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Abstract

Internet protocols permit a single machine to masquerade asmany, allowing an adversary to appear
to control more nodes than it actually does. The possibilityof suchSybil attackshas been taken to mean
that distributed algorithms that tolerate only a fixed fraction of faulty nodes are not useful in peer-to-peer
systems unless identities can be verified externally. The present work argues against this assumption,
by presenting practical algorithms for the distributed computing problem ofByzantine agreementthat
defend against Sybil attacks by using moderately hard puzzles as a pricing scheme for identities. Though
our algorithms do not prevent Sybil attacks entirely, they solve Byzantine agreement (and some useful
variants) when the limited fraction of nodes that can fail isreplaced by a limited fraction of the total
computational power. These results suggest that Byzantineagreement and similar tools from the dis-
tributed computing literature are likely to help solve the problem of adversarial behavior by components
of peer-to-peer systems.

1 Introduction

Peer-to-peer systems that allow arbitrary machines to connect to them are known to be vulnerable topseu-
dospoofingor Sybil attacks, first described in a paper by Douceur [7], in which Byzantinenodes adopt
multiple identities to break fault-tolerant distributed algorithms that require that the adversary control no
more than a fixed fraction of the nodes. Douceur argues in particular that no practical system can prevent
such attacks, even using techniques such as pricing via processing [9], without either using external valida-
tion (e.g., by relying on the scarceness of DNS domain names or Social Security numbers), or by making
assumptions about the system that are unlikely to hold in practice. While he describes the possibility of using
a system similar toHashcash[3] for validating identities under certain very strong cryptographic assump-
tions, he suggests that this approach can only work if (a) allthe nodes in the system have nearly identical
resource constraints; (b) all identities are validated simultaneously by all participants; and (c) for “indirect
validations,” in which an identity is validated by being vouched for by some number of other validated iden-
tities, the number of such witnesses must exceed the maximumnumber of bad identities. This result has
been abbreviated by many subsequent researchers [8,11,19–21] as a blanket statement that preventing Sybil
attacks without external validation is impossible.

We argue that this impossibility result is much more narrow than it appears, because it gives the attack-
ing nodes a significant advantage in that it restricts legitimate nodes to one identity each. By removing this
restriction we can resist the Sybil attack for the central problem of Byzantine agreement [13], in which all
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Figure 1:Byzantine agreement is not possible amongst nodes, but becomes feasible with priced identities.

non-faulty participants must agree on some single decisionvalue despite the interference of faulty nodes.
Though Byzantine agreement can be solved trivially in the model used in [7] (because that model provides
synchronous reliable broadcast) we show that even in a standard synchronous message-passing model (with-
out reliable broadcast) it can still be solved if we use digital signatures to enforce distinguishability between
alleged identities. Many traditional distributed computing problems are solvable with Byzantine agreement
protocols, so our algorithms can be used to accomplish a widevariety of objectives.

Our two algorithms in in Section 3 and Section 4 usemoderately hard puzzles[3,12,18] as a demonstra-
tion of computing power. They are designed a preamble for anystandard Byzantine agreement algorithm,
and they create a virtual network where identities are priced by computing power so that consensus algo-
rithms can safely run. This technique solves Byzantine agreement if the adversary controls less than a third
of the total computational power in the system, and in the specific case where all machines have equal com-
putational power, it achieves consensus with multiple identities per node under exactly the same conditions
as it is solvable with single identities. It follows that forany problem that can be reduced to Byzantine
agreement, our ability to solve that problem is not affectedby allowing Byzantine nodes to masquerade as
multiple nodes.

Note that standard Byzantine agreement places few constraints on the common decision value. In par-
ticular, the adversary can determine which value is decidedon. For peer-to-peer applications, it is more
natural to demandstrong consensus[15], where the decision value must be the input of some good node,
or δ-differential consensus[10], where the decision value must be nearly a plurality value among the good
nodes. The virtual network created by our algorithms can be used as a preamble for strong andδ-differential
consensus algorithms as well.

2 Model

We assume a synchronous point-to-point network with reliable messages, where machines have some source
of nondeterminism for the generation of random numbers. Each machine may have multiple addresses, and
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there is no mechanism for distinguishing multiple machineswith one address each from a single machine
with many addresses. This assumption is justified in practice not only because IP addresses are easy to
spoof, but because many machines now sit behind firewalls using Network Address Translation, which
presents many machines on the inside of the firewall as a single machine to the outside.

We can imagine representing anodeas an IP address and a port number, with the assumption (necessary
to build any protocol at all) that the adversary cannot corrupt messages or arrange for messages directed at a
particular address to be delivered elsewhere. To prevent spoofing of outgoing messages, we further imagine
that each node chooses a public key that it appends to each outgoing message from that address, along with
a digital signature for the message using the correspondingprivate key. We do not assume the presence of
a public key infrastructure to guarantee that these public keys are not themselves spoofed, and in general a
node can generate as many public keys as it wants; but recipients can treat messages arriving with different
public keys as coming from different nodes, so the problem ofpruning out extraneous public keys reduces
to the problem of pruning out extraneous nodes.

We assume that each node has some limited amount of computingpower, defined as the number of
puzzle solutions that the node can generate in a single round, for any of the puzzles that are defined in
Sections 3 and 4. There areN physical nodes in the network,Ng of which are good (non-faulty) andNe

of which are evil (Byzantine, i.e., controlled by the adversary). LetC be the total computing power of all
the nodes in the physical network. The computing powerCg of the good nodes is fixed but not necessarily
uniform. The collective computing powerCe of the adversary can be dynamically allocated among the
adversary nodes. Our goal is to devise a pricing scheme for assigning identitiesto nodes, with the property
that the proportion of identities belonging to good nodes atthe end of the protocol is close to their share of
the total computational power (as illustrated by Figure 1).

A final assumption is that the set of nodes participating in the protocol is known to each node at the
start of the validation protocol, which means that we can order the nodes and assign them an index based
on their IP address, port number, and digital signature. This assumption is necessary to allow the nodes
to communicate at all given only a point-to-point message-passing network, but it does raise the question
of how this agreed-upon set of nodes is determined and distributed to the nodes. We do not address this
question at present, assuming simply that some centralizedsign-up mechanism exists, but note that it does
provide interesting possibilities for future work.

3 Democracy

The Democracyalgorithm takes three rounds to validate identities. In thefirst round, each node sends
an individualized sub-puzzle to every other node. In the second round, each node determines its puzzle
from the sub-puzzles, computes as many solutions as possible, and sends the puzzle and its solutions back
to every node in the system. In the final round, each node verifies the received solutions and assigns the
correct number of identities to that node, handing control of subsequent protocol interactions over to its own
identities.

Since the adversary can only help itself by sending correct solutions when such a solution is available,
we can safely assume that it sends each of its solutions to every good node. Letǫ be the expected amount of
computational power required to acquire an identity. If thesub-puzzles cannot be cheated as discussed be-
low, the expected number of identities assigned to adversarial nodes,Ie, isCe/ǫ and the expected number of
identities assigned to legitimate nodes,Ig, isCg/ǫ. If Ce < Cg/2, thenIe < Ig/2 (allowing unauthenticated
consensus), and ifCe < Cg, thenIe < Ig (allowing δ-differential consensus).

Democracyonly works if moderately hard puzzles can be constructed from a number of sub-puzzles,
many of which are chosen by the adversarial nodes. We presenta puzzle approach that provides the desired
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guarantees:

• Parameters: A one-way hash functionH. Its domain is bit-strings of lengthN S + k and the range
includes strings of lengths greater thanw, whereS ≥ k > w > 0.

• Input : The puzzle stringy is of lengthNS and contains theS bits received from each node, ordered
by node index.

• Puzzle: Compute as manyxi as possible such that the most significant bits of eachH(y |xi) are0w.

• Output : Sendy and all thexi to every node.

• Verification : Check the appropriate portion ofy for the sent bits. Check that the most significant bits
of eachH(y |xi) are0w.

Using this puzzle scheme, theDemocracyalgorithm sendsO(Ng N) messages, ignoring messages be-
tween adversarial nodes. Sending the stringy requiresO(N S) bits, and sending the solutions requires
O(k Cmax) = O(S Cmax) bits, whereCmax is the number of puzzles the most powerful node in the system
can solve.

The hash function should be a cryptographically strong function such as MD5 or SHA1. We assume that
no attack on the hash function can produce a puzzle solution faster than trying random inputs, even when the
adversary can fix some of the input bits. Though this is a common assumption in the literature [2, 4, 5, 16],
it should be noted that it is a very strong property, and whileit holds for random functions, it is not known
whether standard cryptographic hash functions provide such security.1 The value ofw should be chosen to
be small enough so that a node with computing powerǫ can compute onexi on average during the time
allotted for puzzle solving. Since the expected number of solutions (and hence, the verification time) is
proportional to2−w, w should be large enough that every node will have time to verify every identity during
the verification round.

We note that this way of combining the sub-puzzles into one puzzle for Democracyhas the following
desirable properties:

• It is resistant to tampering. The adversary cannot discredit other legitimate nodes by supplying im-
possible or confusing sub-puzzles. Any string of bits is a valid sub-puzzle, and if the correct number
of bits is not received, 0 can be used as a placeholder.

• It is resistant to precomputation. An adversary would need to create a table of size2S to store the
solutions for every string of input bits. Furthermore, thistable would only succeed in fooling one
node, so a table of sizeNg 2S would be needed to convince all good nodes.2

• It is resistant to collusion. Although the adversary can choose many of the sub-puzzles, it does not
control all of them. If the output of MD5 or SHA1 is computationally indistinguishable from random,
the adversary’s ability to control some of the input bits will not make finding collisions easier.

1This fact was observed by Douceur [7], who proposed a similarpuzzle problem without constraining the order of combining
different identities’ contributions to the puzzle. Douceur observed thatpartial-preimage resistancewas a minimum requirement for
such a puzzle, but because we control only part of the output the full requirements are even stronger. See Menezes et al. [14] Remark
9.22 and Section 9.5.2 for a definition of partial-preimage resistance and a discussion of the difficulties of applying cryptographic
hash functions in applications of this sort.

2To make the precomputation table size2
NgS , one might require nodes to send the digitally signed versions of their input bits.

However, this approach makes verification more expensive and it destroys the tamper-resistant property, because Byzantine nodes
can discredit good nodes by not sending any sub-puzzles. Thebits spent providing the digitally signed version ofS would be better
spent making it larger.
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• It is scalable. If one computer can findc collisions in one round on average, we would expect two
such computers running side-by-side and searching different parts of the function space to find2c
collisions on average. Furthermore, the time to compute MD5or SHA1 fingerprints does not depend
significantly on the input bits, even if the puzzles are different, so we could hand the computers
different puzzles and the expected number of collisions would still be twice as many.

4 Monarchy

TheDemocracyalgorithm in Section 3 prices identities in a constant number of rounds, but at the cost of
making strong assumptions about the underlying puzzle. We provided a puzzle approach, but we note that
the running time to compute solutions for the posed puzzles are modeled by a probabilistic cost function.
In this section, we propose a different algorithm that provides more flexibility in what puzzles can be used,
thereby allowing us to employ puzzles that have fixed runningcosts, such as thetime-lock puzzleof [18].

In theMonarchyalgorithm, each node takes its turn sending puzzles and receiving solutions. Ifr is the
round number, the “king” of the round is the node with indexr. The king sends out an individualized puzzle
to each node at the end of the round before he is king. (We include a round−1 so that the king with index 0
can send his puzzles.) Each node finds as many solutions to thepuzzle as possible during the king’s round
and sends the solutions to the king at the end of that round.

This process continues up until roundN , when the nodes stop solving problems and spend the round
verifying the solutions sent to them. If nodenβ sendscβ solutions tonα, thennα assignscβ/ǫ identities to
nβ in the virtual network. Each node broadcasts how many identities it thinks each other node has, and then
hands over control of subsequent protocol interactions to its identities.

Table 1: A comparison ofMonarchyandDemocracy
Rounds Messages Message Size Fault Tolerance Fault Tolerance

(unauthenticated) (δ-consensus)

Monarchy O(N) O(NgN) O(S Cmax + C log(N)/ǫ) Cg/3 Cg/2
Democracy O(1) O(NgN) O(S Cmax + NS) Cg/2 Cg

We treat the identities as autonomous agents hosted by the nodes. Identitynα,i, theith identity hosted
by nodenα, inherits its initial notions of trust from its host node:nα,i begins by trustingnβ,j if nα assigns
at leastj identities tonβ. It then interprets the identity assignments broadcast by other host nodes as
“accusations.” Ifnγ,k is trusted bynα,i andnγ attributes less thanj identities tonβ, thennγ,k is accusing
nβ,j to be illegitimate. Ifnα,i receives more thanCe/ǫ such accusations regardingnβ,j ’s legitimacy, then
nα,i stops trustingnβ,j. Assuming that the legitimate identities begin by trustingother legitimate identities,
the adversaries cannot confuse a legitimate identitynα,i into losing trust in another legitimate identitynβ,j

unless it can convincenα to assign more thanCe/ǫ identities to the adversarial nodes. However, if the
puzzles were well-designed, the adversarial nodes will notbe able to find more thanCe solutions, and thus
cannot obtain more thanCe/ǫ identities fromnα.

To remain in the virtual network, each adversarial identitymust be trusted by at leastIg − Ce/ǫ legit-
imate identities, so that no more thanCe/ǫ legitimate identities will accuse it by not listing it as trusted.
Since good nodes follow the protocol and earn their identities honestly, we expectIg = Cg/ǫ. Each
of theseCg/ǫ legitimate identities can be fooled by at mostCe/ǫ adversarial identities. Hence, at most
(Cg/ǫ)(Ce/ǫ)/(Ce/ǫ − Cg/ǫ) adversarial identities can survive accusations. It follows that ifCe < Cg/3,
then Ie < Ig/2 (allowing unauthenticated consensus), and ifCe < Cg/2, then Ie < Ig (allowing δ-
differential consensus).
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It may appear as though increased fault tolerance can be achieved with further rounds of accusations,
but this is not the case. The adversary can only hurt itself byaccusing other adversarial nodes, so we can
safely assume the adversary never accuses itself. Furthermore, good nodes pay for their identities through
honest work, so good identities will generally not accuse other good identities. If enough good identities
accuse an enemy identitynβ,j to convince any one good identity that previously trustednβ,j, thenall good
identities will be similarly convinced. Otherwise, the same number of accusations againstnβ,j exist after
the accusation round, so further rounds of accusations would be uneventful.

There areO(Ng N) messages total, ignoring messages between adversarial nodes. If the problems and
solutions each requireO(S) bits to communicate, whereS is a security parameter, the message size during
each king’s round will beO(SCmax), whereCmax is the computational power of the most powerful node.
The messages in the final round requiremin(N log(I/N), I log(N)) bits on average as a host node can
either send the number of identities assigned to each node orit can send the node associated with each
identity. We note that the adversary has control overN whereas no legitimate node would claimI exceeds
C/ǫ, so the system can predictably bound message size toC log(N)/ǫ by choosing to communicate the
node associated with each identity.

5 Related work

The technique of using moderately hard problems to limit an adversary’s abuse of resources was first sug-
gested by Dwork and Naor [9] as a method for combating junk email (“spam”). However, the distributed
consensus problem differs from junk email problem in that legitimate participants must prove their identity
to adversaries as well as other legitimate participants. A legitimate node that is overwhelmed demonstrating
its computational power to everyone at once may lose the trust of its legitimate peers, so some amount of
coordination is required to ensure that no unreasonable demands are made of legitimate nodes.

Using moderately hard problems as a defense against denial-of-service attacks has been suggested by
Juels and Brainard [12] and by Back [3]. Increasing the difficulty of the puzzles in an attack situation allows
for graceful degradation of server performance. Back’sHashcash, on which we base our puzzle scheme, is
designed as a challenge-response protocol between two parties, but adapts well to a distributed setting.

Rivest, Shamir, and Wagner [18] present a time-lock puzzle that works well when there are only two par-
ties involved, but in contrast toHashcash, it is difficult to decompose into sub-puzzles because verification
requires secret information about the factorization of a product of primes. Dwork and Naor’s suggestion of
square roots modulo a prime [9] also looks promising, but is not necessarily collusion-proof; an adversary
that can choose which number to take the square root of in someprime field may be able to determine which
one will be easier to compute.

In heterogeneous environments, there are often vast differences in computational power between de-
vices. High-performance workstations with specialized hardware can solve many more problems than PDAs,
for example. Abadiet al. recently presented a moderately hard puzzle class with solution times that depend
on memory access times rather than clock speed [1]. Their approach adapts well to our algorithm and would
be an effective defense against malicious, high-end attacks.

6 Conclusion

We have described two algorithms for limiting the effect of multiple identities in a peer-to-peer system.
These algorithms have complementary strengths; theDemocracyalgorithm of Section 3 is faster and toler-
ates more faults than theMonarchyalgorithm of Section 4, but at the cost of larger messages (assummarized
by Table 1) and stronger requirements for the embedded puzzle problem.
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By using the Democracy or Monarchy algorithms as a preamble,we can solve Byzantine agreement
despite the efforts of Byzantine nodes with multiple identities. Our algorithms are also relevant in a number
of settings such as self-policing peer-to-peer systems that detect Byzantine agents and freeloaders [19, 20],
distributed trust management systems [8], toolkits for building high-integrity services [17], and Byzantine
fault-tolerant distributed file systems [6].

An obvious question is whether some hybrid algorithm could combine the positive features of both
algorithms. Other questions are whether the complexity could be further reduced with other cryptographic
primitives, how to bootstrap the initial assumption that all claimed identities are known, what lower bounds
can be proved to show the potential scope of this approach, and what practical issues arise if these techniques
are implemented. We plan to address all of these questions infuture work.
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