo-
date evolving data models, Sinew maintains a separate log-
ical and physical schema, with its dynamic physical schema
maintained by ongoing schema analysis and an invisible col-
umn materialization process. As a system built around an
RDBMS, Sinew can take advantage of native database oper-
ations and decades of work optimizing complex queries such
as joins, in addition to interacting transparently with struc-
tured data already stored in the RDBMS. We have built a
prototype version of Sinew that outperforms a range of exist-

825

ing systems on both read and update tasks and demonstrates
that Sinew offers a promising set of architectural principles.

8. ACKNOWLEDGMENTS

We would like to thank Torsten Grust, Patrick Toole, and
the three anonymous reviewers for their thorough and in-
sightful feedback. We would also like to thank Craig Chas-
seur at the University of Wisconsin-Madison for sharing his
NoBench code. This work was sponsored by the NSF under
grant 11S-0845643 and by a Sloan Research Fellowship.

9. REFERENCES
[1] D. J. Abadi. Column Stores for Wide and Sparse Data. In

Proc. of CIDR, 2007.
[2] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible
Loading: Access-driven Data Transfer from Raw Files into
Database Systems. In Proc. of EDBT, pages 1-10, 2013.
R. Agrawal, A. Somani, and Y. Xu. Storage and Querying
of E-Commerce Data. In Proc. of VLDB, 2001.
I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. NoDB: Efficient Query Execution on Raw
Data Files. In Proc. of SIGMOD, pages 241-252, 2012.
S. Amer-Yahia, F. Du, and J. Freire. A comprehensive
solution to the XML-to-relational mapping problem. In
Proc. of WIDM, pages 31-38, 2004.
K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y.
Eltabakh, C.-C. Kanne, F. Ozcan, and E. J. Shekita. Jagl:
A Scripting Language for Large Scale Semistructured Data
Analysis. PVLDB, 4(12):1272-1283, 2011.
T. Bohme and E. Rahm. Supporting Efficient Streaming
and Insertion of XML Data in RDBMS. In PROC. 3RD
INT. WORKSHOP DATA INTEGRATION OVER THE
WEB (DIWEB), 2004, pages 70-81, 2004.
P. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. Pathfinder: XQuery—the
Relational Way. In Proc. of VLDB, pages 1322-1325, 2005.
C. Chasseur, Y. Li, and J. M. Patel. Enabling JSON
Document Stores in Relational Systems. In Proc. of
WebDB, pages 1-6, 2013.
B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,
V. Lychagina, Y. Kwon, and M. Wong. Tenzing: A SQL
Implementation On The MapReduce Framework. In Proc.
of VLDB, pages 1318-1327, 2011.
E. Chu, J. Beckmann, and J. Naughton. The case for a
wide-table approach to manage sparse relational data sets.
In Proc. of SIGMOD, pages 821-832, 2007.
A. Deutsch, M. Fernandez, and D. Suciu. Storing
semistructured data with STORED. In Proc. of SIGMOD,
pages 431-442, 1999.
R. Fagin, A. O. Mendelzon, and J. D. Ullman. A simplied
universal relation assumption and its properties. ACM
Trans. Database Syst., 7(3):343-360, Sept. 1982.
D. Florescu and D. Kossmann. Storing and Querying XML
Data using an RDBMS. Bulletin of the Technical
Committee on Data Engineering, 22(3):27-34, 1999.
D. Maier, J. D. Ullman, and M. Y. Vardi. On the
Foundations of the Universal Relation Model. ACM Trans.
Database Syst., 9(2):283-308, June 1984.
S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive Analysis of Web-scale Datasets. Commun.
ACM, 54(6):114-123, June 2011.
J. Melton, J.-E. Michels, V. Josifovski, K. Kulkarni,
P. Schwarz, and K. Zeidenstein. SQL and Management of
External Data. SIGMOD Rec., 30(1):70-77, Mar. 2001.
J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt, and J. F. Naughton. Relational Databases for
Querying XML Documents: Limitations and Opportunities.
In Proc. of VLDB, pages 302—314, 1999.

(3]

(4]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

Protocol
Task Sinew | Buffers | Avro Original
Serialization (s) 39.83 | 83.68 394.24
Deserialization 32.56 | 45.01 1101.26
Extraction (1 key) 0.90 |17.11 108.89
Extraction (10 keys) | 8.40 | 21.03 112.91
Size (GB) 0.57 |0.47 1.93 0.90

Table 4: Comparison of Serialization Formats

APPENDIX
A. SERIALIZATION COMPARISON

In Section 4.1, we highlighted a number of shortcomings of
existing serialization formats, and in this section, we ver-
ify our claims by comparing Sinew’s serialization format
against two increasingly popular serialization formats, Avro
and Protocol Buffers. We compare their performance for
serialization, deserialization (reassembling the input string),
single key extraction, and multiple key extraction. For com-
pleteness, we also compare the size of the serialized data
without any compression algorithms applied to the serial-
ization output. We performed our experiments on a dataset
of 1.6 million NoBench objects (using the same data and
configuration as the benchmarks in Section 6).

Our results are shown in Table 4. In brief, Sinew’s data for-
mat outperforms both Avro and Protocol Buffers on all tasks
except size, where Protocol Buffers achieve a slightly smaller
data representation due to more aggressive bit-packing.

Avro’s poor performance is explained by the fact that Avro,
unlike Protocol Buffers, has no primitive notion of ‘optional’
attributes. Instead, Avro relies on unions to represent op-
tional attributes (e.g. [NULL, int] would represent an op-
tional integer value). This requires that Avro store NULLs
explicitly (since it expects a value for every key), which
bloats its serialization size and destroys performance.

Protocol Buffers, on the other hand, present a more vi-
able alternative to Sinew’s format, but they also fall short
on the tasks of deserialization and key extraction. In the
case of deserialization, we see that Sinew outperforms Pro-
tocol Buffers by approximately 50%. We can attribute this
to the fact that whereas Sinew performs all of its operations
directly on the serialized binary data, Protocol Buffers op-
erate on an intermediate logical representation of their data.

Although one could easily modify Protocol Buffers to per-
form deserialization directly from the physical, binary ob-
ject, their performance on key extractions is fundamentally
bounded by the fact that random attribute reads are not
possible due to the sequential nature of their format. Al-
though Protocol Buffers store attributes in a particular or-
der (so they can ‘short-circuit’ a lookup of a non-existent
key once the deserializer has passed the key’s expected lo-
cation), they still must traverse keys until this point seri-
ally. On the other hand, Sinew’s format is hyper-optimized
for random key reads, since it includes a per-record header
with attribute IDs and offset information. This is the same
reason why we see the relative performance gap fall as we
extract a greater number of keys at any given time (1 vs 10).
Whereas Sinew’s performance is linear in the number of keys
extracted (until a threshold is reached where it is more per-
formant to use an intermediate logical representation similar
to Protocol Buffers), Protocol Buffers have already paid the
up-front cost of reading the binary, and further key extrac-
tions are a simple matter of a single pointer lookup.

826

[Query [Virtual [Physical |
SELECT “user.id” FROM tweets; 14.40 13.57
SELECT * FROM tweets 63.59 63.37
WHERE “user.lang” = ‘en’;

SELECT * FROM tweets 74.59 73.55
ORDER BY “user.friends_count” DESC;

Table 5: Virtual vs Physical Column Performance

B. VIRTUAL COLUMN OVERHEAD

One concern of serializing all virtual columns into a single
column reservoir is that extracting relevant data from the
reservoir may be more expensive than extracting data from
physical columns. We therefore compared the performance
of queries over data stored in virtual columns using our seri-
alization format against the same queries over the same data,
where the relevant attributes for the queries are stored in
physical DBMS columns instead of as key-value pairs inside
the column reservoir (the non-relevant attributes are still
stored in the reservoir). As in Section 3.1.1, our benchmark
dataset comprised 10 million tweets and our benchmark sys-
tem was the same as in our experiments in Section 6.

Our results, summarized in Table 5, show that our object
serialization introduces very little execution overhead. For
each query, we saw less than a 5% reduction in performance
when the query involved a reference to a virtual column
instead of an equivalent physical column. For the query in-
volving a single projection, the costs for processing the query
are identical (whether “user.id” is stored in a physical col-
umn or virtual column) except for actually retrieving the
value of the “user.id” attribute for each row that is scanned.
If “user.id” is stored as a physical column, it requires one
memory dereference to locate the attribute data within the
tuple. If it is instead stored as a virtual column (i.e. se-
rialized in the column reservoir), it requires one memory
dereference to locate the attribute corresponding to the col-
umn reservoir, followed by a (cache efficient) search within
the header to find the attribute and its offset, and one mem-
ory reference to locate the attribute value within the object
reservoir. Thus, accessing a virtual column involves just one
additional memory dereference, a binary search within the
header, and the function call overhead of calling the extract
UDF described in Section 3.2.2. These additional costs are
small relative to the shared fixed costs of query processing
(e.g. row iteration and query result collection).

As the fixed costs of query processing increase, the relative
overhead of accessing data from virtual columns instead of
physical columns decreases, since virtual column extraction
is amortized over an increased execution time. Hence, the
performance difference for the selection and ORDER BY
queries was smaller (<2%) than that of column projection.

Although this experiment indicates that the overhead of
virtual column extraction is small (especially relative to the
rest of query processing), this overhead is still noticeable,
and increases with an increased number of attribute extrac-
tions per query. Furthermore, recall from Section 3.1.1 that
a large issue with storing data in virtual columns is that
attribute statistics are hidden from the underlying database
system (given our requirement that we not modify the un-
derlying DBMS code) and this can result in poor optimiza-
tion of queries and reduced performance. Thus, while the
small overheard of our custom serialization format is promis-
ing, a hybrid architecture that materializes certain attributes
(see Section 3.1.4) into physical columns is still necessary.

