
Performance Tradeoffs in Read-Optimized Databases
Stavros Harizopoulos

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street

Cambridge, MA 02139
{stavros, vliang, dna, madden}@csail.mit.edu

Velen Liang Samuel MaddenDaniel J. Abadi

ABSTRACT
Database systems have traditionally optimized performance for
write-intensive workloads. Recently, there has been renewed
interest in architectures that optimize read performance by using
column-oriented data representation and light-weight compres-
sion. This previous work has shown that under certain broad
classes of workloads, column-based systems can outperform row-
based systems. Previous work, however, has not characterized the
precise conditions under which a particular query workload can
be expected to perform better on a column-oriented database.

In this paper we first identify the distinctive components of a
read-optimized DBMS and describe our implementation of a
high-performance query engine that can operate on both row and
column-oriented data. We then use our prototype to perform an
in-depth analysis of the tradeoffs between column and row-ori-
ented architectures. We explore these tradeoffs in terms of disk
bandwidth, CPU cache latency, and CPU cycles. We show that
for most database workloads, a carefully designed column sys-
tem can outperform a carefully designed row system, sometimes
by an order of magnitude. We also present an analytical model to
predict whether a given workload on a particular hardware con-
figuration is likely to perform better on a row or column-based
system.

1. INTRODUCTION
A number of recent papers [21][7] have investigated column ori-
ented physical database designs (column stores), in which rela-
tional tables are stored by vertically partitioning them into single-
column files. On first blush, the primary advantage of a column-
oriented database is that it makes it possible to read just the sub-
set of columns that are relevant to a query rather than requiring
the database to read all of the data in a tuple, and the primary dis-
advantage is that it requires updates to write in a number of dis-
tinct locations on disk (separated by a seek) rather than just a
single file.

Surprisingly, these initial observations turn out to not be trivially
true. For example, to obtain a benefit over a row store when read-

ing several columns in a table, a column store must ensure that it
can read large sequential portions of each column, since the cost
of seeking between two fields in the same tuple (stored separately
on disk) can be prohibitively expensive. Similarly, writes can
actually be made relatively inexpensive as long as many inserts
are buffered together so they can be done sequentially. In this
paper, we carefully study how column orientation affects the per-
formance characteristics of a read-optimized database storage
manager, using scan-mostly queries.

1.1 Read-Optimized DBMS Design
While column-oriented systems often have their own sets of col-
umn-wise operators that can provide additional performance ben-
efit to column stores [1], we focus in this paper on the differences
between column and row stores related solely to the way data is
stored on disk. To this end, we implement both a row- and col-
umn-oriented storage manager from scratch in C++ and measure
their performance with an identical set of relational operators. As
data is brought into memory, normal row store tuples are created
in both systems, and standard row store operations are performed
on these tuples. This allows for a fixed query plan in our experi-
ments and a more direct comparison of column and row systems
from a data layout perspective.

Both of our systems are read-optimized, in the sense that the disk
representation we use is tailored for read-only workloads rather
than update-intensive workloads. This means, for example, that
tuples on-disk are dense-packed on pages, rather than being
placed into a slotted-tuple structure with a free-list per page. Fig-
ure 1 shows the basic components of a generalized read-opti-
mized DBMS, upon which we base both of our systems (solid
lines show what we have actually implemented for the purposes
of this paper). In this design we assume a staging area (the “write
optimized store”) where updates are done, and a “read-optimized”

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish, to
post on servers or to redistribute to lists, requires a fee and/or special per-
mission from the publisher, ACM.
VLDB '06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

DB storage

Write

Store
Optimized

Read

Store
Optimized

merge

writes

reads

MV
MV

MV

MV
advisor

compression
advisor

Figure 1. Basic components of read-optimized DBMS.

Query engine
operators

compression-aware

store where tuples are permanently stored on disk. Tuples are
periodically moved in bulk from the write store to the read store.
A compression advisor and a materialized view (MV) advisor
choose compression schemes and appropriate vertical partition-
ing depending on the workload characteristics. This design is
loosely inspired by the design of C-Store [21], a column-oriented
database that also maintains separate storage for writes and peri-
odically merges new data into the read-only store.

1.2 Performance Study
We use our read-optimized systems to perform an in-depth analy-
sis of the tradeoffs between column and row-oriented architec-
tures, in terms of disk bandwidth, CPU cache latency, and CPU
cycles. Our performance study is based on a set of scan-mostly
queries (which represent the majority of queries in read-mostly
databases like data warehouses), operating on a database schema
derived from the TPC-H benchmark specification. The purpose of
this paper is not to definitively settle the question of whether a
column store is “better” than a row store, but to explore the situa-
tions under which one architecture outperforms the other. We
focus in particular on answering the following questions:

1. As the number of columns accessed by a query increase,
how does that affect the performance of a column store?

2. How is performance affected by the use of disk and L2
cache prefetching?

3. On a modern workstation, under what workloads are col-
umn and row stores I/O bound?

4. How do parameters such as selectivity, number of projected
attributes, tuple width, and compression affect column store
performance?

5. How are the relative performance tradeoffs of column and
row stores affected by the presence of competition for I/O
and memory bandwidth along with CPU cycles from com-
peting queries?

In addition to a complete set of performance results comparing
the column- and row-based systems, we present an analytical
model that provides accurate estimates of CPU and I/O costs for a
given hardware configuration and table layout. We note several
things that we explicitly chose not to study in this paper. Because
we are focused on the performance of queries in a read-optimized
system (e.g., warehouses) we do not model updates. Our view is
that updates in these systems are not done via OLTP-style queries
but rather happen via a bulk-loading tool. Building an efficient
bulk-loader is an interesting but orthogonal research question. As
noted above, we also do not study the effects of column versus
row orientation on different database operators — our query plans
are identical above the disk access layer. This decision allows us
to directly compare the two approaches, isolating implementation
differences to the smallest possible part of the system.

1.3 Summary of Results
We find that, in general, on modern database hardware, column
stores can be substantially more I/O efficient than row stores but
that, under certain circumstances, they impose a CPU overhead
that may exceed these I/O gains. Figure 2 summarizes these
results (Section 5 explains how we construct the graph). In this
contour plot, each color represents a speedup range achieved by a

column system over a row system when performing a simple scan
of a relation, selecting 10% of the tuples and projecting 50% of
the tuple attributes. The x-axis is the tuple width of the relation in
bytes (either compressed or uncompressed). The y-axis represents
the system’s available resources in terms of CPU cycles per byte
read sequentially from disk (cpdb). In Section 5 we show that
typical configurations (varying the number of available CPUs,
disks, query requirements, and also competing traffic to both the
CPUs and the disks) range from 20 to 400 cpdb. As a reference, a
modern single-disk, dual-processor desktop machine has a cpdb
of about 108.

For the graph of Figure 2, we compute the average speedup by
assuming the column system is accessing half of the columns
(50% projection). For example, for a tuple width of 8 bytes, a col-
umn system reads only 4 bytes per tuple. Later we present results
that show that the speedup of columns over rows converges to 1
when the query accesses all attributes, but it can be as high as N
if the query only needs to access 1 / Nth of the tuple attributes. As
Figure 2 shows, row stores have a potential advantage over col-
umn stores only when a relation is lean (less than 20 bytes), and
only for CPU-constrained environments (low values of cpdb). As
tuples get wider, column stores maintain a sizeable relative per-
formance advantage.

1.4 Contributions and Paper Organization
The main contribution of this paper is increased understanding of
the tradeoffs between column and row stores in read-optimized
settings. We focus on isolating the important factors that affect
relative query performance in both column and row stores. Our
performance study is based on a real implementation that strips
the problem to the bare minimum by avoiding irrelevant details.
This allows us to report results that are general and easy to repro-
duce. Furthermore, by capturing important system parameters in a
few simple measures, we are able to provide a set of equations
that can predict relative performance of column and row stores on
a wide range of different configurations.

The rest of the paper is organized as follows. Section 2 discusses
performance considerations in read-optimized databases (more
specifically, the role of disk and main memory bandwidth), and
then describes our implementation. Section 3 contains the experi-
mental setup, while Section 4 carries out the performance study.
We present our analysis in Section 5. We discuss related work in
Section 6 and conclude in Section 7.

8 12 16 20 24 28 32 36
9

18

36

72

144
2-
2
2-
2
1-
2
1-
1
0-
1

Figure 2. Average speedup of columns over rows (see text
below for an explanation).

speedup

Tuple width

C
yc

le
s

pe
r d

is
k

by
te

0.4-0.8

0.8-1.2

1.2-1.6

1.6-1.8

2

2. READ-OPTIMIZED DBMS DESIGN
In this section we first discuss performance considerations in
read-optimized database architectures, and then present our
implementation of a minimum-complexity, high-performance
relational query engine that can operate on both row and column-
oriented data.

2.1 Performance Considerations
Data warehousing and business intelligence applications rely on
the efficiency a database system can provide when running com-
plex queries on large data repositories. Most warehouses are bulk-
loaded during periods of low activity (e.g., over night) with data
acquired from a company’s operation (such as sales, or clicks on
web sites). Bulkloading is followed by periods when analysts
issue long, read-only queries to mine the collected data. The data-
base schema for these types of applications typically specifies a
few (or, just one) fact tables that store the majority of the newly
collected information (e.g., sales/clicks), and a number of smaller
dimension tables for the rest of the data (e.g., customer/company
info). In a typical schema, the fact tables store mostly foreign
keys that reference the collection of dimension tables.

In such environments, typical SQL queries examine fact tables
and compute aggregates, either directly from the fact table data,
or by first joining them with dimension tables. Data sometimes
needs to be corrected in a data warehouse, which can involve
updates to fact tables. Often, however, compensating facts are
used (e.g., a negative Sale amount). The majority of typical long-
running data warehousing queries involve sequential scans on the
fact tables. Speeding up the time it takes to read data off the disk
and, through the cache hierarchies, into the CPU can have a sig-
nificant performance impact. Exactly this type of optimization
lies in the heart of a read-optimized DB design and comprises the
focus of this paper. Other types of optimizations (such as materi-
alized view selection or multi-query optimization) are orthogonal
to scan-related performance improvements and are not examined
in this paper.

An important goal of read-optimized databases is to minimize the
number of bytes read from the disk when scanning a relation. For
a given access plan, there are two ways to achieve this goal: (a)
minimize extraneous data read (information that is not needed to
evaluate a query), and (b) store data in a compressed form. To
achieve (a), read-optimized systems improve the space utilization
of a database page by packing attributes as densely as possible.
Since updates occur in bulk, there is no reason to leave empty
slots in pages to accommodate inserts of a few tuples. Column-
oriented data can further reduce the number of bytes read, since
only the columns relevant to the query need to be read. Compres-
sion schemes can apply to both column and row data, and they
have been shown to speed up query execution [22][18][24][1].
Database-specific compression techniques differ from general-
purpose compression algorithms in that they need to be “light-
weight,” so that the disk bandwidth savings do not exceed the
decompression cost. In this paper we study three such compres-
sion techniques (described later in Section 2.2.1).

2.1.1 Disk-Related Considerations
As disk drives yield their peak data delivery bandwidth when data
is read sequentially, database systems embrace sequential storing
and accessing of relations. As a reference, inexpensive worksta-
tion configurations (e.g., plain SATA controllers and software

RAID) can easily yield 100-300MB/sec of aggregate disk band-
width. When a sequential disk access pattern breaks, the disks
spend about 5-10 msec while the heads perform a seek to the new
data location. To preserve high performance, the system needs to
minimize the time spent on seeks. For multiple concurrent
sequential requests, this is typically achieved by prefetching a
large amount of data from one file before seeking to read from
the next file. Modern database storage managers employ some
form of prefetching. For example, the SQL Server Enterprise Edi-
tion’s storage manager may prefetch up to 1024 pages (each page
is 8KB).

Even when database systems have the option to use an index on a
large relation, in many cases it is better to use a plain sequential
scan. For instance, consider a query that can utilize a secondary,
unclustered index. Typically, the query probes the index and con-
structs a list of record IDs (RIDs) to be retrieved from disk. The
list of RIDs is then sorted to minimize disk head movement. If we
were to assume a 5ms seek penalty and 300MB/sec disk band-
width, then the query must exhibit less than 0.008% selectivity
before it pays off to skip any data and seek directly to the next
value (assuming 128-byte tuples and uniform value distribution).

When multiple concurrent queries scan the same table, often it
pays off to employ a single scanner and deliver data to multiple
queries off a single reading stream (scan sharing). Teradata, Red-
Brick, and SQL Server are among the commercial products that
have been reported to employ this optimization, and, recently, it
has also been demonstrated in the QPipe research prototype
engine [13]. Such an optimization is orthogonal to data placement
(columns versus rows), and therefore we do not examine it in this
paper.

2.1.2 CPU Cache-Related Considerations
In recent years, a thread of database research has been investigat-
ing CPU cache-related delays in database workloads, and has pro-
posed cache-conscious algorithms and data placement techniques
(relevant references and additional background can be found in
[3]). Recent studies have pointed out that commercial DBMS
spend a significant amount of time on L2 cache misses [5][15].
The proposed methodologies calculate the time spent on L2 cache
misses by measuring the actual number of misses (via CPU per-
formance counters) and multiplying this number by the measured
memory latency. While this methodology accurately described
DBMS performance on the machines used at the time (Intel Pen-
tium Pro / Pentium II), it no longer applies to today's CPUs (such
as Pentium 4). The reason is that all major chip manufacturers
now include both hardware and software data prefetching mecha-
nisms1. Once the hardware detects that a memory region (such as
a database page) is accessed sequentially, it will start prefetching
data from main memory to the L2 cache. For example, Pentium 4
will prefetch two cache lines (128 bytes each) for every accessed
cache line that is characterized by a predictable access pattern.

The implications of hardware cache prefetching are especially
significant in data warehousing, as data pages are regularly
accessed sequentially. The bottleneck now becomes the memory
bus bandwidth, and not the cache latency, as previously thought.
This effect makes main memory behave somewhat similarly to a

1. Intel Corporation. “IA-32 Intel® Architecture Software Devel-
oper's Manual, Volume 3: System Programming Guide.” (Order
Number 253668).

disk when it comes to sequential accesses: it allows the CPU to
overlap computation with memory-to-cache transfers (on top of
disk-to-memory transfers). We describe in Section 4.1 how we
calculate memory-related delays when taking into consideration
the hardware cache prefetcher. For configurations where memory
bandwidth is the bottleneck, database architectures can speed-up
query execution in the same way they deal with disk bandwidth:
by avoiding reading extraneous data and by utilizing compressed
forms of data [24].

2.2 Implementing a Read-Optimized Engine
In this section we describe our implementation of a minimum-
complexity, read-only relational query engine that operates on
both column and row data. We first describe page layouts and
compression schemes (Section 2.2.1), then the column and row
data scanners (Section 2.2.2), and, lastly, the overall architecture
and the rest of the relational operators (Section 2.2.3).

2.2.1 Disk Storage for Columns and Rows
Since there are no real-time updates in a read-optimized DBMS,
we forego the traditional slotted-page structure in favor of a
tightly packed one (see Figure 3). For both row and column data,
a page contains an array of values: entire tuples for row data and
single-attribute values for column data (we discuss in Section 6
alternative row page structures such as PAX [4]). At the begin-
ning of the page, an integer value stores the number of entries.
We store additional page-specific information at the end of the
page (using a fixed offset). Such information includes the page ID
(which, in conjunction with a tuple’s position in the page gives
the Record ID), along with compression-specific data. For sim-
plicity, we use fixed-length attributes throughout this paper. For
variable-length attributes, additional offset values need to be
placed between values.

Pages are stored adjacently in a disk file. For column data, a table
is stored using one file per column. In our system, we stripe data-
base files across all available disks in a disk array. The page size
is a system parameter, and for all experiments in this paper we
use a 4KB value. For the type of sequential accesses we study,
the page size has no visible effect on performance (as long as the
cost of crossing page boundaries is significantly lower than the
cost of processing a page).

We compress data using three commonly used lightweight com-
pression techniques: Dictionary, Bit packing, and FOR-delta (see
[22][10][1][24] for additional background on these schemes).
Compression schemes are typically chosen during physical
design. These three techniques yield the same compression ratio
for both row and column data. They also produce compressed
values of fixed length. We refrain from using techniques that are
better suited for column data (such as run length encoding [1]) to
keep our performance study unbiased. We use bit-shifting instruc-
tions to pack compressed values inside a page, and the reverse
procedure for decompressing at read time. Following is a brief
description of the three compression schemes we use.

Bit packing (or Null suppression). This scheme stores each
attribute using as many bits as are required to represent the maxi-
mum value in the domain. For example, if an integer attribute has
a maximum value of 1000, then we need at most 10 bits to store
each attribute.

Dictionary. When loading data we first create an array with all
the distinct values of an attribute, and then store each attribute as
an index number to that array. For example, to compress an
attribute that takes the values “MALE” and “FEMALE,” we store
0 or 1 for each attribute. We use Bit packing on top of Dictionary.
At read time, we first retrieve the index value through bit-shift-
ing, and then make a look-up in the corresponding array.

FOR-delta. FOR (Frame-Of-Reference) maintains a base value
per block of values (in our case, per page), and then stores differ-
ences from that base value. For most of the experiments we use
FOR-delta, which also maintains a base value per block but stores
the difference of a value from the previous one (the first value in
the block is the base value of that block). This scheme applies to
integer-type attributes that exhibit value locality. For example, a
sorted ID attribute (100, 101, 102, 103, etc.), will be stored as (0,
1, 2, 3, etc.) under plain FOR, and as (0, 1, 1, 1, etc.) under FOR-
delta; in both cases the base value for that page will be 100. At
read time, real values are calculated either from the base value (in
FOR) or from the base value and all the previous readings in that
page (in FOR-delta).

2.2.2 Row and Column Table Scanners
Scanners are responsible for applying predicates, performing pro-
jection and providing the output tuples to their parent operators.
Both the row and column scanner produce their output in exactly
the same format and therefore they are interchangeable inside the
query engine (see Figure 4). Their major difference is that a row
scanner reads from a single file, whereas the column scanner
must read as many files as the columns specified by the query.
Both scanners employ the same I/O interface to receive buffers
containing database pages. We describe the I/O interface in the
next sub-section (2.2.3). The row scanner is straightforward: it
iterates over the pages contained inside an I/O buffer, and, for
each page, it iterates over the tuples, applying the predicates.
Tuples that qualify are projected according to the list of attributes
selected by the query and are placed in a block of tuples. When
that block fills up, the scanner returns it to the parent operator.

A column scanner consists of a series of pipelined scan nodes, as
many as the columns selected by the query. The deepest scan
node starts reading the column, creating {position, value} pairs
for all qualified tuples. We use the same block-iterator model to
pass data from one scanner to the next. Once the second-deepest

Figure 3.Page structure and disk storage layout for a single
table for Row data (left) and Column data (right).

4K page
rows A1 B1 Z1 A2

Z2B2

 page infoAm Bm Zm

. . .

P0 P1 eof

stripe

TABLE

A1 A2

An page info

val
. . .

B1 B2

Bn page info

val
. . .

4K page 4K page

PA0 PA1 eof. . . PB0 PB1 eof. . .

.

ROW STORAGE COLUMN STORAGE

stripe

. . .

scan node receives a block of tuples (containing position pairs), it
uses the position information to drive the inner loop, examining
values from the second column. That is, we only evaluate predi-
cates corresponding to qualified records in the first column. If the
second predicate is true, we copy both values along with the posi-
tion to a new tuple that is passed on to the next scanner. When a
scan node has no predicates, it simply attaches all values corre-
sponding to the input positions, without re-writing the resulting
tuples. At all times, the tuple blocks are reused between scanners
(and operators), so there is no new memory allocation during
query execution. As in most systems, we push scan nodes that
yield few qualifying tuples as deep as possible.

2.2.3 Query Engine and I/O Architecture
Our query engine follows a pull-based, block-iterator model for
all operators. Each relational operator calls next on its child (or
children), and expects to receive a block (array) of tuples (Figure
4). Adopting a block-iterator model instead of a tuple-by-tuple
one amortizes the cost of procedure calls and also removes any
delays related to CPU instruction-cache performance [17][23].
We make the block size a tunable parameter and choose a value
that makes the block fit in the L1 data cache to minimize L1
cache delays (on our machine, the L1 data cache is 16KB and we
use blocks of 100 tuples). Relational operators are agnostic about
the database schema, and operate on generic tuple structures. We
have implemented the following operators: aggregation (sort-
based and hash-based), merge join, and table scanners which can
apply SARGable predicates.

In our implementation we took care to avoid overhead associated
with extra functionality that was not necessary for the purposes of
our study. We therefore omitted implementing a parser or opti-
mizer; instead we use precompiled queries. With the same think-
ing, we opted for a single-threaded implementation. Evaluating a
query in parallel is orthogonal to this study and our results trivi-
ally extend to multiple CPUs.

Initially, we used the BerkeleyDB2 storage manager to manage
disk files, but eventually opted for a custom-built I/O interface

and file storage. BerkeleyDB proved to be a mismatch to our
high-performance requirements since reading a page caused mul-
tiple copies between user and system space, and there was no
built-in prefetching. DB engines commonly use a multithreaded
storage manager to handle prefetching and also overlap I/O with
computation. We take advantage of the Asynchronous I/O (AIO)
interface in Linux 2.6 to implement a non-blocking prefetching
mechanism within our single-threaded application. Our AIO
interface performs reads at the granularity of an I/O unit.
Throughout the paper we use I/O units of 128KB per disk. Every
time we run the engine we also specify the depth of prefetching:
how many I/O units are issued at once when reading a file. Disk
transfers go directly to memory (i.e., using DMA) without involv-
ing the CPU, and without passing through the Linux file cache.
There is no buffer pool (since it does not make a difference for
sequential accesses). Instead, the AIO interface passes the query a
pointer to a buffer containing data from an I/O unit.

Our I/O interface provides a minimum-overhead data path from
disk to memory. This allows us to report results that are not
biased by a non-efficient implementation. The code consists of
about 2,500 lines of C++ (without including the code to create,
load, and query data), compiled with gcc, on Linux 2.6, using the
libaio library for asynchronous I/O. Our code is publicly available
and it can be used as a benchmarking tool for measuring the per-
formance limit of TPC-H style queries, on both row and column
data3.

3. EXPERIMENTAL SETUP
3.1 Workload
For all experiments we use two tables, LINEITEM and ORDERS,
based on the TPC-H4 benchmark specification. We populate the
tables with data generated by the official TPC-H toolkit. Our only
modifications to the original specifications were the following:
First, we use four-byte integers to store all decimal types (we pre-
serve the original values though). Second, for LINEITEM, we use
a fixed text type instead of a variable one for the L_COMMENT
field, to bring the tuple size to 150 bytes. Finally, for ORDERS,
we drop two text fields, and change the size of another one, to
bring the tuple size to 32 bytes. The schema of the two tables is
shown in Figure 5. The row system uses 152 bytes to store a
LINEITEM tuple (the extra 2 bytes are for padding purposes),
and 32 bytes to store an ORDERS tuple (same as the tuple
width). The column system packs attributes from each column
contiguously without any storage overhead.

The rationale behind the choice for the tuple sizes was to con-
struct a “wide” tuple that is larger than a cache line (the L2 cache
line for Pentium 4 is 128 bytes), and a “narrow” one, that can fit
multiple times within a cache line. Fixing the tuple size provides
measurement consistency. TPC-H specifies a ratio of four
LINEITEM lines for every ORDERS line. To be able to compare
results between the two tables, we use scale 10 for LINEITEM
(60M tuples, 9.5GB on disk) and scale 40 for ORDERS (60M
tuples, 1.9 GB on disk). TPC-H generated data allow for substan-
tial compression. The compressed versions of the LINEITEM and
ORDERS tuples are shown in Figure 5. We apply all three com-
pression techniques described in the previous section.

2. http://www.sleepycat.com

Figure 4. Query engine and scanner architecture.

S

S

S

col1

col2

col3 poslist1 + col1

poslist2 + col1 + col2

attr1 | attr2 | attr3

SS

attr1 | attr2 | attr3

Column scanner Row scanner

Aggr

final results

block block-iterator
model

pred1

pred2

pred1 | pred2

of tuples

Rel
op

3. http://db.csail.mit.edu/projects/cstore/
4. http://www.tpc.org/tpch/

3.2 Hardware platform & measurement tools
All experiments are performed on a Pentium 4 3.2GHz, with
1MB L2 cache, 1GB RAM, running Linux 2.6. Unless otherwise
noted, all data is read off a software RAID consisting of three
SATA disk drives, capable of delivering 180MB/sec bandwidth
(60MB/sec per disk). The default configuration of our system is a
128KB I/O unit with prefetch depth of 48 I/O units and tuple
block sizes of 100 entries. There is no file-caching in our system,
so all data requests are served from the disk.

We use the standard UNIX utility iostat to monitor disk activ-
ity. All measurements are collected through the PAPI5 library [16]
which provides access to the CPU performance counters,
enabling us to measure events at the micro-architectural level
(number of L2 cache misses, executed instructions, etc.). More
specifically, we use papiex6, which can monitor any binary and
report performance counter events either in user mode or system
(kernel) mode. The former are events that our application is
responsible for, while in user space (executing the code we
wrote), and the latter are events that occurred while the CPU exe-
cutes system calls and OS code. The way we convert these mea-
surements into time breakdowns is described in the next section,
next to the results.

4. PERFORMANCE STUDY
There are several factors that impact query performance when
comparing column and row stores. We study five such factors:

• Query workload
• Database physical design
• System parameters
• Capacity planning
• System load
We discuss next how each factor may affect performance.

(i) Query workload. The primary advantage of column over row
stores is the ability to read from disk exactly the attributes
selected by a query, thus saving on disk and main memory band-
width, along with CPU time that is required to read pages from
disk. We expect queries that select increasingly more attributes,
up to the entire tuple, to exhibit a convergence in the performance
of column and row stores. For queries with decreased selectivity
(few qualifying tuples7), we expect the CPU time to decrease in
both column and row stores. The end-to-end performance of a
query depends on the cost of other operators involved in the
query plan, not just the table scans. Given an identical operator
implementation in column and row stores, we expect the relative
end-to-end performance difference to decrease as the bulk of the
query cost moves to operators other than scans (we discuss this in
Section 5).

(ii) Database physical design. The tuple width in a table is spe-
cific to a database schema, but it can change (to be narrower) dur-
ing the physical design phase, using vertical partitioning or
materialized view selection. During the design phase, the data-
base administrator (or an automatic tool) can also decide on
whether compression schemes will be used and how. Both nar-
rower (in the case of row stores) and compressed tuples remove
pressure from disk and main memory bandwidth requirements.
They also reduce CPU time spent executing disk read instructions
(CPU system time); for compressed tuples, we expect the CPU
user time to slightly increase due to extra CPU instructions
required by decompression.

(iii) System parameters. A parameter that may differ across
implementations is the prefetch unit size in large scans (how
much data the storage manager reads ahead). As we show later, a
sufficiently large prefetch buffer results into good performance
for both column and row stores for sequential scans, whereas
small values negatively affect both systems. A small prefetch
buffer means that the disks spend more time seeking (moving the
disk heads) to read from multiple tables than actually reading,
resulting into poor disk utilization.

(iv) Capacity planning. The database administrator can specify
how many disks a table will be striped over. When there are
more than one CPUs available, the DBMS decides how many
CPUs will be used to evaluate the query in parallel (a parameter
known as “degree of parallelism” or DOP; the user may also
specify what the DOP is for a given query). Different ratios of
CPUs per disk for a given query may have different effects in col-
umn stores than in row stores, depending on what the bottleneck
is (disk, CPU, or memory) for any given configuration.

5. http://icl.cs.utk.edu/papi/
6. http://icl.cs.utk.edu/~mucci/papiex/

LINEITEM (150 bytes)
1 L_PARTKEY int
2 L_ORDERKEY int
3 L_SUPPKEY int
4 L_LINENUMBER int
5 L_QUANTITY int
6 L_EXTENDEDPRICEint
7 L_RETURNFLAG text, 1
8 L_LINESTATUS text, 1
9 L_SHIPINSTRUCT text, 25
10 L_SHIPMODE text, 10
11 L_COMMENT text, 69
12 L_DISCOUNT int
13 L_TAX int
14 L_SHIPDATE int
15 L_COMMITDATE int
16 L_RECEIPTDATE int

LINEITEM-Z (52 bytes)
1 non-compressed
2Z delta, 8 bits
3 non-compressed
4Z pack, 3 bits
5Z pack, 6 bits
6 non-compressed
7Z dict, 2 bits
8 non-compressed
9Z dict, 2 bits
10Z dict, 3 bits
11Z pack, 28 bytes
12Z dict, 4 bits
13Z dict, 4 bits
14Z pack, 2 bytes
15Z pack, 2 bytes
16Z pack, 2 bytes

ORDERS (32 bytes)
1 O_ORDERDATE int
2 O_ORDERKEY int
3 O_CUSTKEY int
4 O_ORDERSTATUS text, 1
5 O_ORDERPRIORITYtext, 11
6 O_TOTALPRICE int
7 O_SHIPPRIORITY int

ORDERS-Z (12 bytes)
1Z pack, 14 bits
2Z delta, 8 bits
3 non-compressed
4Z dict, 2 bits
5Z dict, 3 bits
6 non-compressed
7Z pack, 1 bit

Figure 5. Table schema. Compressed versions of the tables
are shown on the right (compressed attributes are noted

with the letter “Z” next to an attribute’s number).

7. Throughout the paper we adopt the following convention:
decreased or lower selectivity corresponds to a lower percentage
of qualified tuples.

(v) System load. The system load (disk utilization and CPU uti-
lization) can significantly affect a single query’s response time.
Obviously, a disk-bound query will see a big increase in the
response time if it is competing with other disk-bound queries.
Competing disk and CPU traffic may again have different effects
in column stores than in row stores.

We base all experiments on a variant of the following query:

select A1, A2 … from TABLE
where predicate (A1) yields variable selectivity

Since the number of selected attributes per query is the most
important factor, we vary that number on the X-axis through all
experiments. Table 1 summarizes the parameters considered, what
the expected effect is in terms of time spent on disk, memory bus
and CPU, and which section discusses their effect.

4.1 Baseline experiment
select L1, L2 … from LINEITEM
where predicate (L1) yields 10% selectivity

As a reminder, the width of a LINEITEM tuple is 150 bytes, it
contains 16 attributes, and the entire relation takes 9.5GB of
space. Figure 6 shows the elapsed time for the above query for
both row and column data. The graph on the left of the figure

shows the total time (solid lines), and the CPU time separately
(dashed lines) as we vary the number of selected attributes on the
x-axis. Both systems are I/O-bound in our default configuration
(1 CPU, 3 disks, no competition), and therefore the total time
reflects the time it takes to retrieve data from disk. Both systems
are designed to overlap I/O with computation (as discussed in
Section 2). As expected, the row store is insensitive to projectiv-
ity (since it reads all data anyway), and therefore its curve
remains flat. The column store, however, performs better most of
the time, as it reads less data. Note that the x-axis is spaced by
the width of the selected attributes (e.g., when selecting 8
attributes, the column store is reading 26 bytes per LINEITEM
row, whereas for 9 attributes, it reads 51 bytes — see Figure 5 for
detailed schema information).

The “crossover” point that the column store starts performing
worse than the row store is when selecting more than 85% of a
tuple’s size. The reason it performs worse in that region is that it
makes poorer utilization of the disk. A row store, for a single
scan, enjoys a full sequential bandwidth. Column stores need to
seek between columns. The more columns they select, the more
time they spend seeking (in addition to the time they spend read-
ing the columns). Our prefetch buffer (48 I/O units) amortizes
some of the seek cost. A smaller prefetch buffer would lower the
performance of the column store in this configuration, but addi-
tional disk activity from other processes would make the cross-
over point to move all the way to the right. We show these two
scenarios later, in Section 4.5.

While this specific configuration is I/O-bound, it still makes
sense to analyze CPU time (dashed lines in left graph of Figure
6), as it can affect performance in CPU-bound configurations, or
when the relations are cached in main memory. The left graph of
Figure 6 shows the total CPU time for both systems. We provide
a time breakdown of CPU costs in the graph on the right part of
Figure 6. The first two bars correspond to the row store, selecting
1 and 16 attributes (the two ends in our experiment). The rest of
the bars belong to the column store, selecting from 1 to 16
attributes. The height of each stacked bar is the total CPU time in
seconds. The bottom area (dark color), is the time (in sec) spent
in system mode. This is CPU time spent while Linux was execut-
ing I/O requests and we do not provide any further break-down of
that. For the row store, the system time is the same regardless of
the number of selected attributes. For the column store it keeps

Table 1: Expected performance trends in terms of elapsed
disk, memory transfer, and CPU time (arrows facing up mean
increased time), along with related experimentation sections.

parameter Disk Mem CPU section
selecting more attributes

(column store only) 4.1

decreased selectivity 4.2
narrower tuples 4.3

compression 4.4
larger prefetch 4.5

more disk traffic 4.5
more CPUs /
more Disks 5

0

2

4

6

8

10

12 usr-rest (top)
usr-L1
usr-L2
usr-uop
sys

0

10

20

30

40

50

60

4 20 36 52 68 84 100 116 132 148

Row
Column
Row CPU
Column CPU

Selected bytes per tuple

E
la

ps
ed

 ti
m

e
(s

ec
)

E
la

ps
ed

 ti
m

e
(s

ec
)

Figure 6. Baseline experiment (10% selectivity, LINEITEM). Left: Total elapsed time (solid lines) and CPU time (dashed lines) for
column and row store. The total elapsed time is equal to I/O time since CPU time is overlapped. X-axis is spaced by the width of

selected attributes. Right: CPU time breakdowns. The first two bars are for row store, the rest are for column store.

of attributes selected
column storerow store

(see Fig. 5 for the type
of each attribute)

increasing as the system performs more I/O. The jumps in bars
#10, #11, #12, are due to the larger, string attribute types that are
being added to the selection list. Note that the column store ends
up spending more system time than the row store when selecting
all attributes, due to more work needed by the Linux scheduler to
handle read requests for multiple files.

The rest of the fields in the stacked bars are user time. Moving
upwards, the next field (usr-uop) is the minimum time the CPU
could have possibly spent executing our code. Pentium 4 can exe-
cute a maximum of 3 micro-operations (uops) per cycle. By mea-
suring the actual number of uops (and dividing by 3), we compute
the minimum time. In reality, CPUs never achieve this time, due
to several stall factors [14], however, we can treat this time as a
metric of the work assigned to a CPU, and how far off the CPU is
from a perfect execution. The next two fields (usr-L2 and usr-L1),
is the time it took for data to move from main memory to L2, and
from L2 to L1 cache, correspondingly.

We carefully compute L2 delays for each access pattern, taking
into consideration the hardware L2 prefetcher (see also discussion
in Section 2.1.2). For sequential memory access patterns, the
memory bus in our system can deliver 128 bytes (one L2 cache
line) every 128 CPU cycles. The time spent fetching sequential
data into L2 is overlapped with the usr-uop field (mentioned
above). Whenever the CPU tries to access a non-prefetched cache
line, the stall time is 380 cycles (measured time for random mem-
ory access time in our system). The usr-L2 area shown in the
stacked bar of Figure 6 is the minimum time the CPU was stalled
waiting for data to arrive in the L2, after subtracting any overlaps
with actual CPU computation. The usr-L1 field, on the other
hand, is the maximum possible time the CPU could have been
stalled to L1 cache misses. In reality, that component is much
smaller due to out-of-order execution of modern CPUs [14].
Finally, the remaining, light-colored field, is the amount of time
the CPU was active in user mode. A number of other factors can
contribute to the remaining time (branch mispredictions, func-
tional unit stalls, etc.).

There are two observations to make for the CPU-time graph of
Figure 6. Column stores require increasingly more CPU work
than a row store as more attributes are selected from a relation.
Their average performance, however, is marginally better due to
less work in system mode, and less time spent in main-memory
transfers in user mode. The second observation is that the type of
selected attributes is crucial for column stores. Once the query
expands enough to include the three strings of LINEITEM (#9,
#10, #11), we suddenly see a significant L2/L1 component that
will remain the same as the query goes back to adding integers

(#12 - #16). These observations lead us to two questions and to
our next experiments: what happens when the column store has
less work for each additional column (decreased selectivity: Sec-
tion 4.2), and what happens when both systems access narrower
structures (Section 4.3 and Section 4.4).

4.2 Effect of selectivity
select L1, L2 … from LINEITEM
where predicate (L1) yields 0.1% selectivity

Selecting fewer tuples through a very selective filter has no effect
on I/O performance. Figure 7 shows the CPU time breakdown in
the same format as Figure 6. As expected, system time remains
the same (since it depends on I/O). The row store also remains
the same, since it has to examine every tuple in the relation to
evaluate the predicate, and so, memory delays continue to domi-
nate. The column store, however, behaves entirely different.
Selecting additional attributes adds negligible CPU work, since
the different scan nodes (other than the first) process on average
only one out of every 1000 values. The memory delay of transfer-
ring large strings (attributes #9, #10, #11) is no longer an issue
since their cost is much less than the cost of evaluating predicate
L1.

In general, for decreased selectivity of the first attribute in the
query list, the pure CPU computation time (usr-uop) of column
stores is very close to a row store, regardless of the number of
selected attributes. However, as selectivity increases towards
100%, each additional column scan node contributes an increas-
ing CPU component, causing the crossover point to move
towards the left. Note that this behavior stems directly from the
pipelined column scanner architecture used in this paper (shown
in Figure 4), where each scan node is driven by a separate value
iterator. One optimization that a column system could employ is
to utilize a non-pipelined, single-iterator scanner. The way such a
scanner works is the following. It first fetches disk pages from all
scanned columns into memory. Then, it uses memory offsets to
access all attributes within the same row, iterating over entire
rows, similarly to a row store. This architecture is similar to PAX
[4] and MonetDB [7]. Since such an optimization is out of the
scope of this performance study, we do not further discuss it.

4.3 Effect of narrow tuples
select O1, O2 … from ORDERS
where predicate (O1) yields 10% selectivity

0

2

4

6

8

10 usr-rest (top)
usr-L1
usr-L2
usr-uop
sys

Figure 7. Changing selectivity to 0.1% (LINEITEM table).

of attributes selected
column store

row store

E
la

ps
ed

 ti
m

e
(s

ec
)

0

2

4

6

8

10

12
usr-rest (top)
usr-L1
usr-L2
usr-uop
sys

E
la

ps
ed

 ti
m

e
(s

ec
)

Figure 8. 10% selection query on ORDERS (narrow tuples).

0

2

4

6

8

10

12

4 8 12 16 20 24 28 32

Row
Column

of attributes selected
column store

Selected bytes per tuple

We switch tables and use ORDERS (32 bytes wide tuple, 7
attributes). Figure 8 contains the results (total time on the left,
CPU breakdowns on the right). Both systems are still I/O-bound,
and so we see the same behavior as before in total time. The CPU
behavior, however, is different. First, the system time is a smaller
percentage of the overall CPU time; the reason is that we still
scan the same number of tuples as before (ORDERS have the
same cardinality as LINEITEM), but perform less I/O per tuple.
Second, the pure computation (usr-uop) is almost the same as
before, however, the memory-related delays are no longer visible
in either system: the main memory bandwidth surpasses the rate
at which the CPU can process data. In a memory-resident dataset,
for this query, column stores would perform worse than row
stores no matter how many attributes they select. However, if we
were to use decreased selectivity (see CPU usr-uop time for col-
umn data in Figure 7), both systems would perform similarly.

4.4 Effect of compression
select Oz1, Oz2 … from ORDERS-Z
where predicate (Oz1) yields 10% selectivity

In studying the effects of compression, we initially ran a selection
query on LINEITEM-Z. However, the results for total time did
not offer any new insights (the LINEITEM-Z tuple is 52 bytes,
and we already saw the effect of a 32-byte wide tuple). We there-
fore only show results with the ORDERS-Z table (12 bytes wide)
in Figure 9. The graph on the left shows the total time whereas
the graph on the right shows CPU time. The x-axis is spaced on
the uncompressed size of selected attributes. For this experiment
we show results for two different compression schemes for
attribute #2 of ORDERS, FOR and FOR-delta (see Section 2.2.1).

In this query, the column store becomes CPU-bound (the row
store is still I/O-bound), and therefore the crossover point moves
to the left. Note that the slightly irregular pattern for total time in
the left graph of Figure 9 is due to imperfect overlap of CPU and
I/O time. Both systems exhibit reduced system times. The row
store, for the first time so far, shows a small increase in user CPU
time when going from selecting one attribute to all seven (right
graph in Figure 9). The reason for that is the cost of decompres-
sion. The column store exhibits a peculiar behavior in the CPU
time of the FOR-delta curve, in that there is a sudden jump when
selecting the second attribute. FOR-delta requires reading all val-

ues in the page to perform decompression. Plain FOR compres-
sion for that attribute (storing the difference from a base value
instead of the previous attribute) requires more space (16 bits
instead of 8), but is computationally less intensive. This is appar-
ent in the right graph of Figure 9. This experiment does not nec-
essarily suggest that plain FOR is a better compression scheme
than FOR-delta. If our system was disk-constrained (for exam-
ple, if we used one disk instead of three), then the I/O benefits
would offset the CPU cost of that specific compression scheme.

4.5 Effect of prefetch size, competing traffic
select O1, O2 … from ORDERS
where predicate (O1) yields 10% selectivity

We repeat the experiment from Figure 8, this time varying the
prefetch depth. So far we have been using a prefetch depth of 48
I/O units (each unit is 128KB per disk). Figure 10 shows, in addi-
tion to 48 units, results for prefetch depth of 2, 4, 8, and 16 units.
Since there is only a single scan in the system, prefetch depth
does not affect the row system. The column system, however,
performs increasingly worse as we reduce prefetching, since it
spends more time seeking between columns on disk instead of
reading. It therefore makes sense to aggressively use prefetching
in a column system. However, the same is true in the general case
for row systems as well, as we show next.

Figure 11 shows three graphs where both the row and column
system use a prefetch size of 48, 8, and 2 correspondingly, in the
presence of a concurrent competing scan. The competing scan is
issued by a separate process that executes a row-system scan on a
different file on disk (LINEITEM). In each scenario, we matched
the prefetch size of the competing process to the prefetch size of
the systems under measurement, to present the disk controller
with a balanced load.

As Figure 11 shows, the column system (solid-triangle line) out-
performs the row system in all configurations. This contradicts
our expectations that a column system selecting all columns in a
relation would perform the same as a row system in the presence
of competing disk traffic (since both systems should spend the
same time reading off disk and waiting on disk-head seeks). It
turns out that a column system benefits from the fact it employs
several scans. When the first data for column #1 arrives from
disk, the CPU is moving on to column #2 while the disk still
serves column #1. At that point, column #2 submits its disk
request and the CPU is halted until all disk requests for column
#1 are served and the first data from column #2 arrives. Being

0

2

4

6

8

10

4 8 12 16 20 24 28 32

Row
Column FOR-delta
Column FOR

El
ap

se
d

tim
e

(s
ec

)

Figure 9. Selection query on ORDERS-Z (compressed), total
time (left) and CPU time (right). The column system uses two

different compression schemes for one of the attributes.

0

2

4

6

8

10

4 8 12 16 20 24 28 32

Row
Column FOR-delta
Column FOR

total time

Selected bytes per tuple
(when uncompressed)

Selected bytes per tuple
(when uncompressed)

CPU time

0
5

10
15
20
25
30
35

4 8 12 16 20 24 28 32

Column 2
Column 4
Column 8
Column 16
Column 48
Row

Selected bytes per tuple

El
ap

se
d

tim
e

(s
ec

)

Figure 10.Varying the prefetch size when scanning ORDERS.
The row system is not affected by prefetching in this scenario.

one step ahead allows the column system to be more aggressive
in its submission of disk requests, and, in our Linux system, to
get favored by the disk controller. As a reference, we imple-
mented a version of the column system that waits until a disk
request from one column is served before submitting a request
from another column. The results (“slow” line in Figure 11) for
this system are now closer to our initial expectations.

5. ANALYSIS
The previous section gave us enough experimental input to guide
the construction of a simple set of equations to predict relative
performance differences between row and column stores under
various configurations. We are primarily interested in predicting
the rate of tuples/sec at which row and column systems will oper-
ate for a given query and given configuration. We summarize in
Table 2 the parameters we are going to use in our analysis along
with what different configurations these parameters can model.

Our analysis focuses on a setting where scan nodes continuously
read input tuples which are then passed on to other relational
operators in a pipelined fashion. We assume (as in our implemen-
tation) that CPU and I/O are well overlapped. For simplicity, we
do not model disk seeks (we assume that the disks read sequen-
tially the majority of the time). The rate (tuples/sec) at which a
query can process its input is simply the minimum of the rate R
the disks can provide data and the rate the CPUs can process
these data:

 (1)

Throughout the analysis, “DISK” and “CPU” refer to all disks
and all CPUs made available for executing the query. Paralleliz-
ing a query is orthogonal to our analysis. If a query can run on
three CPUs, for example, we will treat it as one that has three
times the CPU bandwidth as a query that runs on a single CPU.

Disk analysis. We model the disk rate (in tuples/sec) as
the sum of rates of all files read, weighted by the size of a file (in
bytes):

(2)

For example, in the case of a merge-join, if File1 is 1GB and
File2 is 10GB, then the disks process on average one byte from
File1 for every ten bytes from File2. The individual file rates are
defined as:

DiskBW is simply the available bandwidth from the disks in
bytes/sec, which we divide by the width of the tuples to obtain
the rate in tuples/sec. DiskBW is always the full sequential band-
width (we assume large prefetching buffers that minimize time
spent in disk seeks, as shown in the previous section). Note that:

where is the cardinality of relation i.

We can now rewrite (2) as:

 (3)

For a column store, we can derive a similar equation to the one
above:

 (4)

where f1, f2, etc. are the factors by which a regular row tuple is
larger than the size of the attributes needed by a query. For exam-
ple, if a column system needs to read only two integers (8 bytes)
from ORDERS (32 bytes), the factor f is 4 (= 32 / 8).

CPU analysis. To model CPU rate, we assume a cascaded con-
nection of all relational operators and scanners. If an operator
processes tuples/sec, and is connected to another operator

0

20

40

60

80

4 8 12 16 20 24 28 32

Row -2
Column-2 slow
Column-2

0

20

40

60

80

4 8 12 16 20 24 28 32

Row -8
Column-8 slow
Column-8

0

20

40

60

80

4 8 12 16 20 24 28 32

Row -48
Column-48 slow
Column-48

El
ap

se
d

tim
e

(s
ec

)

Figure 11.Repeating previous experiment for prefetch size of 48, 8, and 2 units, this time in the presence of another concurrent scan.
See text for an explanation of “slow” curve.

Selected bytes per tuple Selected bytes per tuple Selected bytes per tuple

Table 2: Summary of parameters used in the analysis.

parameter what can it model
SizeFile

various database schemas
TupleWidth

MemBytesCycle various speeds for the memory bus

f number of attributes selected by a query
(projection)

I
CPU work of each operator

(can model various selectivities for scanners,
or various decompression schemes)

cpdb
more/fewer disks
more/fewer CPUs

competing traffic for disk / CPU

R MIN RDISK RCPU,()=

RDISK

RDISK RFile1 SizeFile1
SizeFileALL
-------------------------------⋅ RFile2 SizeFile2

SizeFileALL
-------------------------------⋅ …+ +=

R
FileN DiskBW

TupleWidthN
--------------------------------=

SizeFilei Ni TupleWidthi⋅=

Ni

RDISK DiskBW
N1 N2 …+ +
SizeFileALL
-------------------------------⋅=

R
Columns

DISK
DiskBW

N1f1 N2f2 …+ +
SizeFileALL

---⋅=

Op1

with rate , which in turn is connected to an operator with rate
 and so on, the overall CPU rate is:

 (5)

The above formula resembles the formula for computing the
equivalent resistance of a circuit where resistors are connected in
parallel; we adopt the same notation (two parallel bars) and
rewrite (5) (this time including the rates for the various scanners):

 (6)

As an example, consider one operator processing 4 tuples/sec,
connected to an operator that processes 6 tuples/sec. The overall
rate of tuple production in the system is:

or 2.4 tuples/sec.

The rate of an operator is approximated as:

 (7)

where clock is the available cycles per second from the CPUs
(e.g., for our single-CPU machine, clock is 3.2 billion cycles per
second). is the total number of CPU instructions it takes the
operator to process one tuple. Note that we approximate the rate
by assuming 1 CPU cycle per instruction. If the actual ratio is
available, we can replace it in the above formula.

To compute the rate of a scanner, we have to take into consider-
ation the CPU-system time, the CPU-user time, and the time it
takes the memory to deliver tuples to the L2 cache. We treat
CPU-system and CPU-user as two different operators. Further, we
compute CPU-user rate as the minimum of the pure computation
rate and the rate the memory can provide tuples to the L2 cache.
The latter is equal to the memory bandwidth divided by the tuple
width. We compute memory bandwidth as: clock times how many
bytes arrive per CPU cycle (MemBytesCycle).

Therefore we can write the rate Scan of a scanner as:

(8)

Speedup of columns over rows. We are now ready to compute
the speedup of columns over rows by dividing the corresponding
rates (using (1), (3), (4), (6), (7) and (8)):

To derive the above formula we divided all members by DiskBW,
and replaced the following quantity:

cpdb (cycles per disk byte) combines into a single parameter the
available disk and CPU resources for a given configuration. It
shows how many (aggregate) CPU cycles elapse in the time it
takes the disks to sequentially deliver a byte of information. For
example, the machine used in this paper (one CPU, three disks) is
rated at 18 cpdb. By operating on a single disk, cpdb rating jumps
to 54.

Parameters such as competing traffic and number of disks/CPUs
can be modeled through cpdb rating. Since competing CPU traffic
fights for cycles, the cpdb rating for a given query drops. On the
other hand, competing disk traffic causes cpdb to increase. Look-
ing up trends in CPU [3] and disk8 speed, we find that, for a sin-
gle CPU over a single disk, cpdb has been slowly growing, from
10 in 1995, to 30 in 2005. With the advent of multicore chips, we
expect cpdb to grow faster. When calculating the cpdb rating of
an arbitrary configuration, note that disk bandwidth is limited by
the maximum bandwidth of the disk controllers.

We use the speedup formula to predict relative performance of
column systems over row systems for various configurations by
changing the cpdb rating. In disk-bound systems (when the disk
rate is lower than the CPU rate), column stores outperform row
stores by the same ratio as the total bytes selected over the total
size of files. In CPU-bound systems, either system can be faster,
depending on the cost of the scanners. In the previous section we
saw some conditions (low selectivity, narrow tuples) where row
stores outperform column stores. Note that a high-cost relational
operator lowers the CPU rate, and the difference between col-
umns and rows in a CPU-bound system becomes less noticeable.
The formula can also be used to examine whether a specific
query on a specific configuration is likely to be I/O or CPU
bound.

The graph shown in the introduction (Figure 2), is constructed
from the speedup formula, filling up actual CPU rates from our
experimental section. In that figure we use a 50% projection of
the attributes in the relation, and 10% selectivity. The graph
shows that row stores outperform column stores only in very lim-
ited settings.

6. RELATED WORK
The decomposition storage model (DSM) [8] was one of the first
proposed models for a column oriented system designed to
improve I/O by reducing the amount of data needed to be read off
disk. It also improves cache performance by maximizing inter-
record spatial locality [6]. DSM differs from the standard row-
store N-ary storage model (NSM) by decomposing a relation with
n attributes into n vertically partitioned tables, each containing
one column from the original relation and a column containing
TupleIDs used for tuple reconstruction. The DSM model attempts
to improve tuple reconstruction performance by maintaining a
clustered index on TupleID, however, complete tuple reconstruc-
tion remained slow. As a result, there have been a variety of opti-
mizations and hybrid NSM/DSM schemes proposed in
subsequent years: (a) partitioning of relations based on how often
attributes appear together in a query [9], (b) using different stor-
age models for different mirrors of a database, with queries that
perform well on NSM data or DSM data being sent to the appro-
priate mirror [19], (c) optimizing the choice of horizontal and ver-
tical partitioning given a database workload [2].

Op2
Op3 RCPU

1
RCPU
------------ 1

Op1
--------- 1

Op2
--------- 1

Op3
--------- …+ + +=

RCPU Op1 Op2 … Scan1 Scan2 …|| || || || ||=

Op1 Op2||
Op1 Op2⋅
Op1 Op2+
--------------------------=

Op clock
IOp

-------------=

IOp

Scan clock
Isystem
--------------- MIN clock

Iuser
------------- clock MemBytesCycle⋅

TupleWidth
---,

 ||=

Speedup

MIN
N1f1 N2f2 …+ +

SizeFileALL
--- cpdb 1

Iop
------ 1

IScanC
-------------- …|| ||

 ⋅,

MIN
N1 N2 …+ +
SizeFileALL
------------------------------- cpdb 1

Iop
------ 1

IScanR
-------------- …|| ||

 ⋅,

---=

cpdb clock
DiskBW
---------------------=

8. http://www.hitachigst.com/hdd/technolo/overview/chart16.html

Recently there has been a reemergence of pure vertically parti-
tioned column-oriented systems as modern computer architecture
trends favor the I/O and memory bandwidth efficiency that col-
umn-stores have to offer [7][21]. PAX [4] proposes a column-
based layout for the records within a database page, taking advan-
tage of the increased spatial locality to improve cache perfor-
mance, similarly to column-based stores. However, since PAX
does not change the actual contents of the page, I/O performance
is identical to that of a row-store. The Fates database system [20]
organizes data on the disk in a column-based fashion and relies
on clever data placement to minimize the seek and rotational
delays involved in retrieving data from multiple columns.

While it is generally accepted that generic row-stores are pre-
ferred for OLTP workloads, in this paper we complement recent
proposals by exploring the fundamental tradeoffs in column and
row oriented DBMS on read-mostly workloads. Ongoing work
[12] compares row- and column-based pages using the Shore
storage manager. The authors examine 100% selectivity and focus
on 100% projectivity, both of which are the least favorable work-
load for pipelined column scanners, as we showed earlier.

7. CONCLUSIONS
In this paper, we compare the performance of read-intensive col-
umn- and row-oriented database systems in a controlled imple-
mentation. We find that column stores, with appropriate
prefetching, can almost always make better use of disk bandwidth
than row-stores, but that under a limited number of situations,
their CPU performance is not as good. In particular, they do less
well when processing very narrow tuples, use long projection
lists, and apply non-selective predicates. We use our implementa-
tion to derive an analytical model that predicts query performance
with a particular disk and CPU configuration and find that current
architectural trends suggest column stores, even without other
advantages (such as the ability to operate directly on compressed
data [1] or vectorized processing [7]) will become an even more
attractive architecture with time. Hence, a column oriented data-
base seems to be an attractive design for future read-oriented
database systems.

8. ACKNOWLEDGMENTS
We thank David DeWitt, Mike Stonebraker, and the VLDB
reviewers for their helpful comments. This work was supported
by the National Science Foundation under Grants 0520032,
0448124, and 0325525.

9. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. “Integrating Com-

pression and Execution in Column-Oriented Database Sys-
tems.” In Proc. SIGMOD, 2006.

[2] S. Agrawal, V. R. Narasayya, B. Yang. “Integrating Vertical
and Horizontal Partitioning Into Automated Physical Data-
base Design.” In Proc. SIGMOD, 2004.

[3] A. Ailamaki. “Database Architecture for New Hardware.”
Tutorial. In Proc. VLDB, 2004.

[4] A. Ailamaki, D. J. DeWitt, et al. “Weaving Relations for
Cache Performance.” In Proc. VLDB, 2001.

[5] A. Ailamaki, D. J. DeWitt, at al. “DBMSs on a modern pro-
cessor: Where does time go?” In Proc. VLDB, 1999.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten. “Database
Architecture Optimized for the New Bottleneck: Memory
Access.” In Proc. VLDB, 1999.

[7] P. Boncz, M. Zukowski, and N. Nes. “MonetDB/X100:
Hyper-Pipelining Query Execution.” In Proc. CIDR, 2005.

[8] A. Copeland and S. Khoshafian. “A Decomposition Storage
Model.” In Proc. SIGMOD, 1985.

[9] D. W. Cornell and P. S. Yu. “An Effective Approach to Ver-
tical Partitioning for Physical Design of Relational Data-
bases.” In IEEE Transactions on Software Engineering
16(2): 248-258, 1990.

[10] J. Goldstein, R. Ramakrishnan, and U. Shaft. “Compressing
Relations and Indexes.” In Proc. ICDE, 1998.

[11] G. Graefe and L. D. Shapiro. “Data compression and data-
base performance.” In Proc. ACM/IEEE-CS Symposium on
Applied Computing, Kansas City, MO, 1991.

[12] A. Halverson, J. L. Beckmann, J. F. Naughton, and D. J.
DeWitt. “A Comparison of C-Store and Row-Store in a
Common Framework.” Technical Report, University of Wis-
consin-Madison, Department of Computer Sciences,
TR1566, 2006.

[13] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. “QPipe:
A Simultaneously Pipelined Relational Query Engine.” In
Proc. SIGMOD, 2005.

[14] J. L. Hennessy, D. A. Patterson. “Computer Architecture: A
Quantitative Approach.” 2nd ed, Morgan-Kaufmann, 1996.

[15] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W.
E. Baker. “Performance Characterization of a Quad Pentium
Pro SMP Using OLTP Workloads.” In Proc. ISCA-25, 1998.

[16] P. J. Mucci, S. Browne, C. Deane, and G. Ho. “PAPI: A Por-
table Interface to Hardware Performance Counters.” In Proc.
Department of Defense HPCMP Users Group Conference,
Monterey, CA, June 1999.

[17] S. Padmanabhan, T. Malkemus, R. Agarwal, and A. Jhing-
ran. “Block Oriented Processing of Relational Database
Operations in Modern Computer Architectures.” In Proc.
ICDE, 2001.

[18] M. Poss and D. Potapov. “Data Compression in Oracle.” In
Proc. VLDB, 2003.

[19] R. Ramamurthy, D. J. DeWitt, and Q. Su. “A Case for Frac-
tured Mirrors.” In Proc. VLDB, 2002.

[20] M. Shao, J. Schindler, S. W. Schlosser, A. Ailamaki, and G.
R. Ganger. “Clotho: Decoupling memory page layout from
storage organization.” In Proc. VLDB, 2004.

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherni-
ack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O'Neil, P.
E. O'Neil, A. Rasin, N. Tran, and S. B. Zdonik. “C-Store: A
Column-oriented DBMS.” In Proc. VLDB, 2005.

[22] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte.
“The Implementation and Performance of Compressed Data-
bases.” In SIGMOD Rec., 29(3):55–67, Sept. 2000.

[23] J. Zhou and K. A. Ross. “Buffering Database Operations for
Enhanced Instruction Cache Performance.” In Proc. SIG-
MOD, 2004.

[24] M. Zukowski, S. Heman, N. Nes, and P. Boncz. “Super-Sca-
lar RAM-CPU Cache Compression.” In Proc. ICDE, 2006.

