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Abstract
Consider the following game between a worm and an alert1 over a network of n nodes.

Initially, no nodes are infected or alerted and each node in the network is a special detector
node independently with small but constant probability. The game starts with a single node
becoming infected. In every round thereafter, every infected node sends out a constant number
of worms to other nodes in the population, and every alerted node sends out a constant number
of alerts. Nodes in the network change state according to the following three rules: 1) If a worm
is received by a node that is not a detector and is not alerted, that node becomes infected; 2)
If a worm is received by a node that is a detector, that node becomes alerted; 3) If an alert is
received by a node that is not infected, that node becomes alerted.

We make two assumptions about this game. First, that an infected node can send worm
messages to any other node in the network but, in contrast, an alerted node can send alert
messages only through a previously determined, constant degree overlay network. Second, we
assume that the infected nodes are intelligent, coordinated and essentially omniscient. In other
words, the infected nodes know everything except for which nodes are detectors and the alerted
nodes’ random coin flips i.e. they know the topology of the overlay network used by the alerts;
which nodes are alerted and which are infected at any time; where alerts and worms are being
sent; the overall strategy used by the alerted nodes; etc. The alerted nodes are assumed to know
nothing about which other nodes are infected or alerted, where alerts or worms are being sent,
or the strategy used by the infected nodes.

Is there a strategy for the alerted nodes that ensures only a vanishingly small fraction of the
nodes become infected, no matter what strategy is used by the infected nodes? Surprisingly, the
answer is yes. In particular, we prove that a simple strategy achieves this result with probability
approaching 1 provided that the overlay network has good node expansion. Specifically, this
result holds if d ≥ α and α

β(1−γ) >
2d
c , where α and β represent the rate of the spread of the

alert and worm respectively; γ is the probability that a node is a detector node; d is the degree
of the overlay network; and c is the node expansion of the overlay network. Next, we give
empirical results that suggest that our algorithms for the alert may be useful in current large-
scale networks. Finally, we show that if the overlay network has poor expansion, in particular
if β(1− γ) > d, then the worm will likely infect almost all of the non-detector nodes.
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1 Introduction

Attacks on the Internet are characterized by several alarming trends: (i) increases in frequency:
large-scale attacks are approximately doubling every year [22]; (ii) increases in speed: the recent
slammer worm infected 90% of vulnerable hosts within 10 minutes [17]; and (iii) increases in severity:
the slammer worm had many unforeseen consequences including failures of 911 emergency data-
entry terminals, network outages, and canceled airline flights, [17, 7, 11, 10]. In addition, there has
been a broadening of motivations for attack to include extortion [23, 1]; phishing [8, 24, 12]; sending
anonymous spam [15, 13]; and political reasons [18, 19]. Modern computer worms simply propagate
too quickly for human detection. Since attacks are now occuring at a speed which prevents direct
human intervention, there is a need to develop automated defenses. Since the financial, social and
political stakes are so high, we need defenses which are provably good against a worst case attacks.

A promising recent result in this direction is the development of self certifying alerts(SCAs)[6].
An SCA is a short, machine verifiable, automatically generated proof that a security flaw exists.
Because an SCA is short, it is easily propagated through a network. Because an SCA is efficiently
verifiable, false positives are eliminated. SCAs are generated by dedicated machines called detectors.
Detectors run instrumented software to automatically detect a worm, determine which vulnerability
the worm exploits, and then generate an SCA for the worm, i.e. a short proof that the vulnerability
the worm exploits does in fact exist. After receiving and verifying an SCA, a machine can generate
a filter that blocks infection by analyzing the exploit which the SCA proves exists. Because the
SCA focuses on the security flaw exploited by a worm, rather than the textual content of the worm,
SCAs can easily be created for polymorphic worms. Recent empirical results suggest that SCAs
can be generated, checked and deployed efficiently. For example, the Vigilante system [5] takes 18
milliseconds to generate an SCA for the Slammer worm, the resulting SCA is 457 bytes long, the
time to verify this SCA is 10 milliseconds, and the time to create a filter from the verified SCA is
24 milliseconds. These times for SCA generation, verification and filter creation are on the same
scale as the time it takes a worm to infect a machine. Vigilante performs similarly for two other
Internet worms, Code Red and Blaster.

Distribution of alerts in the Vigilante system is performed by the Pastry[20] peer-to-peer overlay
network. It is shown empirically that a very small fraction of special detector nodes is enough to
ensure that a worm infects no more than 5% of the vulnerable population. While these initial
results are promising, several critical problems remain. First, Vigilante requires that the nodes
participating in the overlay network all be resistant to infection. Second, Vigilante requires that
the topology of the overlay network be hidden from the worm. These two assumptions may hold
true for an overlay network owned and operated by a single company, but seem unlikely to hold
for a large-scale open source peer-to-peer network. Finally, while the Vigilante systems performs
well empirically against currently known worms, the system has no known theoretical guarantees
against all worms. In this paper, we focus exclusively on the problem of distribution of alerts
through an overlay network and address these three problems.

1.1 Our Model
We model our problem of alert distribution as a game between a worm and an alert over a
synchronous network. Initially, no nodes are infected or alerted and each node in the network
is a special detector node independently with fixed probability γ. The game starts with a single
node becoming infected. In every round thereafter, every infected node sends out β worms to other
nodes in the population, and every alerted node sends out α alerts for fixed constants α and β.
Nodes in the network change state according to the following three rules: 1) If a worm is received
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by a node that is not a detector and is not alerted, that node becomes infected; 2) If a worm is
received by a node that is a detector, it is not infected, instead it becomes alerted; 3) If an alert is
received by a node that is not infected, that node becomes alerted.

We make two assumptions about this game. First, an infected node can send worm messages
to any other node in the network but, in contrast, an alerted node can send alert messages only
through a previously determined, constant degree overlay network. In other words, the alert-
spreading algorithm is “polite” in the sense that it does not bombard arbitrary nodes with alerts
unless it knows that they are interested in receiving them. Since the worm is not required to be
polite, it is not constrained by the overlay network, although a particularly sophisticated worm
may exploit the structure of the overlay network for its own purposes. An edge in this overlay
network represents an agreement between two nodes to accept SCAs from each other. Second, we
assume that the infected nodes are intelligent, coordinated and essentially omniscient. In other
words, the infected nodes know everything except for which nodes are detectors and the alerted
nodes’ random coin flips i.e. they know the topology of the overlay network used by the alerts;
which nodes are alerted and which are infected at any time; where alerts and worms are being sent;
the overall strategy used by the alerted nodes; etc. Moreover, the worm is unconstrained in which
nodes it attacks. For example, it could always try to infect nodes which have never been infected
before. The alerted nodes are assumed to know nothing about which other nodes are infected or
alerted, where alerts or worms are being sent, or the strategy used by the infected nodes. Also the
number of messages an alerted node can send is constrained by the degree of the graph.

1.2 Results
In our results, we make use of a d-regular overlay network with node expansion c. As a concrete
example, a random d-regular graph has node expansion c = d/5 − 1 with high probability2.
Throughout this paper, we use the phrase with high probability (w.h.p) to mean with probability
at least 1− 1/nε for some fixed ε > 0. Let RANDOM be the algorithm that has each alerted node
in each round send out alerts to α nodes selected uniformly at random without replacement from
its neighbors in the overlay. Our main theoretical results are stated below as the following two
theorems which are proven in Sections 2 and 4 respectively.

Theorem 2.3: If d ≥ α and α
β(1−γ) >

2d
c , then the algorithm RANDOM ensures that, w.h.p, only

o(n) nodes are ever infected.

Theorem 4.3: If the overlay network has bounded degree d and β(1−γ) > d, then any alert algorithm
in expectation will save a fraction of non-detector nodes that approaches 0 as n gets large

Our empirical results, presented in Section 3, show that if the overlay network is a d-regular
random graph, as n grows large, the algorithm RANDOM saves an increasingly large fraction of
the nodes against a worm that spreads uniformly at random. For example, for n = 106, d = 100,
β = 1, α = 5 and γ = .02, we were able to save 99% of the nodes on average.

1.3 Other Related Work
Several approaches for generating self-certifying alerts have been proposed recently (see e.g. [9, 14,
3], but few systems have been proposed for disseminating those alerts. The Vigilante system and its
limitations have been discussed above. Zhou et al. [16] propose a system for distributing alerts over
a network but their system is focused on confronting worms that can spread only through the same
overlay network through which the alert is spreading. Vojnovic and Ganesh [25] and Shakkottai

2see [4] for an algorithm for sampling from random d-regular overlay networks in a distributed manner
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and Srikant [21] perform exhaustive analytical and empirical studies of the effectiveness of different
types of alert dissemination. However, their work focuses only on worms that spread uniformly at
random in the network. In contrast, our work considers worms that may use smarter dissemination
strategies.

2 Alert versus worm in an expanding overlay network

In this section, we focus on d-regular graphs for our overlay network. We show that for a suitable
choice of parameters and a particular type of overlay network, we are able to save most of the
nodes from getting infected with high probability. More precisely, at the end of the process only
o(n) nodes get infected, and all other nodes get alerted.

The essential idea is that we want the long-run growth rate of the set of alerted nodes to
be higher than the rate for the infected nodes. The rate for infected nodes is easy to calculate;
assuming an optimal choice of targets, each infected node infects on average an additional β(1− γ)
nodes per round. The rate for alerted nodes is trickier, as alerted nodes are limited by the structure
of the overlay network. But we can get a lower bound on the expected rate during the early parts
of the protocol by observing that A alerted nodes will between them have at most dA neighbors, of
which at least cA will not already be alerted, where c is the expansion parameter of the network.
It follows that each alerted node will attempt to alert on average at least α(c/d) unalerted nodes
at each step. In the absence of the worm, this would give the growth rate of the alerted nodes;
with M infected nodes, we must subtract these from the pool of new alerted nodes (using the
simplifying assumption that the worm successfully concentrates itself on the boundary of the set
A). Fortunately these lost infected nodes are compensated for somewhat by the boost of γβM new
alerted nodes from triggered detectors.

This overview ignores two important details. Because we want a high-probability bound, it is
not enough simply to consider expected growth rates. And because the expansion factor applies
only for sets with n/2 or fewer elements, we must consider separately the case where the set of
alerted nodes is larger. We handle both problems by dividing the execution into three phases.
Phase I starts with a single infected node and ends when lnn worm messages have been received by
nodes in the network. During this phase we ignore the spread of alerts and content ourselves with
getting only the Θ(γ lnn) alerted nodes that result from successful detections. Phase II starts at the
end of of Phase I. During this phase we use the fact that the number of infected and alerted nodes
are both Ω(log n) to show that both the worm and the SCA propagate at close to the expected
rate with high probability; the key point is that when the populations of both are large enough,
Chernoff bounds apply to the increases. Phase II ends when n/d2 nodes have been alerted by the
SCA; at this point we can no longer rely on the expansion properties of the network and must
resort to a different analysis. Note that there are strong expansion properties only until the end of
Phase II. In Phase III, we first show that the number of alerted nodes first increases to n/2 in a
constant number of steps; we show this by exploiting weak expansion properties of random regular
graphs for sets of size between n/d2 and n/2. Then, we show that the number of alerted nodes
increases to n− o(n) in O(log log n) steps. We show this by using the expansion properties of the
set of nodes that are neither alerted nor infected.

In the remainder of this section, all lemmas that bound a random variable’s value for x rounds
hold with probability greater than or equal to 1− x/nc for some fixed constant c > 0. Also for all
the remaining lemma’s in this section, we assume d ≥ α.
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2.1 Phase I
Let Z be the set of nodes that receive the first lnn worm messages; i.e., the set of nodes that receive
worm messages in Phase I.

We write Ai for the number of nodes alerted at time t, counting from the end of Phase I; thus
A0 is the number of nodes alerted in Z.
Lemma 2.1. At the end of Phase I, (a) the expected number of alerted nodes E[A0] is at least
γ lnn; and (b) for any c > 0, there exists a constant δ ≤ 1/2, such that with probability greater
than 1− 1/nc, (1− δ) E[A0] ≤ A0

Proof. For each v ∈ Z, let Xv be the indicator random variable for the event that v is alerted
in Phase I and let Yv be the event that v is a detector node. While the Xv are not necessarily
independent, we do have that Xv ≥ Yv for all v, and thus A0 =

∑
v∈Z Xv ≥

∑
v∈Z Yv. It follows

that E[A0] ≥
∑

E[Yv] = γ|Z| = γ lnn. The second part is an immediate application of Chernoff
bounds.

It follows that A0 is Θ(lnn) with high probability.

2.2 Analysis of Phase II
For the second phase, begin by comparing the number of infected nodes in the actual process with
the number of infected nodes in an infinite graph where the SCA has no effect on the spread of the
worm. The process in the latter graph has the advantage of being much easier to analyze; and, as
we show, it gives an upper bound on the outcome of the original process.

Formally, let Mt be the number of infected nodes at time t in the original graph, where as before
we count rounds from the start of Phase II. Let M ′t be the number of infected nodes at time t in an
infinite graph under the assumptions that (a) no alert messages are ever sent out by the detector
nodes, even though they are alerted by worm messages, and (b) each infected node spreads the
worm to β unique, previously uninfected nodes in the network at each round. Where no confusion
will result, we also use Mt and M ′t to refer to the set of nodes infected in each case.

Observe that the assumptions for M ′t only increase the number of infected nodes; so that M ′t
stochastically dominates Mt in the sense that ∀ k ≥ 0, Pr(M ′t ≥ k) ≥ Pr(Mt ≥ k), no matter what
strategy the worm applies in the original graph.

Let M0 and M ′0 count the nodes infected by the end of Phase I, in their respective simulations.
From Lemma 2.1, we have that M0 ≤ |Z| −A0 ≤ lnn.
Lemma 2.2. For all t ≥ 0, the expected value of the random variable M ′t at time t is equal to
(1 + β(1− γ))tM0.

Proof. By our assumption about the number of messages sent by the infected nodes and the fraction
of detector nodes, the expected number of new infected nodes is β(1 − γ) E[M ′t ], where (1 − γ) is
the probability that a given node is not a detector node. Hence the recurrence relation for E[M ′t ]
is E[M ′t ]=(1 + β(1− γ)) E[M ′t−1]. Hence E[M ′t ] = (1 + β(1− γ))tM0.

We now show that M ′t remains closely bounded around its expected value, thus giving an upper
bound on the variable Mt. The proof of the following lemma is somewhat technical; it is included
in the Appendix for completeness.
Lemma 2.3. For any c > 0 and fixed β and γ, there exists a constant k such that, for sufficiently
large n and any t, it holds that M ′s ≤ kE[M ′s] for all s ≤ t

We now turn to alerted nodes. Let At be the number of nodes that are in the alerted state at
time t. For any set of vertices A, let N(A) be the set of neighbours of nodes in A in the overlay
network that are not themselves in A. Let the random variable Zt be equal to the number of nodes
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in N(At−1) that receive an alert message at time step t.
Lemma 2.4. For all t ≥ 0, At ≥ At−1 + Zt- M ′t
Proof. Out of the unalerted nodes which receive alert messages, at most M ′t−1 nodes could be
infected nodes. Hence the lower bound result holds true.
Lemma 2.5. For all t ≥ 0, E(Zt) ≥ (cα/d)At−1.

Proof. Let St−1 be the set of nodes that are alerted at time t− 1 and let n′ = |N(St−1)|. Number
the nodes in N(St−1) from 1 to n′. Let Xi,t = 1 if the i-th such node is alerted at time step
t for the first time, and 0 otherwise. Then Zt ≥

∑n′

i=1 T (i, t). By linearity of expectation,
E[Zt] ≥

∑n′

i=1 E[Xi,t]. Observe that each node counted in At−1 sends an alert to fixed neigbhor
with probability α/d; it follows that for each node i in N(St−1), Pr[Xi,t = 1] ≥ α/d. We thus have
E[Zt] ≥ n′α/d ≥ (cα/d)At−1, where c is the expansion factor.
Lemma 2.6. For all t ≥ 0 At ≥ At−1 + (1/2)E(Zt)−M ′t.
Proof. We now imagine that the alerted nodes use the following process to decide where to send
out their α alert messages. They randomly permute all of their neighbors and then send out
alerts to the first alpha nodes in this random permutation. Imagine further that some alerted
node j determines its random permutation by assigning a random variable Xj,i to each node i
that is a neighbor of j. This random variable takes on a value uniformly at random in the real
interval between 0 and 1. The nodes that the alert is sent to are thus determined by finding the
α random variables among the d whose outcomes are closest to 0. For each node i and j, there
is a separate such random Xj,i and we note that these random variables are all independent. Let
f be a function such that Zt = f(X1,1, X1,2, . . . , Xm,d). We note that f satisfies the Lipchitz
condition, i.e |f(X1,1, X1,2, . . . , Xl,p, . . . , Xm,d)− f(X1,1, X1,2, . . . , X

′
l,p, . . . , Xm,d)| ≤ 1. This is the

case since a change in the outcome of a single Xi,j will at most cause one new node to receive an
alert and one old node to not receive an alert. Hence we can use Azuma’s Inequality to say that Pr(

Pr(|Zt −E(Zt)| ≥ (1/2)E(Zt) ≤ 2e
− (1/4)E(Zt)

2

2At−1d . Since by the previous lemma E(Zt) ≥ (cα/d)At−1,

the right hand side is less than or equal to 2e
− ((cα/d)At−1)2

8At−1d which is O(1/nk
′
) for some constant

k′ > 0 since At−1 is θ(lnn). The lemma then follows by a simple Union bound.
Let k be the multiplicative constant of the expectation, in the statement of lemma 2.3.
Lemma 2.7. For all t ≥ 0, At ≥ (1 + (αc)/(2d))At−1 − k(1 + β(1− γ))t lnn
Proof. From Lemma 2.5 and Lemma 2.6 we get that the number of nodes alerted at round t follows
the inequality At ≥ At−1 + (1/2)((cα/d)At−1) −M ′t . Hence At ≥ (1 + (αc)/(2d))At−1 −M ′t . By
Lemma 2.2 and Lemma 2.3 we know that M ′t is no more than k(1+β(1−γ))t lnn for t rounds, with
probability at least 1-t/nc. Hence replacing the upper bound value of Mt in the above expression
yields the inequality At ≥ (1 + (αc)/(2d))At−1 − k(1 + β(1− γ))t lnn.

Let p = (1 + (αc)/(2d)) , q = (1 + β(1− γ)). Hence the recurrence relation as given in the last
lemma is At ≥ pAt−1 − kqt.
Lemma 2.8. For all t ≥ 0, At ≥ ptA0 − k(qt + pqt−1 + . . . pt)
Proof. Proof is by induction on t. It is easy to see that the base case holds. Assume that the claim
holds for all rounds less than or equal to t-1. Hence At ≥ p(pt−1A0 − k(qt−1 + . . . pt−1)) − kqt.
Expanding the algebraic expression, we get the expression in the claim.

Let κ = p/q. Then At ≥ pt lnn− ptk(1 + 1/κ+ . . . (1/κ)t). Or

(2.1) At ≥ pt(lnn− k(1 + 1/κ+ . . . (1/κ)t))
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2.3 Analysis of Phase III
In this phase, we make use of a graph with two types of expansion. We show below that a random
d regular graph has the types of expansion that we need. The proof of the following two theorems
are in the appendix.
Theorem 2.1. Let d ≥ 30 and ε > 0, then with high probability, a random d-regular graph G has
the following properties

1. For any set S such that ε log n ≤ |S| ≤ n
d2

, |N(S)| ≥ |S|(d5 − 1)

2. For any set S such that n
d2
≤ |S| ≤ n

2 , |N(S)| ≥ |S|2

The following theorem assumes that the overlay network has expansion properties as given in
the Theorem 2.1.
Theorem 2.2. Assume that at some point, the number of alerted nodes is at least n/d2 and that
the number of infected nodes is no more than n1−ε for some ε > 0. Then w.h.p, at the end of the
process, all but o(n) nodes will be alerted.

The next theorem is the main result of this section.
Theorem 2.3. If d ≥ α and α

β(1−γ) >
2d
c , then the algorithm RANDOM ensures that, w.h.p, only

o(n) nodes are ever infected.
Proof. Since α

β(1−γ) >
2d
c , therefore αc

2d > β(1− γ). Hence 1+αc
2d > 1 + β(1− γ), or p/q > 1. From

equation 2.1 it is clear that At ≥ ptlnn− 3k. Hence At ≥ pt. Hence for t ≥ logpn, At ≥ Ω(n).
Hence in Phase II, the process cannot last for more that logp(n) steps. Hence from Lemma 2.3,
we know that Mlogp(n) ≤ k(1 + β(1− γ))logp(n) with probability greater than 1− logp(n)/nc. Hence
Mlogpn < k qlogp(n). Since p > q, clearly Mt = o(n) at the end of Phase II. Further it is O(n1−ε).
Now, from theorem 2.2 , we know that if we have o(n1−ε) infected nodes at the end of Phase II ,
we would have at most o(n) infected nodes at the end of the Phase III.

3 Empirical Results

We simulated the spread of a worm and an alert through a network to empirically determine
the fraction of nodes saved.3 We performed our experiment using a random d regular graph as
the overlay network and set each node in the network to be a detector node independently with
probability γ. In addition, we fixed the worm strategy such that each infected node, in each round,
sent out the worm to β unique nodes selected uniformly at random, and we fixed the alert strategy
such that each alerted node sent out the alert to α unique nodes selected uniformly at random
among its neighbors in the overlay network. We note that the worm strategy we used in these
experiments is not necessarily the best possible worm strategy, but we selected this strategy for
concreteness. Our d regular random graph was created using the configuration model method
proposed in [2].

In each round we iterate through the set of vertices, allowing each infected or alerted node to
send the worm or alert to the appropriate number of other nodes in the network. There are several
possible strategies for resolving the status of a virgin (i.e. neither alerted or infected) node that gets
both a worm message and an alert message in the same round. In our previous theoretical analysis,
we assumed that if a node receives just one worm message it becomes infected. However, in our
experiments, we used the somewhat more relaxed and realistic assumption that the probability that

3All of the code necessary to replicate these experiments is available at http://www.cs.unm.edu/~navin/worm.html
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(a) (b)

Figure 1: (a) log of the network size versus fraction of nodes saved (b) contour plot of α versus γ
required to save 99%, 95% and 90% of the nodes.

the node gets infected equals the number of worm messages received divided by the total number
of messages received, and that the probability the node becomes alerted is 1 minus this quantity.
We note that this assumption is equivalent to assuming that the messages all arrive in the node’s
message queue according to some random permutation.

Figure 1(a) illustrates our results when γ = 0.1, β = 1, α = 1 and d = 10, where we varyed
the value of n from 210 to 220, multiplying at each step by 2. To remove noise in the simulation,
each data point represents the average over 100 trials. The best result we obtained was saving only
45% of the nodes for n = 220. Even though this final data point is somewhat disappointing, we do
observe a clear increasing trend in the fraction saved as n increases.

Given these results, it seems for current network sizes, there is not much hope for the alert
when α = β. We thus next considered the case where α > β. In practice, this condition may
hold since the alerts are traveling through a predetermined overlay network and a technique such
as throttling can ensure that alert messages received through the overlay are given priority over
types of messages. To explore this scenario, we conducted experiments where we fixed β at 1. We
then determined necessary values of γ for each α ranging from 2 to 10, that would ensure that we
save 90%, 95% and 99% of the nodes (Figure 1(b)). The values of n and d used in the experiment
were 106 and 100 respectively. The results of these experiments were much more encouraging. In
particular, for α = 2, we were able to save 99% of the nodes with γ = .14. When α = 5, we required
a γ of .018 to save 99% of the nodes, and when α = 10, we required a γ of only .001 to save 99% of
the nodes. These results suggest that our algorithms for spreading alerts might be most effective
in conjunction with other techniques (like throttling) that would enable the alerts to spread more
quickly than the worm.

4 Is expansion necessary?

In this section, we consider what happens in graphs with poor expansion properties. In particular,
we look at the growth rate of the number of nodes at distance k from some initial point of infection,
and show that if this growth rate is small, the worm successfully infects almost every node that
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does not detect it itself.
For the purposes of this lower bound, we adopt a simplified deterministic version of the model.

We proceed in a sequence of rounds starting from the time at which the worm is first detected, and
think of the graph as organized in layers V0, V1, . . . , where V0 contains the initial a0 alerted and
b0 infected nodes, and each Vi is the set of nodes at distance i from this initial set.

We ignore the structure of the interconnections between layers; instead, we allow an SCA that
has already alerted ai nodes in layer Vi to alert any αai nodes in layer Vi+1 in one round. Because
the worm can spread without regard to the layer structure, we assume that it can attempt to infect
these nodes first; a round thus consists of the worm attempting to infect nodes in layer Vi+1 followed
by the SCA attempting to alert any nodes that are left.

Let bi be the total number of infected nodes in layer i after round i and let Bi =
∑i

j=0 be the
total number of infected nodes after round i without regard to what layer they are in. The worm
can attempt to infect up to βBi nodes in round i+ 1; of these, γβBi will trigger detectors.

If we similarly let ai be the number of alerted nodes in layer Vi after round i, then the SCA
can attempt to alert αai nodes in layer Vi+1. But because the worm goes first, there may not be
any nodes left to alert.

The overall pattern in round i+ 1 is thus:

1. The worm attempts to infect up to βBi nodes in layer Vi+1, of which (1 − γ)βBi become
infected and γβBi become alerted.

2. The SCA spreads from layer Vi to layer Vi+1, yielding an additional min(αai, |Vi+1| − βBi)
alerted nodes.

This gives us the recurrence

bi+1 = (1− γ) min (|Vi+1|, βBi)
ai+1 = γmin (|Vi+1|, βBi) + min (αai, |Vi+1| − βBi)

Theorem 4.1. Define ai, bi, and Vi as above. Let |V0|, |V1|, . . . be such that, for all i ≥ 0,

|Vi+1| ≤ β(1− γ)
i∑

j=0

|Vi|.

Let b0 ≥ (1− γ)|V0|. Then bi ≥ (1− γ)|Vi| for all i.
Proof. Straightforward induction on i. The base case is given. For the induction step suppose the
claim holds for i. Then we have

bi+1 = (1− γ) min (|Vi+1|, βBi)

= (1− γ) min

|Vi+1|, β
i∑

j=0

bj


≥ (1− γ) min

|Vi+1|, β(1− γ)
i∑

j=0

|Vj |


= (1− γ)|Vi+1|.
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In other words, if the growth rate of the graph is small enough and the initial set of alerted
nodes is small enough, then the SCA has no effect beyond the original detection sites.

For a large enough graph, a higher initial growth rate or lower initial worm numbers can be
compensated for in the limit. For simplicity, we consider an infinitely large graph that is again
organized into layers V0, V1, . . . as above.
Theorem 4.2. Let ai, bi, Vi be as in Theorem 4.1. Let b0 > 0 and let

lim sup
i→∞

|Vi+1|∑i
j=0 |Vi|

< (1− β)γ.(4.2)

Suppose further that |Vi+1| ≥ |Vi| for all i. Then

lim
i→∞

bi
|Vi|

= (1− γ).

Proof. We assume that α is sufficiently large that at the end of round i, any node in layer i that is
not infected is alerted. This assumption only hurts the worm, so if the assumption is violated the
result only improves.

From (4.2), there exists some ε, i0 such that for all i > i0, |Vi+1| ≤ (1 − ε)(1 − γ)β
∑i

j=0 |Vj |.
Let ri = Bi/

∑i
j=0 |Vj | and compute, for i > i0,

bi+1 = (1− γ) min (|Vi+1|, βBi)

= (1− γ) min

|Vi+1|, βri
i∑

j=0

|Vi|


= min

(1− γ)|Vi+1|, riβ(1− γ)
i∑

j=0

|Vi|


≥ min

(
(1− γ)|Vi+1|,

ri
1− ε

|Vi+1|
)

= min
(

1− γ, ri
1− ε

)
|Vi+1|.

Unless ri = 1 − γ, we expect bi+1/|Vi+1| to be larger than ri; in particular we have
bi+1/|Vi+1| ≥ min((1− γ), (1 + ε)ri). The new ratio ri+1 is a weighted average of ri and bi+1/Vi+1.
Under the assumption that |Vi| is nondecreasing, the weight on the second term is at least 1/(i+1).
Thus we have

ri+1 ≥
i

i+ 1
ri +

min(1− γ, εri)
i+ 1

= ri +
min((1− γ)− ri, εri)

i+ 1
.

Observe that the first term in the minimum is decreasing and the second increasing. As long
as εri < (1 − γ)ri, we have ri+1 ≥ ri

ε
i+1 . So ri+k ≥ ri

(
1 + ε

∑k−1
j=i

1
j+1

)
; as the series diverges,

eventually ri+k must be large enough that the first term takes over. But then let si = (1− γ)− ri,
and compute si+1 = (1 − γ) − ri+1 ≤ si − si

i+1 = si
i
i+1 , from which it follows via a telescoping

product that si+k ≤ si i
i+k , which goes to zero in the limit.
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The proof of the following theorem follows directly from the above.
Theorem 4.3. For a graph with bounded degree d, we have |Vi+1| ≤ d

∑i
j=1 |Vj | + 1. So if

(1− γ)β > d we expect almost no non-detector nodes to be alerted.

5 Conclusion and Future Work

We have described simple distributed algorithms for spreading alert messages through a network
during a worm attack and have proven that these algorithms protect all but a vanishingly small
fraction of the network provided that the alerts spread through an overlay network with sufficiently
good node expansion. Our algorithms are provably good no matter what strategy the worm uses
to spread through the network. We have demonstrated empirically that these algorithms work
effectively against a randomly spreading worm under conditions that may be reasonable for modern
computer networks. Finally, we have shown that if the overlay network has poor expansion, then
the worm will likely infect almost all of the non-detector nodes in the network. Many open problems
remain including (1) tightening the upper and lower-bounds for the expansion needed in the overlay
network to save almost all of the nodes; (2) developing other models for the spread of a dynamic
process and its inhibitor over a network and finding provably good strategies in these models; and
(3) further empirical study to determine the efficacy of deploying these algorithms in a real overlay
network.
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Appendix

We now present the proofs of some of our more technical lemmas and theorems. The lemma and
theorem statements are presented here again for convenience.

Lemma 2.3: For any c > 0 and fixed β and γ, there exists a constant d such that, for sufficiently
large n and any t, it holds that M ′s ≤ dE[M ′s] for all s ≤ t with probability at least 1− tn−c.
Proof. We prove the bound for M ′t , and the bound for Mt follows from the fact that M ′t dominates
Mt.

Let St = min(n −M ′t−1, βM
′
t−1) be the number of nodes that receive the worm message at

step t, assuming that no alert messages are ever sent. Let X(v, t) = 1 if node v becomes infected
for the first time at time t, 0 otherwise. Then for each v in St, Pr[X(v, t) = 1] = 1 − γ. Define
Yt = M ′t − M ′t−1, or the number of bad nodes that have been infected at time step t. Clearly
Yt = Σi∈StX(i, t), and thus (conditioned on St) Yt has a binomial distribution with expectation
St(1− γ) and variance Stγ(1− γ).

Fix some c′ > 0; from Chernoff’s inequality, there exists a constant a such that Pr[Yt >
St(1− γ) + a

√
Stγ(1− γ) log n] < n−c.

So with probability at least 1− n−c, we have

M ′t = M ′t−1 + Yt

≤M ′t−1 + St(1− γ) + a
√
Stγ(1− γ) log n

= M ′t−1(1 + β(1− γ)) + a
√
M ′t−1βγ(1− γ) log n.(5.3)

Observe that the bound (5.3) is an increasing function in M ′t−1. It is thus maximized by
maximizing M ′t−1, and having an upper bound on M ′t−1 is sufficient to get a (high-probability)
upper bound on Mt.

We now proceed by induction on t. Our goal is to show that, with probability at least 1− tn−c,
for all s ≤ t,

M ′s ≤M0(1 + β(1− γ))s ·
s−1∏
i=0

(
1 +

b√
(1 + β(1− γ))i

)
,(5.4)

where b = a
√
βγ(1−γ)

1+β(1−γ) = O(1). Note that the first two factors give the expected value of M ′t from
Lemma 2.2; the product arises from the error term in (5.3). The base case is t = 0, where M0 ≤M0

with probability 1.
Now suppose that (5.4) holds with probability at least 1 − (t − 1)n−c for t − 1; we wish

to show that the probability that it suddenly fails for t is at most n−c. First divide (5.4) by

12



E[M ′t |M ′t−1] = M ′t−1(1 + βγ(1− γ)) to get

M ′t
E[M ′t |M ′t−1]

≤ 1 +
a

1 + β(1− γ)
·

√
βγ(1− γ) log n

M ′t−1

= 1 + b

√
log n
M ′t−1

≤ 1 + b

√
log n

M0(1 + β(1− γ))t−1

= 1 + b

√
1

(1 + β(1− γ))t−1
,

where b is as in (5.4).
Now use the upper bound on M ′t−1 from the induction hypothesis to get, with probability at

least 1− tn−c,

M ′t ≤

(
M0(1 + β(1− γ))t−1 ·

t−2∏
i=0

(
1 +

b√
(1 + β(1− γ))i

))
(1 + β(1− γ))

(
1 + b

√
1

(1 + β(1− γ))t−1

)

= M0(1 + β(1− γ))t ·
t−1∏
i=0

(
1 +

b√
(1 + β(1− γ))i

)

as claimed.
To obtain the stated bound, take the logarithm of the correction term in (5.4) to get

s−1∑
i=0

log

(
1 +

b√
(1 + β(1− γ))i

)
≤

s−1∑
i=0

b√
(1 + β(1− γ))i

≤ b

1− 1√
(1+β(1−γ))

= O(1).

Since the constant does not depend on s, we have M ′s ≤M0(1 + β(1− γ))seO(1) = dE[M ′s] for
all s ≤ t with probability at least 1− tn−c.
Theorem 2.1: Let d ≥ 30 and ε > 0, then with high probability, a random d-regular graph G has the
following properties

1. For any set S such that ε log n ≤ |S| ≤ n
d2

, |N(S)| ≥ |S|(d5 − 1)

2. For any set S such that n
d2
≤ |S| ≤ n

2 , |N(S)| ≥ |S|2
Proof. Recall the following procedure for constructing a graph G that is a random d regular graph
over n nodes. We create a bipartite graph with n nodes of G on the left hand side L and copies
of these n nodes of G on the right hand side R. Now assume that we add edges to this graph
by finding d/2 random perfect matchings (permutations) over n. Finally if merge each node in L
with its copy in R, keeping all edges incident to either the node or its copy, we obtain a random d
regular graph over n nodes.
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We now analyze the properties of a graph created according to this process. Let S ⊆ L be such
that s = |S| ≤ α

n . For fixed S and T , let XS,T denote the event that all edges from the set S go

to the set T. Therefore Probability of XS,T is no more than
(
t
n

)sd/2, where t=—T—. To see this,
order the edges incident to S and note that the probability that the first of these edges falls in T
is t/n . Then given that this first edge falls in T , the probability that the second edges falls in T
is t−1

n−1 ≤
t
n and so forth. Let Xs be the event that all edges from any set S of size s go to any set

T of size no more cs. We can bound this probability as follows.

Pr(Xs) ≤
(
n

s

)(
n

cs

)(cs
n

)ds/2
≤

(ne
s

)s (ne
cs

)cs (cs
n

)ds/2
≤

[( s
n

)d/2−c−1
e1+ccd/2−c

]s

Simplify for the fact that s ≤ 1
d2
n we have

Pr(Xs) ≤

[(
1
d2

)d/2−c−1

e1+ccd/2−c

]s
≤

[( c
d2

)d/2
(d2e)c+1

]s
Setting c to be d/5, we get that

Pr(Xs) ≤

[(
1
5d

)d/2
(d2e)d/5+1

]s
<

[
d−d/2+(2/5)d+2

]s
Let r = d−d/2+(2/5)d+2 and note that for d ≥ 21, r < 1. We thus obtain that

∑
ε logn≤s≤n/d2

Pr(Xs) ≤
∑

ε logn≤s≤n/d2
rs

= O(n−ε
′
)

Where the last line hold for some ε′ > 0 and for sufficiently large n since the summation is a
decreasing geometric sum and the largest term is rε logn.

We next show that the second property holds w.h.p. For n/d2 ≤ s ≤ n/2, we again get that

Pr(Xs) ≤
[( s
n

)d/2−c−1
e1+ced/2−c

]s
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Simplifying for s ≤ n/2 we have

Pr(Xs) ≤

[(
1
2

)d/2−c−1

e1+ccd/2−c

]s
≤

[( c
2

)d/2
(2e)c+1

]s
Setting c to be 3/2, we get that

Pr(Xs) ≤

[(
3
4

)d/2
(2e)5/2

]s

Let r =
(

3
4

)d/2 (2e)5/2 and note that for d ≥ 30, r < 1. We thus obtain that

∑
n/d2≤s≤n/2

Pr(Xs) ≤
∑

n/d2≤s≤n/2

rs

= O(n−ε
′
)

Where the last line hold for some ε′ > 0 and for sufficiently large n since the summation is a
decreasing geometric sum and the largest term is rn/d

2
. A final union bound over shows that both

the first and second property hold with high probability.
Theorem 2.2: Assume that at some point, the number of alerted nodes is at least n/d2 and that
the number of infected nodes is no more than n1−ε for some ε > 0. Then w.h.p, at the end of the
process, all but o(n) nodes will be alerted.
Proof. We call a node a virgin node if it is neither alerted or infected. We will show that if initially
there are at least n/d2 alerted nodes and no more than n1−ε infected nodes, that for some fixed
constant C, after C ln lnn rounds, there will be o(n) virgin nodes. The number of infected nodes
increases by no more than a β + 1 factor in each round. Thus, after C ln lnn rounds, the number
of infected nodes is no more than (β + 1)C ln lnnn1−ε = n1−ε′ for some 0 < ε′ < ε. Thus, if we can
show there are o(n) virgin nodes after C ln lnn rounds, then it must be true that all but o(n) nodes
are alerted.

Our analysis will occur in two phases, first we will show that we need a constant number of
rounds to have at least n/2 alerted nodes. Then we will show that in Θ(ln lnn) further rounds, the
number of virgin nodes will be only o(n).

We first show that the first phase will, w.h.p., take no more than a constant number of rounds.
Let A be the set of alerted nodes. By the coupon collectors analysis, we expect any particular
node in this set to send out an alert to all of its neighbors in less than d ln d rounds. Thus, by
Markov’s inequality, the probability that a particular node in this set has not sent out the alert to
all its neighbors in 3d ln d rounds is no more than 1/3. Hence, by a simple application of Chernoff
bounds, w.h.p., at least half of the nodes in A will send out alerts to all their neighbors in 3d ln d
rounds. Let A′ be this set of nodes that send out alerts to all of their neighbors. Since |A′| ≤ n/2,
we know that N(A′) ≥ |A′|/2. Since every node can receive alerts from at most d unique nodes,
this implies that the number of unique non-alerted nodes that receive alert messages is at least
|A′|/2d. Moreover, since the number of infected nodes is no more than n1−ε′ ≤ |A′|

6d , the number
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of virgin nodes that receive alert messages is at least |A
′|

3d ≥
|A|
6d . Thus, while |A| ≤ n/2, in every

3d ln d rounds, the number of alerted nodes increases by a factor of 1 + 1
6d . Since |A| is initially at

least n/d2 and d is a fixed constant, we can say that in O(1) rounds, |A| will be greater than n/2.
We now show that the second phase will, w.h.p., take no more than Θ(ln lnn) rounds. Let V

be the set of virgin nodes at some round during this phase. Note that |V | ≤ n/2 since the number
of alerted nodes is now greater than n/2. We further assume that |V | ≥ n/ lnn since if this is not
the case, then there are only o(n) virgin nodes and the second phase is thus completed. By the
expansion properties of the overlay network, we can thus say that N(V ) ≥ 1

2|V | . Further, at least
1

3|V | of the nodes in N(V ) must be alerted nodes since the number of infected nodes is only n1−ε′ .
Again using the coupon collectors analysis, Markov’s inequality and Chernoff bounds, we can say
that, w.h.p., in 3d ln d rounds, at least half of these alerted nodes will have sent out alerts to all
their neighbors. Thus, after 3d ln d rounds, at least 1

6 |V | alerted nodes will send alerts to nodes in
V . Since each node in V can receive alerts from at most d unique neighbors, the number of virgin
nodes that receive alert messages must be at least 1

6d |V |. Thus, while |V | ≥ n/ lnn, in every 3d ln d
rounds, the number of virgin nodes decreases by a factor of 1 − 1

6d . After r rounds, the number

of virgin nodes will thus be no more than
(
1− 1

6d

) r
3d ln d (n/2) ≤ e

−r
18d2 ln d (n/2). This last quantity

will be less than n/ lnn provided that r = (18d2 ln d) ln lnn. Thus, we have shown that in C ln lnn
rounds, the number of virgin nodes will be o(n), the number of infected nodes will be o(n) and all
other nodes in the network will be alerted.
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