
Wait-Free ConsensusJames AspnesJuly 24, 1992CMU-CS-92-164School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213Submitted in partial ful�llment of the requirementsfor the degree of Doctor of Philosophy
c
1992 James Aspnes.This research was supported by an IBM Graduate Fellowship and an NSF GraduateFellowship.



Keywords: distributed algorithms, shared memory, consensus, randomwalks, martingales, shared coins



AbstractConsensus is a decision problem in which n processors, each starting with avalue not known to the others, must collectively agree on a single value. If theinitial values are equal, the processors must agree on that common value; thisis the validity condition. A consensus protocol is wait-free if every proces-sor �nishes in a �nite number of its own steps regardless of the relative speedsof the other processors, a condition that precludes the use of traditional syn-chronization techniques such as critical sections, locking, or leader election.Wait-free consensus is fundamental to synchronization without mutual ex-clusion, as it can be used to construct wait-free implementations of arbitraryconcurrent data structures. It is known that no deterministic algorithm forwait-free consensus is possible, although many randomized algorithms havebeen proposed.I present two algorithms for solving the wait-free consensus problem in thestandard asynchronous shared-memory model. The �rst is a very simpleprotocol based on a random walk. The second is a protocol based on weightedvoting, in which each processor executes O(n log2 n) expected operations.This bound is close to the trivial lower bound of 
(n), and it substantiallyimproves on the best previously-known bound of O(n2 log n), due to Brachaand Rachman.
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Chapter 1IntroductionConsensus [CIL87] is a tool for allowing a group of processors to collectivelychoose one value from a set of alternatives. It is de�ned as a decision problemin which n processors, each starting with a value (0 or 1) not known tothe others, must collectively agree on a single value. (The restriction to asingle bit does not prevent the processors from choosing between more thantwo possibilities since they can run just run a one-bit consensus protocolmultiple times.) The processors communicate by reading from and writingto a collection of registers; each processor �nishes the protocol by decidingon a value and halting. A consensus protocol is wait-free if each processormakes its decision after a �nite number of its own steps, regardless of therelative speeds or halting failures of the other processors. In addition, aconsensus protocol must satisfy the validity condition: if every processorstarts with the same input value, every processor decides on that value. Thiscondition excludes trivial protocols such as one where every processor alwaysdecides 0.The asynchronous shared-memory model is an attempt to capture thee�ect of making the weakest possible assumptions about the timing of eventsin a distributed system. At each moment an adversary scheduler chooses oneof the n processors to run. No guarantees are made about the scheduler'schoices| it may start and stop processors at will, based on a total knowledgeof the state of the system, including the contents of the registers, the pro-gramming of the processors, and even the internal states of the processors.Since the scheduler can always simulate a halting failure by choosing not torun a processor, the model e�ectively allows up to n�1 halting failures. The1



adversary's power, however, is not unlimited. It cannot cause the processorsto deviate from their programming or cause operations on the registers tofail or return incorrect values.Combined with the requirement that a consensus protocol terminate af-ter a �nite number of operations, the adversary's power precludes the use oftraditional synchronization techniques such as critical sections, locking, orleader election: any processor that obtains a critical resource can be killed,and as soon as any processor or group of processors is given control over theoutcome of the protocol, the scheduler can put them to sleep and leave theother processors helpless to complete the protocol on their own. In general,any protocol depending on mutual exclusion, where one processor's pos-session of a resource or role depends on other processors being excluded fromit, will not be wait-free.Wait-free consensus is fundamental to synchronization without mutualexclusion and thus lies at the heart of the more general problem of con-structing highly concurrent data structures [Her91]. It can be used to obtainwait-free implementations of arbitrary abstract data types with atomic oper-ations [Her91, Plo89]. It is also complete for distributed decision tasks[CM89] in the sense that it can be used to solve all such decision tasks thathave a wait-free solution. Intuitively, the processors can individually simulatea sequence of operations on an object or the computation of a decision value,and use consensus protocols to choose among the possibly distinct outcomes.Conversely, if consensus is not possible, it is also impossible to constructwait-free implementations for many simple abstract data types, includingqueues, test-and-set bits, or compare-and-swap registers, as there exist sim-ple deterministic consensus protocols (for bounded numbers of processors)using these primitives [Her91].Alas, given the powerful adversary of the asynchronous shared-memorymodel it is not possible to have a deterministicwait-free consensus protocol,one in which the behavior of the processors is predictable in advance. Infact, in a wide variety of asynchronous models it has been shown there isno deterministic consensus protocol that works against a scheduler that canstop even a single processor [CIL87, DDS87, FLP85, Her91, LAA87, TM89].Though this result is usually proved using more general techniques, whenonly single-writer registers are used it has a simple proof that illustratesmany of the problems that arise when trying to solve wait-free consensus.Imagine that two processors A and B are trying to solve the consensus2



problem. Their situation is very much like the situation of two people facingeach other in a narrow hallway; neither person has any stake in whetherthey pass on the left or the right, but if one goes left and the other rightthey will bump into each other and make no progress. When A and B aredeterministic processors under the control of a malicious adversary scheduler,we can show the scheduler will be able to use its knowledge of their state andits control over the timing of events to keep A and B oscillating back andforth forever between the two possible decision values.Here is what happens. Since each processor is deterministic, at any givenpoint in time it has some preference, de�ned as the value (\left" or \right"in the hallway example) that it will eventually choose if the other processorexecutes no more operations [AH90a].1 At the beginning of the protocol,each processor's preference is equal to its input, because without knowingthat some other processor has a di�erent input it must cautiously decide onits own input to avoid violating the validity condition. So we can assumethat initially processor A prefers to pass on the left, and processor B on theright.Now the scheduler goes to work. It stops B and runs A by itself. Aftersome �nite number of steps, A must make a decision (to go left) and halt, orthe termination condition will be violated. But before A can �nish, it mustmake sure that B will make the same decision it makes, or the consistencycondition will be violated. So at some point A must tell B something thatwill cause B to change its preference to \left", and in the shared-memorymodel this message must take the form of a write operation (since B can'tsee when A does a read operation). Immediately before A carries out thiscritical write, the scheduler stops A and starts B.This action puts B in the same situation that A was in. B still prefers togo right, and after some �nite number of steps it must tell A to change itspreference to \right". When this point is reached either one of two conditionsholds: eitherB has done something to neutralizeA's still undelivered demandthat B change it preference, in which case the scheduler just stops B andruns A again, or both A and B are about to deliver writes that will causethe other to change its preference. In this case, the scheduler allows both of1This unfortunate possibility is unlikely to occur in the real-world hallway situation,assuming healthy participants, but it is allowed by the asynchronous shared-memorymodelsince the adversary can always choose never to run the other processor again.3



the writes to go through, and now A prefers to go right and B prefers to goleft, putting the two processors back where they started with roles reversed.In e�ect, the adversary uses its power over the timing of events to make surethat just when A gives in and agrees to adopt B's position, B does exactlythe same thing, and so on ad in�nitum.Fortunately, human beings do not appear to be controlled by an adver-sary scheduler, so in real life one hardly ever sees two people bouncing inunison from one side of a hallway to the other for more than a few iterations.Processors that do not have even the illusion of free will can nonetheless getsome of the same e�ect using randomization. Imagine in the hallway situa-tion that A had the ability to tellB to 
ip a fair coin to set its new preference.No matter what A's preference was (or changed to), there would be a 50%chance that the result of B's coin 
ip would match A's preference. In fact,if both processors were continually 
ipping coins to change their preferredvalue, a run of identical coin 
ips would soon occur that was long enoughthat the two processors would be able to notice that they were in agreement,and the protocol would terminate. Though this rough description leaves outmany important details, it gives the basic idea behind the �rst randomizedconsensus protocol for the asynchronous shared-memorymodel, due to Abra-hamson [Abr88]. The only drawback of the approach is that it does not scalewell; the odds of n processors simultaneously 
ipping heads is exponentiallysmall, and because agreement is not detected immediately in Abrahamson'sprotocol, its worst-case expected running time is only bounded by 2O(n2).The �rst polynomial-time consensus protocol for this model is describedby Aspnes and Herlihy [AH90a]. The key observation, similar to one madeby Chor, Merritt, and Shmoys [CMS89] in the context of a di�erent model, isthat the n di�erent local coin 
ips can be replaced by a single shared coinprotocol that produces random bits that all of the processors agree on withat least a constant probability, regardless of the behavior of the scheduler.We showed that it is possible to construct a consensus protocol from anyshared coin protocol by running the shared coin repeatedly until agreementis reached. (A description of the construction appears in Section 3.3.) Thecost of the resulting consensus protocol is within a constant factor of the costof the shared coin. Subsequent work on shared-memory consensus protocolshas concentrated primarily on the problem of constructing e�cient sharedcoin protocols.All currently known shared coin protocols use some form of a very simple4



idea. Each processor repeatedly adds random �1 votes to a common pooluntil some termination condition is reached. Any processor that sees a pos-itive total vote decides 1, and those that see a negative total vote decide 0.Intuitively, because all of the processors are executing the same loop over andover again, the adversary's power is e�ectively limited to blocking votes itdislikes by stopping processors in between 
ipping their local coins to decideon the value of the votes and actually writing the votes out to the registers.The adversary's control is limited by running the protocol for long enoughthat the sum of these blocked votes is likely to be only a fraction of the totalvote, a process that requires accumulating 
(n2) votes.In the original shared coin protocol of Aspnes and Herlihy [AH90a], eachprocessor decides on a value when it sees a total vote whose absolute valueis at least a constant multiple of n from the origin. For each of the expected�(n2) votes, �(n2) register operations are executed, giving a total runningtime of �(n4) operations. Unfortunately, both the implementation of thecounter representing the position of the random walk and the mechanism forrepeatedly running the shared coin require a potentially unbounded amountof space. This problem was corrected in a protocol of Attiya, Dolev, andShavit [ADS89], which retained the multiple rounds of its predecessor butcleverly reused the space used by old shared coins once they were no longerneeded.A simpler descendent of the shared coin protocol of Aspnes and Herlihy,which also requires only bounded space, is the shared coin protocol describedin Chapter 4. This protocol, by using a more sophisticated termination con-dition, guarantees that the processors always agree on its outcome. A simplemodi�cation of this protocol gives a consensus protocol that does not requiremultiple executions of a shared coin; which can be implemented using onlythree O(log n)-bit counters, supporting increment, decrement, and read oper-ations; and which runs in only �(n2) expected counter operations. However,this apparent speed is lost in the implementation of the counter, because�(n2) register operations are needed for each counter operation, giving itthe same running time of �(n4) expected register operations as its prede-cessors. Since the consensus protocol of Chapter 4 �rst appeared [Asp90],other researchers [BR90, DHPW92] have described weaker primitives thatact su�ciently like counters to make the protocol work and which use only alinear number of register operations for each counter operation. Using theseprimitives in place of the counters gives a consensus protocol that runs in5



expected �(n3) register operations.An alternative to having each processor �nish the protocol when it sees atotal vote far from the origin is to simply gather votes until some predeter-mined quorum is reached. The �rst shared coin protocol to use this techniqueis that of Saks, Shavit, and Woll [SSW91]. It is still necessary to gather 
(n2)votes to overcome the e�ect of votes withheld by the scheduler, and in factthe Saks-Shavit-Woll protocol still requires �(n4) register operations. Fur-thermore, it is unlikely that any protocol that runs in a �xed number oftotal operations can guarantee that all processors agree on the outcome ofthe coin; thus it is necessary to retain the complex multiple rounds of theAspnes-Herlihy protocol in some form. However, stopping the protocol aftera speci�ed number of votes are collected has a very important consequence:it is no longer necessary for a processor to check for termination after everyvote it casts.This remarkable fact was observed by Bracha and Rachman [BR91] andis the basis for their fast shared coin protocol. In this protocol, as in previousshared coin protocols, the processors repeatedly generate random �1 votesand add them to a running total. After a quorum of �(n2) votes are collectedprocessors may decide on the output of the shared coin based on the signof the total vote. But each processor only checks if the quorum has beenreached after every O(n= log n) votes| so the processors can generate anadditional O(n2= log n) \extra" votes beyond the \common" votes making upthe quorum. However, by making the number of common votes large enoughcompared to the number of extra votes, the probability that the extra voteswill change the sign of the total vote can be made arbitrarily small. Thus,even if one processor reads the total vote immediately after the quorum isreached and another reads it after many extra votes have been cast, it isstill likely that both will agree with each other on the outcome of the sharedcoin. In addition, because each processor only needs to compute the totalvote once, after it has seen a full quorum, no counters or other complicatedprimitives are needed to keep track of the voting. Each processor simplymaintains in its own register a tally of all the votes it has cast, and computesthe total vote by summing the tallies in all of the registers. The result is thatthe protocol requires only O(n2 log n) expected total register operations.There is, however, still room for improvement. All of the shared coinprotocols we have described su�er from a fundamental 
aw: if the schedulerstops all but one of the processors, that lone processor is still forced to6



generate 
(n2) local coin 
ips. The essence of wait-freeness is bounding thework done by a single processor, despite the failures of other processors. Butthe bound on the work done by a single processor, in every one of theseprotocols, is asymptotically no better than the bound on the work done byall of the processors together.Chapter 5 shows that wait-free consensus can be achieved without forcinga fast processor to do most of the work. I describe a shared coin protocolin which the processors cast votes of steadily increasing weights. In e�ect, afast processor or a processor running in isolation becomes \impatient" andstarts casting large votes to �nish the protocol more quickly. This mechanismdoes grant the adversary greater control, because it can choose from up to ndi�erent weights (one for each processor) when determining the weight of thenext vote to be cast. One e�ect of this control is that a more sophisticatedanalysis is required than for the unweighted-voting protocols. Still, withappropriately-chosen parameters the protocol guarantees that each processor�nishes after only O(n log2 n) expected operations.The organization of the dissertation is as follows. Chapters 2 and 3 pro-vide a framework of de�nitions for the material in the later chapters. Chapter2 describes the asynchronous shared-memory model in detail and comparesit with other models of distributed systems. Chapter 3 formally de�nes theconsensus problem and its relationship to the problem of constructing sharedcoins. The main results appear in Chapters 4 and 5. Chapter 4 describes thesimple consensus protocol based on a random walk. Chapter 5 describes thefaster protocol based on weighted voting. Finally, Chapter 6 compares theseresults to other solutions to the problem of wait-free consensus and discussespossible directions for future work.Much of the content of Chapters 4 and 5 also appears in [Asp90] and[AW92], respectively. Some of the material in Chapter 3 is derived from[AH90a].
7



Chapter 2The AsynchronousShared-Memory ModelThis chapter gives a detailed description of the asynchronous shared-memorymodel. This model is the standard one for analyzing wait-free consensusprotocols [Abr88, ADS89, AH90a, Asp90, AW92, BR90, BR91, DHPW92,SSW91]. Though it appears in varying guises, all are essentially equivalent.The description of the model here largely follows that of the \weak model"of Abrahamson [Abr88]. The reader interested in a more formal de�nition ofthe model may �nd one in [AH90a] based on the I/O Automaton model ofLynch [Lyn88].2.1 Basic elementsThe system consists of a collection of n processors, state machines whosebehavior is typically speci�ed by a high-level protocol. In principle nolimits are assumed on the computational power of the processors, althoughin practice none of the protocols described in this document will require muchlocal computation.The processors can communicate only by executing read and write op-erations on a collection of single-writer, multi-reader atomic registers[Lam77, Lam86b]. Each of these registers is associated with one of the pro-cessors, its owner. Only the owner of a register is allowed to write to it,although any of the processors may read from it. Atomicity means that8



read and write operations act as if they take place instantaneously: theynever fail, and the result of concurrent execution of multiple operations onthe same register is consistent with their having occurred sequentially.The assumptions behind atomicity may appear to be rather strong, espe-cially in a model that is designed to be as harsh as possible. However, it turnsout that atomic registers are not powerful enough to implement determinis-tically such simple synchronization primitives as queues or test-and-set bits[Her91], and may be constructed e�ciently from much weaker primitives in avariety of ways [BP87, IL87, NW87, Pet83, SAG87]. So in fact the apparentstrength of atomic registers is somewhat illusory.2.2 Time and asynchronyThe systems represented by the model may have many events occurring con-currently. However, because the only communication between processors inthe system is by operations on atomic registers, it is possible to representits behavior using a global-time model [BD88, Lam86a, Lam86b]. Insteadof treating operations on the registers as occurring over possibly-overlappingintervals of time, they are treated as occurring instantaneously. The historyof an execution of the system can thus be described simply as a sequenceof operations. Concurrency in the system as a whole is modeled by theinterleaving of operations from di�erent processors in this sequence.The actual order of the interleaving is the primary source of nondetermin-ism in the system. At any given time there may be up to n processors that areready to execute another operation; how, then, does the system choose whichof the processors will run next? We would like to make as few assumptionshere as possible, so that our protocols will work under the widest possibleset of circumstances. One way of doing this is to assign control over timingto an adversary scheduler, a function that chooses a processor to run ateach step based on the previous history and current state of the system. Theadversary scheduler is not bound by any fairness constraints; it may startand stop processors at will, doing whatever is necessary to prevent a protocolfrom executing correctly. In addition, no limits are placed on the scheduler'scomputational power or knowledge of the programming or internal states ofthe processors. However, its control is limited only to the timing of eventsin the system| it cannot, for example, cause a read operation to return the9



wrong value or a processor to deviate from its programming.The de�nition of a wait-free protocol implicitly depends on having sucha powerful adversary. A protocol is said to be wait-free if every processor�nishes the protocol in a �nite number of its own steps, regardless of therelative speeds of the other processors. The adversary in the asynchronousshared-memory model simply represents the universal quanti�er hidden inthat condition. If we can design a protocol that will beat an all-powerfuladversary, we will know that the protocol will succeed in the far easier taskof working correctly in whatever circumstances chance and the workings ofa real system might throw at it.2.3 RandomizationIn order to solve the consensus problem in the presence of an adversaryscheduler, the processors will need to be able to act nondeterministically. Inaddition to giving each processor the ability to write to its own registers andto read from any of the registers, we will give each processor the ability to
ip a local coin. This operation provides the processor with a random bitthat cannot be predicted by the scheduler in advance, though it is known tothe scheduler immediately afterwards by virtue of the scheduler's ability tosee the internal states of the processors. The timing of coin-
ip operations,like that of read and write operations, is under the control of the scheduler.2.4 Relation to other modelsThere are other models that are closely related to the asynchronous shared-memory model. In particular it is tempting to de�ne the property of beingwait-free as the property that a protocol will �nish (that is, one processor will�nish) even in the presence of up to n� 1 halting failures, where a haltingfailure is an event after which a processor executes no more operations. Sucha de�nition would make wait-freeness a natural extension of t-resilience,the property of working in the presence of up to t halting failures.However, in the context of a totally asynchronous system this de�nitionis unnecessarily restrictive. It is true that the adversary is able to simulateup to n � 1 halting failures simply by choosing not to run \halted" proces-10



sors ever again. However, there is no reason to believe that dead processorsare the only source of di�culty in an asynchronous environment. For ex-ample, the adversary could choose to put some processor to sleep for a verylong interval, waking it only when its view of the world was so outdatedthat its misguided actions would only hinder the completion of a protocol.As the hallway example in the introduction shows, stopping a processor andreawakening it much later can be even more devastating stopping a processorforever. Furthermore, distinguishing between slow processors and dead onesrequires either an assumption that slow processors must take a step aftersome bounded interval, or that fast processors may execute a potentially un-bounded number of operations waiting for the slow processors to revive. The�rst assumption imposes a weak form of synchrony on the system, violatingthe principle of avoiding helpful assumptions; the second makes it di�cultto measure the e�ciency of a protocol. For these reasons we avoid the issuecompletely by using the more general de�nition.Other alternatives to the model involve changing the underlying commu-nications medium from atomic registers, either by adopting stronger prim-itives that provide greater synchronization, or by moving to some sort ofmessage-passing model. We avoid the �rst approach because, as always, wewould like to work in as weak a model as possible. However, the question ofhow a di�erent choice of primitives can a�ect the di�culty of solving wait-free consensus is an interesting one about which little is known, except forthe deterministic case [LAA87, Her91].Moving to a message-passing model presents new di�culties. In general,the de�ning property of a message-passing model is that the processors com-municate by sending messages to each other directly, rather than operatingon a common pool of registers or other primitives. Message-passing modelscome in bewildering variety; a general taxonomy can be found in [LL90].Dolev et al. [DDS87] classify a large collection of message-passing modelsand show which are capable of solving consensus deterministically.Among these many models, one has traditionally been associated withsolving asynchronous consensus [BND89, BT83, CM89, FLP85]. In thismodel, the adversary is allowed to (i) stop up to t processors and (ii) de-lay messages arbitrarily. Unfortunately, a simple partition argument showsthat in this model one cannot solve consensus even with a randomized al-gorithm if at least n=2 processors can fail [BT83]. Intuitively, the adversarycan divide the processors into two groups of size n=2 and delay all messages11



passing between the groups. As neither group will be able to distinguishthis partitioning from the other group actually being dead, the two groupswill independently come up with decisions that may be inconsistent. On theother hand, solutions to the wait-free consensus problem for shared memorycan be used to obtain solutions to consensus problems for message-passingmodels with weaker failure conditions by simulating the shared memory. Anexample of this technique may be found in [BND89]. A general comparisonof the power of shared-memory and message-passing models in the presenceof halting failures can be found in [CM89].2.5 Performance measuresIt is not immediately obvious how best to measure the performance of a wait-free decision protocol. Two measures are very natural for the asynchronousmodel, as they impose no implicit assumptions on the scheduling of opera-tions in the system. These are the total work measure, which simply countsthe total number of register operations executed by all the processors togetheruntil every processor has �nished the protocol; and the per-processor workmeasure, which takes the maximum over all processors of the number of reg-ister operations executed by each processor individually before it �nishes theprotocol.The per-processor measure is closer to the spirit of the wait-free guar-antee that each processor �nishes in a �nite number of its own steps, as itgives an upper bound on what that �nite number is. However, prior to theprotocol of Chapter 5, for every known consensus protocol (see Table 6.1)the two measures were within a constant factor of each other. As a resultonly the total work measure has typically been considered. This usage is incontrast to what is needed in situations where processors may re-enter theprotocol repeatedly, as in protocols for simulating various shared abstractdata types [AAD+90, AG91, AH90b, And90, DHPW92, Her91, Plo89] or fortimestamping and similar mechanisms [DS89, DW92, IL87]. In these pro-tocols one is typically interested in the number of register operations eachprocessor must execute to simulate a single operation on the shared object,an inherently per-processor measure, and the total work is meaningful onlywhen interpreted in an amortized sense.Given the usefulness of the per-processor measure in this broader con-12



text, I will concentrate primarily on it. However, because the total-workmeasure has traditionally been used to analyze consensus protocols it will beconsidered as well.An alternative to these measures that has seen some use in analyzingwait-free protocols is the rounds measure of asynchronous time [AFL83,ALS90, LF81, SSW91]. It is used for models that represent halting failuresexplicitly. When using this measure, up to n�1 processes may be designatedas faulty at the discretion of the adversary; once a processor becomes faulty itis never allowed to execute another operation. A round is a minimal intervalduring which every non-faulty processor executes at least one operation. Themeasure is simply the number of these rounds. In e�ect, this measure countsthe operations of the slowest non-faulty processor at any given point in theexecution. If a slow processor executes only one operation in a given interval,only one round has elapsed, even though a faster processor might have carriedout hundreds of operations during the same interval.The rounds measure is reasonable if one de�nes the property of beingwait-free as equivalent to being able to survive up to n � 1 halting failures.However, as explained above, in the context of a totally asynchronous sys-tem this de�nition is unnecessarily restrictive. But once we adopt the moregeneral de�nitions we quickly run into trouble. If some processor stops andthen starts again much later during the execution of the protocol, the entireperiod that the processor is inactive counts as only one round. As a resultthe rounds measure implicitly resolves the problem of distinguishing slowprocessors from dead ones by guaranteeing that processors will either run atbounded relative speeds or not run at all. This is in con
ict with the goal ofusing a model that is as general as possible, and for this reason the roundsmeasure will not be used here.1
1A notion of \rounds" does appear in Section 3.3; these rounds are part of the internalstructure of the protocol described there and have no relation to the rounds measure.13



Chapter 3Consensus and Shared CoinsThis chapter formally describes the problem of solving consensus and theclosely-related problem of construction a shared coin, and gives an exampleof a method for solving consensus using a shared coin. This last techniquewill be of particular importance in Chapter 5.3.1 ConsensusConsensus is a decision problem in which n processors, each starting witha value (0 or 1) not known to the others, must collectively agree on a singlevalue. A consensus protocol is a distributed protocol for solving consensus.It is correct if it meets the following conditions [CIL87]:� Consistency. All processors decide on the same value.� Termination. Every processor decides on some value in �nite expectedtime.� Validity. If every processor starts with the same value, every processordecides on that value.The basic idea behind consensus is to allow the processors to make acollective decision. For this purpose, the consistency condition is the mostfundamental of the correctness conditions, as it is what actually guaranteesthat the processors agree. The termination condition is phrased to apply in14



many possible models; in the asynchronous shared-memory model it trans-lates into requiring that the protocol be wait-free, as it requires that pro-cessors must �nish in �nite expected time regardless of the actions of theadversary scheduler.If it happens that the processors already agree with each other, we wantthe consensus protocol to ratify that agreement rather than veto it; hence thevalidity condition. From a less practical perspective the validity conditionis needed because its absence makes the problem uninteresting, since all ofthe processors could just decide 0 every time the protocol is run without anycommunication at all.If we are allowed to make convenient assumptions about the system, con-sensus is not a di�cult problem. For example, on a PRAM (perhaps thefriendliest cousin of asynchronous shared-memory) consensus reduces to sim-ply taking any function we like of the input values that satis�es the validitycondition. In general, in any model where both the processors and the com-munications medium are reliable the problem can be solved simply by havingthe processors exchange information about their inputs until all of them knowthe entire set of inputs; at this point each can individually compute a func-tion of the inputs as in the PRAM case to come up with the decision valuefor the protocol. It is only when we move to a model, like asynchronousshared-memory, that allows processors to fail that consensus becomes hard.One di�culty is that the harsh assumptions of the asynchronous shared-memory model can amplify the correctness conditions in ways that may notbe immediately obvious. For example, the validity conditions implies thatthe adversary can always force the processors to decide on a particular valueby running only those processors that started with that value. Because these\live" processors are unable to see the di�ering input values of the \dead"processors, they will see a situation indistinguishable from one in which ev-ery processor started with the same value. In this latter case, the validitycondition would force the processors to decide on that common value. Sobecause of their limited knowledge, the live processors must decide on theonly input value they can see, even though there may be other processorsthat disagree with it. This example shows that one must be very carefulabout what assumptions one makes in the model, as they can subtly a�ectwhat a protocol is allowed to do. 15



3.2 Shared coinsIn order to solve the consensus problem we will need to cope with the con-siderable power of the adversary. We cannot modify the model to placerestrictions on the adversary; instead, we must �nd some way of getting theprocessors to reach agreement in spite of the adversary's interference.One way is to base a consensus protocol on a stronger primitive, theshared coin. A shared coin is a decision protocol in which each processordecides on a bit, which with some probability � will be the same value thatevery other processor decides on. But unlike consensus, the actual valuechosen will not always be under the control of the adversary. In order toprevent this control, given the adversary's ability to run only some of theprocessors, we must drop the validity condition and with it the notion ofinput bits. What we are left with is the following de�nition.A shared coin protocol with agreement parameter1 � is a distributeddecision protocol that satis�es these two conditions:� Termination. Every processor decides on some value in �nite expectedtime.� Probabilistic agreement. For each value b (0 or 1), the probabilitythat every process decides on b is at least �.The probabilistic agreement condition guarantees that with probability2� the outcome of the shared coin protocol is agreed on by all processorsand is indistinguishable from 
ipping a fair coin. With probability 1 � 2�,no guarantees whatsoever are made; it is possible that the processors willnot agree with each other at all, or that the adversary will be able to choosewhat value each processor decides on. Some sort of adversary control isalways possible, as it is known that a wait-free shared coin with � exactlyequal to 1=2 is impossible [AH90a].The agreement parameter is not the only possible parameter for sharedcoin, merely the one that is most convenient when building consensus pro-tocols. If we wish to use the coin directly (for example, as a source of semi-random bits [SV86] in a distributed algorithm) a more natural parameter1Called the de�ance parameter in [AH90a]. The less melodramatic term agreementparameter is taken from [SSW91]. 16



is the bias, �, de�ned by � = 1=2 � �. In terms of the bias the agreementproperty can be restated as follows:� Bounded bias. The probability that at least one processor decides ona given value is at most 1=2 + �.This property says in e�ect that the adversary can force some processor tosee a particular outcome with only � greater probability than if the processorswere actually collectively 
ipping a fair coin.In some circumstances we would like to guarantee that all of the pro-cessors always agree on the outcome of the coin, even though the adversarymight have been able to control what that outcome is. A shared coin thatguarantees agreement will be called robust. As will be seen in Chapter 4,robust shared coins can often be converted directly into consensus protocolsby the addition of only a small amount of machinery. However Chapter 5describes an intrinsically non-robust shared coin; in this situation more so-phisticated techniques are needed to achieve consensus. One approach isdescribed in the next section.3.3 Consensus using shared coinsIt is a well-established result that one can construct a consensus protocol froma shared coin with constant agreement parameter [ADS89, AH90a, SSW91].This section gives as an example the �rst of these constructions [AH90a]. Aswe shall see, this construction gives a consensus protocol which requires anexpected O((T (n) + n)=�) operations per processor and O((T 0(n) + n2)=�)total operations, where T (n) and T 0(n) are the expected number of operationsper processor and total operations for the shared coin protocol.Pseudocode for each processor's behavior in the shared-coin-based con-sensus protocol is given in Figure 3.1. Each processor has a register of its ownwith two �elds: prefer and round , initialized to (?;0). In addition there areassumed to be a (potentially unbounded) collection of shared coin primitives,one for each \round" of the protocol. Two special terms are used to simplifythe description of the protocol. A processor is a leader if its round �eld isgreater than or equal to every other process's round �eld. Two processorsagree if both their prefer �elds are equal, and neither �eld is ?.17



1 procedure consensus(input)2 (prefer ; round ) (input ; 1)3 repeat4 read all the registers5 if all who disagree trail by 2 and I'm a leader then6 output prefer7 else if leaders agree then8 (prefer ; round) (leader preference; round + 1)9 else if prefer 6= ? then10 (prefer ; round  (?; round)11 else12 (prefer ; round) (shared coin[round ]; round + 1)Figure 3.1: Consensus from a shared coin.Let us sketch out the workings of the protocol. The most serious problemthat the protocol is designed to solve is how to neutralize \slow" processorsthat have old, out-of-date views of the world. Because such processors endup with low round values relative to the \fast" processors, they are e�ectivelyexcluded from the real decision-making in the protocol until they manage tocatch up to their faster comrades.Intuitively, the decision-making process consists of the leaders runningthe shared coin protocol in line 12. It is not necessarily the case that all ofthe leaders at each round will take part in the shared coin protocol, as thosethat arrive earliest may not see disagreement and will execute line 8 instead.However, those early arrivals must in fact agree with each other, and so withprobability at least � the others will switch to agree with them at any givenround. It follows that the expected number of rounds until agreement isO(1=�).Once the leaders agree, the slower processors are forced to adopt theleaders' position by executing line 8. The protocol terminates when theagreeing processors advance far enough (2 rounds) to know that any processorthat disagrees will pass through line 8 before catching up and becoming aleader itself.This explanation is informal, and glosses over many important but tedious18



details of the protocol. The interested reader is referred to [AH90a] for a morethorough description of the construction including a full proof of correctness.Alternative constructions with similar performance may be found in [ADS89]and [SSW91].For our purposes it will su�ce to summarize the relevant results from[AH90a]:Theorem 3.1 ([AH90a]) The protocol of Figure 3.1 implements a consen-sus protocol that requires an expected O(1=�) rounds, where � is the agreementparameter of the shared coin.From which it follows that:Corollary 3.2 The protocol of Figure 3.1 implements a consensus proto-col that requires an expected O((T (n) + n)=�) operations per processor andO((T 0(n) + n2)=�) operations in total; where � is the agreement parameter,T (n) the expected number of operations per processor, and T 0(n) the expectednumber of operations in total for the shared coin.Proof: From the theorem, we expect at most O(1=�) rounds.In each round, each processor executes at most 2n read operations, oneinstance of the shared coin, and two write operations, for a total of 2n+2+T (n) operations.Similarly, in each round the processors collectively execute at most 2n2read operations, 2n write operations, and one instance of the shared coin, fora total of 2n2 + 2n + T 0(n) operations.
19



Chapter 4Consensus Using a RandomWalkAll currently-known wait-free consensus protocols that run in polynomialtime are based on some form of a shared coin protocol. The key insightused in constructing shared coins is that it is dangerous to give too muchpower over the outcome of the protocol to any one processor at any giventime. Such tyranny, like all tyrannies, runs the risk of a sudden changein policy following an assassination, and thereby gives control over policy topotential assassins like our adversary scheduler. In all currently known sharedcoin protocols each individual processor's power is minimized by having theprocessors repeatedly cast small random votes for the two decision values.How this voting process is best represented depends on the method usedto decide when it is �nished. In this chapter we describe a shared coin anda consensus protocol in which the voting ends when the di�erence betweenthe number of 1 votes and 0 votes is large. Under such circumstances thevoting process can be viewed as a random walk in which each vote movesthe total up or down by one until an absorbing barrier at �K is reached(where K is a parameter of the protocol). In fact, the original polynomial-time shared coin of [AH90a] worked on exactly this principle. Unfortunately,a simple implementation of a random walk does not guarantee agreement,as the adversary can allow one processor to see a total greater than K anddecide 1, and then, by releasing negative votes \trapped" inside stoppedprocessors, move the total down out of the decision range so that with somenonzero probability the other processors will eventually move it to �K and20



decide 0. So to use a simple random-walk-based shared coin in a consensusprotocol one would need to run it repeatedly as described in Section 3.3.The protocols described in this chapter avoid the need for such methodsby extending the random walk to incorporate the function of detecting agree-ment. As a result we obtain a robust shared coin, described in Section 4.2,which guarantees that all processors agree on its outcome. Because the coinguarantees agreement, it can be modi�ed in to obtain a consensus protocolsimply by attaching a preamble to ensure validity, as described in Section 4.4.The resulting consensus protocol (and its variants, obtained by replacing thecounter implementation [BR90, DHPW92]) are particularly simple, as theyare the only known wait-free consensus protocols that do not require the re-peated execution of a non-robust shared coin protocol and the multi-roundsuperstructure that comes with it.The simplicity of the protocol also allows some optimizations that aremore di�cult when using a non-robust coin. The consensus protocol is de-signed to require fewer total operations if fewer processors actually partici-pate in it, a feature which becomes important when, for example, the protocolis used as a primitive for building shared data structures which only a fewprocessors might attempt to access simultaneously.The chapter is organized as follows. Section 4.1 describes some propertiesof random walks that will be used later in the chapter. Section 4.2 describesthe robust shared coin protocol and proves its correctness. The description ofthe robust shared coin protocol assumes the presence of an atomic counter,providing increment, decrement, and read operations that appear to occursequentially; Section 4.3 shows how such a counter may be built from single-writer atomic registers at the cost of O(n2) register operations per counteroperation. Finally, Section 4.4 describes the consensus protocol obtained bymodifying the robust shared coin.4.1 Random walksLet us begin by stating a few basic lemmas about the behavior of randomwalks.Lemma 4.1 Consider a symmetric random walk with step size 1 runningbetween absorbing barriers at a and b and starting at x, where a < x < b.Then: 21



1. The expected number of steps until one of the barriers is reached isgiven by (x� a)(b� x), which is always less than or equal to � b�a2 �2.2. The probability that the random walk hits b before a is x�ab�a .Proof: The random walk described is just a form of the classical gambler'sruin problem. See [Fel68, pp. 344{349].Lemma 4.2 Consider a symmetric random walk with step size 1 runningbetween a re
ecting barrier at a and an absorbing barrier at b, starting atposition x, a < x < b. Then the expected time until b is reached is (x� (a�(b� a)))(b� x) � (b� a)2Proof: This random walk can be obtained from the random walk with ab-sorbing barriers at b and a� (b� a) by the transformation x 7! a+ jx� aj.The following critical lemma describes a modi�ed random walk that willbe of great importance in analyzing the shared coin and consensus protocols:Lemma 4.3 Consider a symmetric random walk with absorbing barriers ata and b with the following twist: a point c, a < c < b is chosen as the centerof the random walk. The adversary chooses the starting position x of therandom walk to be anywhere in the range from a to b. Also, before each step,the adversary may choose between moving randomly in either direction withprobability 1=2, or moving away from c with probability 1. No matter whatchoices the adversary makes, the expected number of steps until one of thebarriers is reached is at most (b� a)2Proof: The game described can be thought of as a controlled Markovprocess [DY75] in which the adversary is trying to maximize the expectedtime. Because this process is played over a �nite set of states, a standardresult of the theory of controlled Markov processes can be applied. Thisresult states that the maximum time can be achieved by an adversary usinga simple strategy, one which chooses the same option from each state at alltimes.Such a strategy can be speci�ed by listing the points where the adversarychooses to force the particle to move away from c. We can think of these22



points as dividing the range of the random walk into intervals; between eachpair of points where the adversary forces the particle to move determinis-tically is a region where the particle moves randomly. The points at theedge of these random regions act like barriers in a random walk. A point onthe side away from c pushes the particle into a new region and so acts likean absorbing barrier, while a point on the side toward c pushes the particleback into the old region and so acts like a re
ecting barrier. Thus the regioncontaining c acts like a random walk with two absorbing barriers, and theremaining regions act like random walks with one absorbing barrier (on theside away from c) and one re
ecting barrier (on the side toward c).Because each barrier can only be crossed away from c, once the particleleaves a region it can never return. Now, suppose the particle starts in aregion with width w1. After at most w21 steps on average (by Lemmas 4.1 or4.2) it will pass into a new region of width w2; after an additional w22 stepsit will pass into a new region of width w3, and so on until either a or b isreached. Since these regions all �t between a and b, Pwi � b� a, and thus(since each wi > 0) Pw2i � (b� a)2.Though the bound in Lemma 4.3 is proved for the case of a very powerfuladversary that is always allowed to choose between a random move and adeterministic move at each step, the bound applies equally well to a weakeradversary whose choices are more constrained, as the stronger adversarycould always choose to operate within the weaker adversary's constraints.This technique, of proving bounds for a strong adversary that carry over toa weaker one, has great simplifying power. It will be used extensively in theanalysis of the shared coin and consensus protocols.4.2 The robust shared coin protocolFigure 4.1 shows pseudocode for each processor's behavior in the robustshared coin protocol. The coin is constructed using an atomic counter,which supports atomic increment, decrement, and read operations. In thissection, these operations are assumed to take unit time. The counter isinitialized to 0. The processor's local coin is represented by the procedurelocal 
ip, which returns the values �1 and 1 with equal probability.A processor's behavior in the protocol is represented in pictorial form inFigure 4.2. While a processor reads values in the central range from �K23



Shared data:counter counter with range [�K � 3n;K + 3n], initialized to 01 procedure shared coin()2 repeat3 c  counter4 if c � �(K + n) then output 05 else if c � (K + n) then output 16 else if c � �K then decrement counter7 else if c � K then increment counter8 else9 if local 
ip() = 1 then increment counter10 else decrement counterFigure 4.1: Robust shared coin protocol.
���� ZZZ~���= � -������ ZZZZZZ ���K +K�K � n +K + nFigure 4.2: Pictorial representation of robust shared coin protocol.24



to K (where K is a parameter of the protocol) it 
ips a local fair coin todecide whether to increment or decrement the counter. This part of theprotocol is essentially the same as the random-walk-based shared coin ofAspnes and Herlihy [AH90a]. What is new is the addition of a \slope" ateither side of the random walk. On these slopes, a processor does not movethe counter randomly but instead always moves it away from the center.When a processor reads a counter value in one of the \buckets" beyond theslopes, it decides either 0 or 1 depending on the sign of the counter.If the slopes are wide enough, once any processor has seen a value thatcauses it to decide, all other processors will see values that cause them topush the counter toward the same decision. This mechanism eliminates thepossibility that delayed writes might move the counter out of the decisionrange and allow the random walk (with small but non-negligible probability)to wander over to the other side. More formally, we can show:Lemma 4.4 If any processor reads a counter value v � (K + n), then allsubsequent reads will return values greater than or equal to K + 1; in thesymmetric case where v � �(K + n), all subsequent values read will be lessthan or equal to �(K + 1).Proof: Suppose that a processor has read v � (K + n); then it immediatelyterminates leaving n�1 running processors. Thus the number d of processorsthat will execute a decrement before their next read is at most n � 1. Letl = c � d where c is the value stored in the counter. Since c � (K + n), itmust be the case that l � K + 1. Now consider the e�ect of the actions thescheduler can take. If it allows a decrement to proceed, c and d both dropby 1 and l remains constant. If it allows an increment to occur, c increasesand l increases with it. If it allows a read, the value read is c � l � K + 1,and thus d is una�ected. In each case l remains at least K+1, and the claimfollows since c � l. The proof of the symmetric case is similar.The consistency property follows immediately from Lemma 4.4. A similarargument shows that the counter will not over
ow:Lemma 4.5 The counter value never leaves the range [K � 3n;K + 3n] inany execution of the shared coin protocol.Proof: Suppose that the counter reaches K + 2n at some point. Then eachprocessor will execute at most one increment or decrement operation before25



it reads the counter, at which point it will decide 1 and execute no additionaloperations. Thus the counter cannot exceed K +2n+ n = K + 3n. The fullresult follows by symmetry.Proving the termination and bounded bias properties of the shared coinrequires some additional machinery. De�ne the true position t of the ran-dom walk to be the value in the counter, plus 1 for each processor that willincrement the counter before its next read, and minus 1 for each processorthat will decrement the counter before its next read. The following Lemmarelates the value read by a processor to the true position of the random walk:Lemma 4.6 Let c be a value read from the counter by some processor andt the true position of the random walk in the state preceding the read. Thenjc� tj � n� 1.Proof: There can be at most n � 1 processors with pending increments ordecrements.Let us assume hereafter that the scheduler can cause a processor to readany value between t� (n�1) and t+(n�1). Because such a scheduler couldalways choose to simulate any scheduler the protocol will actually face, any\good" statement we can prove with the assumption will carry over to thesituation without it. The advantage of granting the adversary this additionalpower is that it allows us to forget about the vagaries of the counter value.Instead we can treat the protocol as a controlled random walk using the trueposition t.Consider the lower part of Figure 4.3 (the upper part simply repeatsFigure 4.2 without the buckets.) If the true position t is in the central regionbetween �K + (n � 1) and K � (n � 1), then Lemma 4.6 implies that anyprocessor that reads the counter will see a value between �K and K andmove t randomly. In the two immediately adjacent regions, any processorwill either read a value between �K and K, and move t randomly, or read avalue that causes it to move t away from 0. Finally, any processor that readsa value in the outermost regions where jtj > K + (n� 1) will either make adecision or move t away from 0. In each of these cases, the scheduler is neverallowed to force that true position toward 0; and if K is large relative to nmuch of the execution of the protocol will be spent in the central region wherethe scheduler's control is ine�ective. These two properties of the protocol arethe basis of the proof of its termination and bounded bias, as shown below.26
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Figure 4.3: The protocol as a controlled random walk.Lemma 4.7 The robust shared coin protocol executes an expected O((K +n)2) total counter operations when K � n.Proof: If we consider the true position t, Lemma 4.6 implies that the sched-uler can only force t up if t � K�(n�1) � 1 and down if t � �K+(n�1) ��1. Furthermore if jtj ever exceeds K + n + (n � 1), each processor willdecide after its next read. Thus the movement of the true position is acontrolled random walk in the sense of Lemma 4.3 with center 0 and bar-riers at �(K + 2n � 1). The expected number of steps until a barrier isreached is at most 4(K + 2n � 1)2 steps, which will be followed by at most2n operations as the processors each decide. Since each step takes a constantnumber of counter operations the expected number of operations required isO((K + n)2).The time bound of Lemma 4.7 shows that every processor terminates in�nite expected time when K � n. The bounded bias property is a conse-quence of the following lemma:Lemma 4.8 Against any scheduler, the probability that the processors in therobust shared coin protocol will decide 1 is between K�(n�1)2K and K+(n�1)2K .27



Proof: Suppose the scheduler is trying to maximize the probability of decid-ing 1. Under the simplifying assumption it can force a decision of 1 as soonas t = K � (n � 1); however, if it allows t to slip below �K � (n � 1) theprocessors will eventually decide 0. When �K � (n� 1) < t � K � (n � 1)the scheduler may choose between moving t randomly or forcing t toward�K � (n � 1). Clearly, forcing the counter toward �K � (n � 1) can onlyincrease the probability of deciding 0, so choosing to move t randomly max-imizes the probability of deciding 1. But if the scheduler makes this choice,the movement of the true position becomes a simple random walk with ab-sorbing barriers at �K � (n � 1) and K � (n � 1). By Lemma 4.1, theprobability that t reaches K � (n � 1) �rst is K+(n�1)2K . The lower boundfollows by symmetry.Combining the lemmas we obtain:Theorem 4.9 When K > n, the protocol of Figure 4.1 implements a robustshared coin.Proof: Consistency follows from Lemma 4.4, termination from Lemma 4.7,and bounded bias from Lemma 4.8.Lemma 4.8 allows K to be chosen to obtain arbitrarily small non-negativebias. Let the bias of the shared coin be 12 + �, then� � n� 12Kwhich gives K � n� 12� :Combining this inequality with Lemma 4.7 gives a bound on the worst-case expected running time for the protocol of O((n=�)2) total counter oper-ations. This time is comparable to the worst-case expected running times ofthe protocol's non-robust ancestors. The protocol thus achieves robustnesswithout paying a signi�cant cost in speed.28



4.3 Implementing a bounded counter withatomic registersThe robust shared coin protocol assumes the presence of a shared countersupporting atomic increment, decrement, and read operations, with the re-striction that no operation will be applied that will move the counter out ofsome �xed range [�r; r]. In practice such a counter is not likely to be avail-able as a hardware primitive. Fortunately it is not di�cult to implement ashared counter using atomic registers. However, some care must be taken toguarantee that the counter uses only a bounded amount of space.Both Aspnes and Herlihy [AH90a] and Attiya, Dolev, and Shavit [ADS89]describe shared counter implementations. The two counter implementationsboth assign a register to hold the net increment due to each processor, sothat the counter's value is simply the sum of the values in these registers.Both algorithms use simple atomic snapshot protocols to allow the entire setof registers to be read in a single atomic action.Alas, neither implementation does quite what we would like. Even thoughthe value stored in the counter will never exceed the range [�r; r], the netincrement due to an individual processor is potentially unbounded. TheAspnes-Herlihy protocol ignores this di�culty by assuming the presence ofunbounded registers (which it also uses to implement the atomic scan.) TheAttiya-Dolev-Shavit protocol uses only bounded registers, but enforces thebounds by prematurely terminating the shared coin protocol if any proces-sor's register wanders out of a limited range. This premature terminationoccurs infrequently, and is acceptable in a shared coin that does not need toguarantee consistency. But it is not acceptable for a robust coin, as it mayallow the scheduler to force some processor to choose one value (throughpremature termination) after another has already chosen a di�erent value(through the normal workings of the shared coin protocol.)A simple alternative to premature termination that still allows the sizeof the registers to be bounded is to store the remainder of each processor'scontribution relative to some convenient modulus m greater than the totalrange 2r + 1. The counter value can then be reconstructed as the unique vin the range [�r; r] that is congruent to the sum of the registers, modulo m.Pseudocode for the three counter operations using this technique is shownin Figure 4.4; it assumes the presence of an array of registers which can be29



Shared data:scannable array count [0 . . .n� 1], initialized to 0procedure increment ()v  count [me]count [me] (v + 1) mod mprocedure decrement ()v  count [me]count [me] (v � 1) mod mprocedure read()scan countv  Pn�1i=0 count [i]return v0 where �r � v0 � r and v0 � v (mod m)Figure 4.4: Pseudocode for counter operations.read in a single operation. Such an array can be simulated using an atomicsnapshot protocol [AAD+90, AH90b, And90]. An atomic snapshot is anoperation that returns a picture of the values in all of the registers in thearray that is consistent with other pictures returned by other snapshots andwith the order of non-overlapping write operations even though it may notcorrespond to the actual values in the registers at a particular point in time.Typically, it is necessary to make writes to registers in the scannable arraybe more than just simple writes to individual registers, so taking a snapshotof the array and writing to an element of the array will both be expensive.However, the algorithm of Afek et al. [AAD+90] allows an atomic scan oper-ation to be implemented with O(n2) bits of extra space and a maximum ofO(n2) primitive read and write operations for each snapshot and each writeto a simulated register in the scannable array. Using their algorithm, 4.4implements an atomic counter where each counter operations costs O(n2)register operations. 30



4.4 The randomized consensus protocolFigure 4.5 shows pseudocode for each processor's behavior in the randomizedconsensus protocol. The protocol uses three shared counters. The �rst twomaintain a total of the number of participating processors that started witheach of the inputs 0 and 1. The last is used as the counter for a modi�edversion of the robust shared coin protocol. All of the counters have an initialvalue of 0.The protocol is optimized for the case where few processors participate.We will de�ne a processor to be active if it takes at least one step beforesome processor decides on a value, and denote by p the total number of activeprocessors in a given execution. The protocol uses the counters a0 and a1to keep track of the number of active processors by having each processorincrement one or the other of these counters as it starts the protocol.The protocol depends on being able to take an atomic snapshot of thecounters. Since the �rst two counters are never decremented, such a snapshotcan be obtained as described in Figure 4.6. Though the operation de�nedthere is not wait-free, because it will not �nish if a0 or a1 changes duringsome pass through the loop, this event can occur at most p times during anyexecution of the consensus protocol. So in fact the time to carry out theatomic snapshot will be bounded in the context in which it is used.If the counters are not primitives but are instead constructed as describedin Section 4.3 using an atomic scan operation, the overhead of Figure 4.6 canbe avoided completely by simply reading all three counters in a single atomicscan of the arrays that implement them.Several features of the protocol are worth noting. First of all, the same\slopes" that ensured consistency for the robust shared coin ensure consis-tency for the consensus protocol, for the same reasons. Second, the countersa0 and a1 allow the protocol to guarantee validity, as the random walk is onlyinvoked if both have non-zero values. These counters are also used to min-imize the range of the random walk, by taking advantage of the fact statedin the following lemma, a modi�cation of Lemma 4.6:Lemma 4.10 Let a0; a1; c be the values read from the counters by some pro-cessor and t the true position of the random walk in the state preceding theread. Then jc� tj � a0 + a1 � 1.Proof: There are at most a0+ a1�1 processors with pending increments or31



Shared data:counter a0 with range [0; n], initialized to 0counter a1 with range [0; n], initialized to 0counter c with range [�4n; 4n], initialized to 01 procedure consensus(input)2 increment ainput3 repeat4 read a0; a1; c5 if c � �2n then output 06 else if c � 2n then output 17 else if c � �(a0 + a1) or a1 = 0 then decrement c8 else if c � (a0 + a1) or a0 = 0 then increment c9 else10 if local 
ip() = 1 then increment c11 else decrement cFigure 4.5: Consensus protocol.procedure scan counters()repeata0 read(a0)a1 read(a1)c read(c)a00 read(a0)a01 read(a1)until a00 = a0 and a01 = a1return a0; a1; cFigure 4.6: Counter scan for randomized consensus protocol.32



decrements.To prove that the consensus protocol is correct, we must establish that itis consistent, that it terminates, and that it is valid. The proof of consistencyis a straightforward modi�cation of the proof of Lemma 4.4:Lemma 4.11 If any processor reads a counter value v � 2n, then all subse-quent reads will return values � n+1; in the symmetric case where v � �2n,all subsequent reads will return values � �(n+ 1).Proof: Apply the proof of Lemma 4.4 with K = n.Similarly, the proof that the counter c does not over
ow is a straightfor-ward modi�cation of Lemma 4.5:Lemma 4.12 The value of c never leaves the range [�4n;4n] in any execu-tion of the consensus protocol.Proof: Apply the proof of Lemma 4.5 with K = n.Termination is trickier to demonstrate. As in the case of the shared coin,the key to proving the consensus protocol's termination is the fact that thescheduler's only alternative to moving the true position randomly is to moveit away from the origin. In the shared coin protocol, this condition dependson �xing the parameter K � n. In the consensus protocol the situationis more complicated, as the protocol uses its knowledge of the number ofcurrently active processors to set the inner boundaries of the slope close tothe origin while still preventing the scheduler from being able to force thetrue position to move toward the origin.Lemma 4.13 Let n be the total number of processors and p be the numberof processors that take at least one step before some processor decides on avalue. Then the worst-case expected running time of the consensus protocolis O(p2 + n) total counter operations.Proof: We will show that the consensus protocol terminates in O(p2 + n)time by reducing it to a controlled random walk of the true position t. Dividethe execution of the protocol into two phases. In the �rst phase, at most oneof a0, a1 is nonzero; if the execution does not leave the �rst phase before33



2n increments or decrements have occurred the protocol will terminate afterO(n) additional steps by Lemma 4.11.In the second phase, both a0 and a1 are nonzero. Let v be a value readby some processor from the counter c. By Lemma 4.10 we know that jt �vj � a0 + a1 � 1 � p � 1. Now, to force an increment during the secondphase the scheduler must show a processor a counter value v that is at leasta0 + a1, possibly by withholding local coin-
ips to raise the value of c orby withholding increments to lower the value of a0 + a1. In either caseLemma 4.10 applies and t must be greater than 0. The case of the schedulerattempting to force a decrement is symmetric, and thus in either case thescheduler can only force the true position to move away from 0.Furthermore, since p is an upper bound both on the distance between cand t and on the value of a0 + a1, if jtj � 2p then jvj � a0 + a1 and thetrue position will move away from 0 thereafter. Thus the second phase of theexecution can be modeled as a controlled random walk in the sense of Lemma4.3 with center 0, barriers at �2p, and a starting position equal to the trueposition at the end of the �rst phase. By Lemma 4.3, this random walk willtake an expectedO(p2) steps, each consisting of a constant number of counteroperations; to this value must be added O(n) steps until termination, up toO(n) steps from the �rst phase, and O(p2) extra read operations due to extrapasses through the loop in scan counters(). The total expected number ofcounter operations is thus O(p2 + n).Note that the expected running time of O(p2 + n) is expressed in totalcounter operations. If the counter is implemented as described in Section 4.3the total number of register operations will be O(n2(p2 + n)).Lemma 4.14 The protocol of Figure 4.5 satis�es the validity condition.Proof: Suppose every processor starts with the input 1. Then a0 is neverincremented and so retains its initial value of 0 throughout the executionof the protocol. Thus each processor will increment c until it reads a valuev � 2n at which point it will decide 1. The case where every processor hasinput 0 is symmetric.Combining the lemmas gives:Theorem 4.15 Figure 4.5 implements a consensus protocol.34



Proof: Lemmas 4.11, 4.13, and 4.14.It is worth looking at the behavior of the shared coin implicitly embeddedin the consensus protocol of Figure 4.5. Because the function of detectingagreement is implemented in the shared coin itself, limiting scheduler con-trol over the outcome of the shared coin is no longer necessary to achieveconsensus. Thus the parameter K of the shared coin protocol can be set tominimize the time taken in the random walk without regard to its e�ect onthe agreement parameter �. In the protocol of Figure 4.5 the shared coin hasan e�ective agreement parameter of 12p, as low as is possible without settingK < p.At the same time, the simplicity of the protocol allows the number andsize of the shared counters to be very small. Unfortunately, when the avail-able primitives are limited to atomic registers this small size is lost in the�(n2) space overhead of the atomic scan operation. It is not immediatelyclear that this overhead is a necessary feature of an atomic counter imple-mentation; much work remains to be done in this area.
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Chapter 5Consensus Using WeightedVoting5.1 IntroductionIn the previous chapter we built a consensus protocol that directly incorpo-rated a robust shared coin. Here we will show how to construct a faster butnon-robust shared coin which gives consensus using standard constructionssuch as the one of [AH90a] described in Section 3.3.This shared coin protocol requires a departure from previous practice. Asin the protocols of the previous chapter, the fundamental technique behind allshared coin protocols since [AH90a] has been the use of repeated, equally-weighted votes to reduce the impact of any particular processor's privateknowledge and with it the adversary's ability to a�ect the outcome of thecoin. There are many advantages to this approach. The processors act asanonymous conduits of a stream of unpredictable random increments. Ifthe scheduler stops a particular processor, at worst all it does is keep onevote from being written out to the common pool|the next local coin 
ipexecuted by some other processor is no more or less likely to give the valuethe scheduler wants than the next one executed by the processor it has juststopped. Intuitively, the scheduler's power over the outcome of the sharedcoin is limited to �ltering out up to n � 1 local coin 
ips from this streamof independent random variables. But the e�ect of this �ltering is at worstequivalent to adjusting the �nal tally of votes by up to n � 1. If a constant36



multiple of n2 votes are cast, the total variance will be 
(n2). Because thetotal vote is approximately normally distributed, the protocol can guaranteethat with constant probability the total vote is more than n away from theorigin, rendering the scheduler's adjustment ine�ective.Alas, the very anonymity of the processors that is the strength of thevoting technique is also its greatest weakness. To overcome the scheduler'spower to withhold votes, it is necessary that a total of 
(n2) votes are cast|but the scheduler might also choose to stop all but one of the processors,leaving that lone processor to generate all 
(n2) votes by itself. It followsthat, for all of the polynomial-time wait-free consensus protocols based onunweighted voting, the worst-case expected bound on the work done by asingle processor is asymptotically no better than the bound on the totalwork done by all of the processors together.In this chapter we show how to avoid this problem by modifying a pro-tocol of Bracha and Rachman [BR91] to allow the processor to cast votes ofincreasing weight. Thus a fast processor or a processor running in isolationcan quickly generate votes of su�cient total variance to �nish the protocol,at the cost of giving the scheduler greater control by allowing it both to with-hold votes with larger impact and to choose among up to n di�erent weights(one for each processor) when determining the weight of the next vote.There are two main di�culties that this approach entails. The �rst is thatcareful adjustment of the weight function and other parameters of the pro-tocol is necessary to make sure that it performs correctly. More importantly,allowing the weight of the i-th vote to depend on the particular processorthe scheduler chooses to run, which may in turn depend on the outcomesof previous votes, means that we cannot treat the sequence of votes as asequence of independent random variables.However, the sign of each vote is determined by a fair coin 
ip thatthe scheduler cannot predict in advance, and so despite all the scheduler'spowers, the expected value of each vote before it is cast is always 0. Thisis the primary requirement of a martingale process [Bil86, Fel71, Kop84].Under the right conditions, martingales have many similarities to sequencesof sums of independent random variables. In particular, martingale analoguesof the Central Limit Theorem and Cherno� bounds will be used in the proofof correctness.The rest of the chapter is organized as follows. Section 5.2 de�nes theshared coin protocol and gives an overview of its operation. Section 5.337



1 procedure shared coin()2 begin3 my reg(variance ; vote) (0; 0)4 t  15 repeat6 for i = 1 to c do7 vote  local 
ip() � w(t)8 my reg  (my reg.variance + w(t)2;my reg.vote + vote)9 t t+ 110 end11 read all the registers, summing the variance �elds into thelocal variable total variance12 until total variance > K13 read all the registers, summing the vote �elds into the local vari-able total vote14 if total vote > 015 then output 116 else if total vote < 017 then output 018 else fail19 end Figure 5.1: Shared coin protocol.contains a brief de�nition of martingales and describes some of their proper-ties. Finally, Section 5.4 proves the correctness of the protocol for two setsof parameters, one of which allows it to simulate the equally-weighted vot-ing protocol of [BR91], and one which gives a bound of O(n log2 n) on theexpected number of operations executed by a single processor.5.2 The shared coin protocolFigure 5.1 gives pseudocode for each processor's behavior during theshared coin protocol. Each processor repeatedly 
ips a local coin that re-turns the values +1 and �1 with equal probability. The weighted value of38



each 
ip is w(t) or �w(t) respectively, where t is the number of coins 
ippedby the processor up to and including its current 
ip. Each weighted 
iprepresents a vote for either the output value 1 (if positive) or 0 (if negative).After each 
ip, the processor updates its register to hold the sum of theweighted 
ips it has performed, and the sum of the squares of their values.After every c 
ips, the processor reads the registers of all the other proces-sors, and computes the sum of all the weighted 
ips (the total vote) and thesum of the squares of their values (the total variance). If the total varianceis greater than the quorum K, it stops, and outputs 1 if the total vote ispositive, and 0 if it is negative (it treats a total vote of zero as a failure toavoid introducing asymmetry between the two outcomes). Alternatively, ifthe total variance has not yet reached the quorum K , it continues to 
ip itslocal coin.As in the previous chapter, the function local 
ip returns the values 1 and�1 randomly with equal probability. The values K and c are parameters ofthe protocol which will be set depending on the number of processors n togive the desired bounds on the agreement parameter and running time. Theweight function w(t) is used to make later local coin 
ips have more e�ectthan earlier ones, so that a processor running in isolation will be able toachieve the quorum K quickly. The weight function will be assumed to beof the form w(t) = ta where a is a nonnegative parameter depending on n;though other weight functions are possible, this choice simpli�es the analysis.We will demonstrate that for suitable choice of K, c and a all processorsreturn 1 with constant probability; the case of all processors returning 0will follow by symmetry. The structure of the argument follows the proof ofcorrectness of the less sophisticated protocol of Bracha and Rachman [BR91],which corresponds to Figure 5.1 when w(t) is the constant 1, K = �(n2),and c = �(n= log n). Votes cast before the quorum K is reached will forma pool of common votes that all processors see.1 We will show that withconstant probability (i) the total of the common votes is far from the originand (ii) the sum of the extra votes cast between the time the quorum isreached and the time some processor does its �nal read in line 13 is small,so that the total vote read by each processor will have the same sign as thetotal common vote.1The de�nitions of the common and extra votes we will use di�er slightly from thoseused in [BR91]; the formal de�nitions appear in Section 5.4.39



This simple overview of the proof hides many tricky details. To simplifythe analysis we will concentrate not on the votes actually written to theregisters but on the votes whose values have been decided by the processors'execution of the local coin 
ip in line 7; conversion back to the values actuallyin the registers will be done by showing a bound on the di�erence betweenthe total decided vote and the total of the register values. In e�ect, we aretreating a vote as having been \cast" the moment that its value is determined,instead of when it becomes visible to the other processors.Some care is also needed to correctly model the sequence of votes. Mostimportantly, as pointed out above, allowing the weight of the i-th vote todepend on which processor the scheduler chooses to run means the votes arenot independent. So the straightforward proof techniques used for protocolsbased on a stream of identically-distributed random votes no longer apply,and it is necessary to bring in the theory of martingales to describe theexecution of the protocol.5.3 MartingalesAmartingale is a sequence of random variables S1; S2; . . ., which informallymay be thought of as representing the changes in the fortune of a gamblerplaying in a fair casino. Because the gambler can choose how much to bet orwhich game to play at each instant, each random variable Si may depend onall previous events. But because the casino is fair and the gambler cannotpredict the future, the expected change in the gambler's fortune at any playis always 0.We will need to use a very general de�nition of a martingale [Bil86, Fel71,Kop84]. The simplest de�nition of a martingale says that the expected valueof Si+1 given S1; S2; . . . ; Si is just Si. To use a gambling analogy, this de�ni-tion says that a gambler who knows only the previous values of her fortunecannot predict its expected future value any better than by simply using itscurrent value. But what if the gambler knows more information than justthe changing size of her bankroll? For example, imagine that she is placingbets on a fair version of roulette, and always bets on either red or black.Knowing that her fortune increased after betting red will tell her only thatone of eighteen red numbers came up; but a real gambler will see preciselywhich of the eighteen numbers it was. Still, we would like to claim that this40



additional knowledge does not a�ect her ability to predict the future. Todo so, the de�nition of a martingale must be extended to allow additionalinformation to be represented explicitly.The tool used to represent the information known at any point in timewill be a concept from measure theory, a �-algebra2 The description givenhere is informal; more complete de�nitions can be found in [Fel71, SectionsIV.3, IV.4, and V.11] or [Bil86].5.3.1 Knowledge, �-algebras, and measurabilityRecall that any probabilistic statement is always made in the context of some(possibly implicit) sample space. The elements of the sample space (calledsample points) represent all possible results of some set of experiments,such as 
ipping a sequence of coins or choosing a point at random from theunit interval. Intuitively, all randomness is reduced to selecting a single pointfrom the sample space. An event, such as a particular coin-
ip coming upheads or a random variable taking on the value 0, is simply a subset of thesample space that \occurs" if one of the sample points it contains is selected.If we are omniscient, we can see which sample point is chosen and thuscan tell for each event whether it occurs or not. However, if we have onlypartial information, we will not be able to determine whether some eventsoccurred or not. We can represent the extent of our knowledge by makinga list of all events we do know about. This list will have to satisfy certainclosure properties; for example, if we know whether or not A occurred, andwhether or not B occurred, then we should know whether or not the event\A or B" occurred.We will require that the set of known events be a �-algebra. A �-algebraF is a family of subsets of a sample space 
 that (i) contains the empty set;(ii) is closed under complement: if F contains A, it contains 
nA (the com-plement of A); and (iii) is closed under countable union: if F contains all ofA1; A2; . . ., it contains S1i=1Ai.3 An event A is said to be F-measurable if itis contained in F. In our context, the term \measurable," which comes fromthe original measure-theoretic use of �-algebras to represent families of setson which a probability distribution is well-de�ned, simply means \known."2Sometimes called a �-�eld.3Additional properties, such as being closed under �nite union or intersection, followimmediately from this de�nition. 41



We \know" about an event if we can determine whether or not it occurred.What about random variables? A random variable X is de�ned to be F-measurable if every event of the form X � c is F -measurable. (The closureproperties of F then imply that such events as a � X < b, X = d, andso forth are also F-measurable.) Looking at the situation in reverse, givenrandom variables X1;X2; . . . we can consider the minimum �-algebra F forwhich each of the random variables is F -measurable; this �-algebra, writtenhXii, is called the �-algebra generated by X1;X2; . . ., and represents allinformation that can be inferred from knowing the values of the generators.A �-algebra gives us a rigorous way to de�ne \knowledge" in a probabilis-tic context. Measurability and generated �-algebras give us a way to moveback and forth between the abstract concept of a �-algebra and concretestatements about which random variables are completely known. To analyzerandom variables that are only partially known, we need one more de�nition.We need to extend conditional expectations so that the condition can be a�-algebra rather than just a collection of random variables.For each event A let IA be the indicator variable that is 1 if A occursand 0 otherwise. Let U = E[X j F ] be a random variable such that (i) Uis F -measurable and (ii) E[UIA] = E[XIA] for all A in F . The randomvariable E[X j F ] is called the conditional expectation of X with respectto F [Fel71, Section V.11]. Intuitively, the �rst condition on E[X j F ] saysthat it reveals no information not already found in F . The second conditionsays that just knowing that some event in F occurred does not allow oneto distinguish between X and E[X j F ]; this fact ultimately implies thatE[X j F] uses all information that is found in F and is relevant to X.If F is a generated by random variablesX1;X2; . . ., the conditional expec-tation E[X j F ] reduces to the simpler version E[X j X1;X2; . . .]. Some otherfacts about conditional expectation that we will use (but not prove): if X isF -measurable, then E[XY j F ] = XE[Y j F ] (which implies E[X j F ] = X);and if F 0 � F , then E[E[X j F ] j F 0] = E[X j F 0]. See [Fel71, Section V.11].5.3.2 De�nition of a martingaleWe now have the tools to de�ne a martingale when the information availableat each point in time is not limited to just the values of earlier randomvariables. A martingale fSi;Fig ; 1 � i � n; is a stochastic process whereeach Si is a random variable representing the state of the process at time i and42



Fi is a �-algebra representing the knowledge of the underlying probabilitydistribution available at time i. Martingales are required to satisfy threeaxioms, for all i:1. Fi � Fi+1. (The past is never forgotten.)2. Si is Fi-measurable. (The present is always known.)3. E[Si+1 j Fi] = Si. (The future cannot be foreseen.)Often Fi will simply be the �-algebra hS1; . . .Sii generated by the vari-ables S1 through Si; in this case axioms 1 and 2 will hold automatically.To avoid special cases let F0 denote the trivial �-algebra consisting of theempty set and the entire probability space. The di�erence sequence of amartingale is the sequence X1;X2; . . .Xn where X1 = S1 and Xi = Si�Si�1for i > 1. A zero-mean martingale is a martingale for which E[Si] = 0.5.3.3 Gambling systemsA remarkably useful theorem, which has its origins in the study of gamblingsystems, is due to Halmos [Hal39]. We restate his theorem below in modernnotation:Theorem 5.1 Let fSi;Fig ; 1 � i � n be a martingale with di�erence se-quence fXig. Let f�ig ; 1 � i � n be random variables taking on the values0 and 1 such that each �i is Fi�1-measurable. Then the sequence of randomvariables S0i =Pij=1 �jXj is a martingale relative to Fi.Proof: The �rst two properties are easily veri�ed. Because �i is Fi�1-measurable, E[�iXi j Fi�1] = �iE[Xi j Fi�1] = 0, and the third property alsofollows.5.3.4 Limit theoremsMany results that hold for sums of independent random variables carry overin modi�ed form to martingales. For example, the following theorem ofHall and Heyde [HH80, Theorem 3.9] is a martingale version of the classicalCentral Limit Theorem: 43



Theorem 5.2 ([HH80]) Let fSi;Fig be a zero-mean martingale. Let V 2n =Pni=1 E[X2i j Fi�1] and let 0 < � � 1. De�ne Ln = Pni=1 EhjXij2+2�i +EhjV 2n � 1j1+�i. Then there exists a constant C depending only on � suchthat whenever Ln � 1,jPr[Sn � x]� �(x)j � CL1=(3+2�)n " 11 + jxj4(1+�)2=(3+2�)# ; (5:1)where � is the standard unit normal distribution with mean 0 and variance1. If we are interested only in the tails of the distribution of Sn, we canget a tighter bound using Azuma's inequality, a martingale analogue of thestandard Cherno� bound [Che52] for sums of independent random variables.The usual form of this bound (see [AS92, Spe87]) assumes that the di�erencevariables Xi satisfy jXij � 1. This restriction is too severe for our purposes,so below we prove a generalization of the inequality. In order to do so wewill need the following technical lemma.Lemma 5.3 Let fSi;Fig ; 1 � i � n be a zero-mean martingale with dif-ference sequence fXig. Let F0 � F1 be a (not necessarily trivial) �-algebrasuch that E[S1 j F0] = 0. If there exists a sequence of random variablesw1;w2; . . .wn, and a random variable W , such that1. W is F0-measurable,2. Each wi is Fi�1-measurable,3. For all i, jXij � wi with probability 1, and4. Pni=1w2i � W with probability 1,then for any � > 0, Ehe�Sn j F0i � e�2W=2 (5:2)Proof: The proof is by induction on n. Using the convexity of e�x and thefact that E[X1 j F0] = 0, we haveEhe�X1 j F0i � 12 �e��w1 + e�w1� = cosh�w1 � e�2w21=2:44



If n = 1 we are done, since w21 � W . If n is greater than 1, for each i �n�1 let S0i = Si+1�X1 and F 0i = Fi+1. Then fS0i;F 0ig ; 1 � i � n�1 satis�esthe conditions of the lemma with F 00 = F1, w0i = wi+1 and W 0 = W �w21, soby the induction hypothesis Ehe�S0n�1 j F 00i � e�2(W�w21)=2. But then, usingthe fact that E[X j F ] = E[E[X j F 0] j F ] when F � F 0, we can compute:Ehe�Sn j F0i = EhEhe�X1e�(Sn�X1) j F1i j F0i= Ehe�X1Ehe�S0n�1 j F 00i j F0i� Ehe�X1e�2(W�w21)=2 j F0i= e�2(W�w21)=2Ehe�X1 j F0i� e�2(W�w21)=2e�2w21=2= e�2W=2:Theorem 5.4 Let fSi;Fig ; 1 � i � n be a zero-mean martingale withdi�erence sequence fXig. If there exists a sequence of random variablesw1;w2; . . .wn, and a constant W , such that1. Each wi is Fi�1-measurable.2. For all i, jXij � wi with probability 1, and3. Pni=1w2i � W with probability 1,then for any � > 0, Pr[Sn � �] � e��2=2W : (5:3)Proof: By Lemma 5.3, for any � > 0, Ehe�Sni � e�2W=2. Thus by Markov'sinequality Pr[Sn � �] = Prhe�Sn � e��i � e�2W=2e���:Setting � = �=W gives (5.3).Symmetry immediately gives us: 45



Corollary 5.5 For any martingale fSi;Fig satisfying the premises of The-orem 5.4, and any � > 0 Pr[Sn � ��] � e��2=2W : (5:4)Proof: Replace each Si by �Si and apply Theorem 5.4.5.4 Proof of correctnessFor this section we will �x a particular scheduler. We may assume withoutloss of generality that the scheduler is deterministic, because any randominputs the scheduler might use cannot depend on the history of an executionand therefore may also be �xed in advance.Consider the sequence of random variablesX1;X2; . . . where Xi representsthe i-th vote that is decided by some processor executing line 7, or 0 if fewerthan i local coin 
ips occur. For each i let Fi be hX1 . . .Xii, the �-algebragenerated by X1 through Xi. Because the scheduler is deterministic, all ofthe random events in the system preceding the i-th vote are captured in thevariables X1 through Xi�1, and the �-algebra Fi�1 thus determines the entirehistory of the system up to but not including the i-th vote. Furthermore,since the scheduler's behavior depends only on the history of the system,Fi�1 in fact determines the scheduler's choice of which processor will castthe i-th vote. Thus conditioned on Fi�1, Xi is just a random variable whichtakes on the values �w with equal probability for some weight w determinedby the scheduler's choice of which processor to run. Hence E[Xi j Fi�1] = 0,and the sequence of partial sums Si = Pij=1Xi is a martingale relative tofFig.We are not going to analyze fSi;Fig directly. Instead, it will be used asa base on which other martingales will be built using Theorem 5.1.Let �i = 1 ifPij=1X2j � K and 0 otherwise. Votes for which �i = 1 will becalled common votes. For each processor P let �P;i = 1 if the vote Xi occursbefore P reads, during its �nal read in line 13, the register of the processordeciding Xi, and let �P;i = 0 otherwise. In e�ect, �P;i is the indicator variablefor whether P would see Xi if it were written out immediately. Observethat for a �xed scheduler the values of both �i and �P;i can be determined byexamining the history of the system up to but not including the timewhen the46



vote Xi is cast, and thus both �i and �P;i are Fi�1-measurable. Consequentlythe sequences nPij=1 �jXjo and nPij=1 �P;jXjo are martingales relative tofFig by Theorem 5.1. Votes for which �P;i = 1 but �i = 0 will be referred toas the extra votes for processor P . (Observe that �P;i � �i since P couldnot have started its �nal read until the total variance was at least K.) Thesequence nPij=1(�P;i � �i)Xio of the partial sums of these extra votes is adi�erence of martingales and is thus also a martingale relative to fFig.The structure of the proof of correctness is as follows. First, we showthat the distribution of the total common vote, P �iXi, is close to a normaldistribution with mean 0 and variance K for suitable choices of a and K;in particular, for n su�ciently large, the probability that P�iXi > xpKwill be at least a constant for any �xed x. Next, we complete the proof byshowing that if the total common vote is far from the origin the chancesthat any processor will read a total vote whose sign di�ers from the commonvote is small. This fact is itself shown in two steps. First, it is shownthat, for suitable choice of c, the total of the extra votes for a processor P ,P(�P;i � �i)Xi, will be small with high probability. Second, a bound � isderived on the di�erence between P �P;iXi and the total vote actually readby P .It will be necessary to select values for a, K, and c that give the correctbounds on the probabilities. However, we will be in a better position tojustify our choice for these parameters after we have developed more of theanalysis, so the choice of parameters will be deferred until Section 5.4.5.5.4.1 Phases of the protocolWe begin by de�ning the phases of the protocol more carefully. Let ti bethe value of the i-th processor's internal variable t at any given step of theprotocol. Let Ui be the random variable representing the maximum value ofti during the entire execution of the protocol. Let Ti be the random variablerepresenting the maximum value of ti during the part of the execution of theprotocol where �i = 1.In the proof of correctness we will encounter many quantities of the formPni=1 �(Ti) or Pni=1 �(Ui) for various functions �. We will want to get boundson these quantities without having to look too closely at the particular valuesof each Ti or Ui. This section proves several very general inequalities about47



quantities of this form, all of which are ultimately based on the followingconstraint: K �Xi TiXj=1 j2a �Xi Z Ti0 j2a dj =Xi Ti2a+12a+ 1 : (5:5)The constant 2a+ 1 will reappear often; for convenience we will write it asA. As noted above, a � 0, and hence A � 1.De�ne TK = �AKn �1=A, so that K = nTAKA . The constant TK representsthe maximum value of each Ti if they are set to be equal while satisfyinginequality (5.5). Note that TK need not be integral. Now we can show:Lemma 5.6 Let  (x) = xA=A and let � be any strictly increasing functionsuch that � �1 is concave. Then for any non-negative fxig, if Pni=1  (xi) �K, then Pni=1 �(xi) � n�(TK).Proof: Since � �1 is concave, we have��1  X �(xi)n ! �  �1  X  (xi)n ![HLP52, Theorem 92]. Simple algebraic manipulation yieldsX�(xi) � n�  �1  X  (xi)n !!But  �1  X  (xi)n ! =  �1  1nX xiAA ! �  �1 �Kn � = TK:Hence P�(xi) � n�(TK).Letting � be the identity function we have � �1(x) = (Ax)1=A, which isconcave for A � 1. Hence:Corollary 5.7 nXi=1 Ti � nTK: (5:6)In the case where � �1 is convex, the following lemma applies instead:48



Lemma 5.8 Let  (x) = xA=A and let � be any strictly increasing functionsuch that � �1 is convex. Then for any non-negative fxig, if Pni=1 xAi =A �K, then Pni=1 �(xi) � (n� 1)�(0) + �(n1=ATK).Proof: Let Y = P (xi). Now �(xi) = � �1 (xi) or� �1   1 �  (xi)Y ! 0 +  (xi)Y Y !which is at most  1 �  (xi)Y !� �1(0) +  (xi)Y � �1(Y )given the convexity of � �1. HencenXi=1 �(xi) � n� �1(0)�  nXi=1  (xi)Y !� �1(0) +  nXi=1  (xi)Y !� �1(Y )= (n � 1)� �1(0) + � �1  nXi=1  (xi)!� (n � 1)� �1(0) + � �1(K)which is just (n� 1)�(0) + � �n1=ATK�.The quantity n1=ATK is the maximum value that any xi can take onwithout violating the constraint on Pxi. So what Lemma 5.8 says is thatif � �1 is convex, P�(xi) is maximized by maximizing one of the xi whilesetting the rest to zero.For the variables Ui we can show:Lemma 5.9 Let  (x) = xA=A and let � be any strictly increasing functionsuch that �( �1(x)+ c+1) is concave in x. Then for any non-negative fxig,if Pni=1  (xi) � K, then nXi=1 �(Ui) � n�(TK + c+ 1) (5:7)49



Proof: LetWi be the number of votes written to the registers during the partof the execution where the total of the register variance �elds is less than orequal to K. The set of variables fWig satis�es the inequality PWAi =A � Kusing the same argument as gives (5.5). Furthermore Ui �Wi+1+c, becauseafter the i-th processor's next vote the total variance in the registers mustexceed K and it can cast at most c more votes before noticing this fact.De�ne �0(x) = �(x+ c+1). Then �(Ui) � �(Wi+c+1) = �0(Wi). But  ;�0satisfy the premises of Lemma 5.6 and thus Pni=1 �(Ui) � Pni=1 �0(Wi) �n�0(TK) = n�(TK + c+ 1):Setting �(x) to x givesCorollary 5.10 nXi=1 Ui � n(TK + c+ 1) (5:8)Proof: �( �1(x) + c+ 1) = Ax1=A + c+ 1, which is concave since A � 1.De�ne g = 1 + c+3TK ; then gTK = TK + c + 3 will be an upper bound forTK + c + 1 as well as a number of closely related constants involving c thatwill appear later.5.4.2 Common votesThe purpose of this section is to show that for n su�ciently large, the totalcommon vote is far from the origin with constant probability. We do so byshowing that under the right conditions the total common vote will be nearlynormally distributed.Let SK;i = Pij=1 �jXj . As pointed out above, nSK;i =Pij=1 �jXj ;Fio isa martingale. Let N = dnTKe. It follows from Corollary 5.7 that �i = 0 fori > N and thus SK;N = limi!1 SK;i is the sum of all the common votes. Thedistribution of SK;N is characterized in the following lemma.Lemma 5.11 If 6A2n1=ATK � 1; (5:9)then for any x,���PrhSK;N � xpKi� �(x)��� � C1 � An1=ATK�1=5 (5:10)50



where C1 is an absolute constant.Proof: The proof uses Theorem 5.2, which requires that the martingale benormalized so that the total conditional variance V 2N is close to 1. So letYi = �iXipK and consider the martingale nPij=1 Yj;Fio. To apply the theoremwe need to compute a bound on the value LN . We will �x � = 1.We begin by getting a bound on the �rst term PEhjYij2+2�i. We haveNXi=1EhjYij4i = E" NXi=1 jYij4# = 1K2E" NXi=1 j�iXij4# = 1K2E24 nXi=1 TiXj=1 j4a35 (5:11)Now, TiXj=1 j4a � Z Ti0 j4a dj + T 4ai = T 4a+1i4a+ 1 + T 4ai :De�ne  (x) = xA=A; �(x) = x4a + x4a+14a+1 , taking 00 = 1. Then � �1(y) =(Ay)4a=A + (Ay)(4a+1)=A4a+1 is convex, and hence Pni=1 �T 4ai + T 4a+1i4a+1 � is at most(n1=ATK)4a+ (n1=ATK)4a+14a+1 +(n�1)�(0) using Lemma 5.8. If a is positive then�(0) is zero; however if a is zero �(0) will be 1. In either case (n� 1)�(0) �n� 1. Plugging everything value back into (5.11) givesNXi=1 EhjYij4i � (n1=ATK)4aK2 + (n1=ATK)4a+1K2(4a+ 1) + n� 1K2 : (5:12)For the second term EhjV 2N � 1j1+�i, observe thatV 2N = NXi=1EhY 2i j Fi�1i = 1K NXi=1 Eh(�iXi)2 j Fi�1i ;which is just 1=K times the sum of the squares of the weights jXij of thecommon votes. But the total variance of the common votes can di�er fromK by at most the variance of the �rst vote Xi for which �i = 0. Since theprocessor that casts this vote can have cast at most n1=ATK votes beforehand,the variance of this vote is at most �n1=ATK + 1�2a, giving the boundjV 2N � 1j1+� � 1K �n1=ATK + 1�2a : (5:13)51



Combining (5.12) and (5.13) givesLN � (n1=ATK)4aK2 + (n1=ATK)4a+1K2(4a+ 1) + n� 1K2 + �n1=ATK + 1�2aK= n4a=AT 4aKK2 + n(4a+1)=AT 4a+1KK2(4a+ 1) + A2(n� 1)n2T 2AK+ n2a=AT 2aK (1 + n�1=AT�1K )2aK� A2n�2=AT�2K + A2n�1=AT�1K4a+ 1 +A2n�1T�2AK+An�1=AT�1K en�2a=AT�2aK� 6A2n1=ATKThe second-to-last step uses the approximation (1+x)b � ebx for non-negativeb and x. The exponential term is serendipitously bounded by e if (5.9) holds,since 6A2(n1=ATK)�1 � 1 implies that (n1=ATK)�2a is also at most 1.A more direct application of (5.9) shows that LN � 1, and thus Theorem5.2 applies. Hence���PrhX�iXi � xpKi� �(x)��� = �����Pr" NXi=1 Yi � x#� �(x)������ C  6A2n1=ATK!1=5 11 + jxj16=5!� C1  A2n1=ATK!1=5 :5.4.3 Extra votesIn this section we examine the extra votes from the point of view of a par-ticular processor P .Recall that �P;i is de�ned to be 1 if the vote Xi is cast by some processor Qbefore P 's �nal read of Q's register and 0 otherwise. Clearly, �P;i � �i since P52



could not have started its �nal read until the total variance exceeded K. Asdiscussed above, both �P;i and �i are Fi�1-measurable. Thus �i = �P;i � �i isa 0�1 random variable that is Fi�1-measurable, and nSP;i = Pij=1 �jXj;Fiois a martingale by Theorem 5.1.De�ne � = n(gTK)a. The following lemma shows a bound on the tails ofP �iXi.Lemma 5.12 For any x > 0, ifga � dsTKnA (5:14)holds for some positive d < x, andgA � 1 + (x� d)22 log(n=p) (5:15)holds for some positive p < n, then for each processor P ,PrhX(�P;i � �i)Xi � �� xpKi � p=n: (5:16)Proof: The proof uses Corollary 5.5, so we proceed by showing that itspremises (stated in Theorem 5.4) are satis�ed.By Corollary 5.10, Xi and thus �iXi is zero for i > n(TK + c + 1). SoP �iXi = SP;M where M = n(TK + c+ 1).Set wi = j�iXij. Then the �rst premise of Corollary 5.5 follows from thefact that for each i, �i and jXij are both Fi-measurable. The second premiseis immediate. For the third premise, notice thatX(j�iXij)2 =X �iX2i =X �P;iX2i �X �iX2i �XX2i �X�iX2i :The �rst term is XX2i = nXi=1 UiXj=1 j2a:The second term is X�iX2i � K � t2a53



for some t which is at most Ui for some i. ThusX(j�iXij)2 � �K + t2a + nXi=1 UiXj=1 j2a< �K + nXi=1 Ui+1Xj=1 j2a� �K + nXi=1(Ui + 2)A=A: (5.17)Let �(x) = (x+ 2)A=A. Then� � �1 (y) + c+ 1� = �(Ay)1=A + c+ 3�AA= 1A AXk=0 Ak!(Ay)k=A(c+ 3)A�kFor y � 0, the second derivative of each term is either 0 (when k = A) ornegative; thus �( �1(y) + c+ 1) is concave and Lemma 5.9 givesnXi=1 (Ui + 2)AA � n�(TK + c+ 1) = n(TK + c+ 3)AA � n(gTK)AA : (5:18)It follows from (5.17) and (5.18) thatX(j�iXij)2 � n(gTK)AA �K = K(gA � 1)Applying (5.4) from Corollary 5.5 now yields, for all � > 0,Pr[SP;M � ��] � e��2=2K(gA�1): (5:19)If (5.14) holds, then � � dpK by Lemma 5.13. SoPrhX �iXi � �� xpKi � PrhSP;M � �(x� d)pKi� e�(x�d)2K=2K(gA�1)= e�(x�d)2=2(gA�1):54



But if (5.15) holds then gA � 1 � (x� d)22 log(n=p)and, since log(n=p) > 0 and g > 1,� (x� d)22(gA � 1) � � log(n=p) = log(p=n);From which it follows thate�(x�d)2=2(gA�1) � elog(p=n) = p=n:5.4.4 Written votes vs. decided votesIn this section we show that the di�erence between P �P;iXi and the totalvote actually read by P is bounded by � = n(gTK)a.Lemma 5.13 Let RP be the sum of the votes read during P 's �nal read.Then ���X �P;iXi �RP ��� � n(Tk + c+ 1)a � n(gTK)a = � (5:20)Proof: Suppose �P;i = 1, and suppose Xi is decided by processor Pj . If thevote Xi is not included in the value read by P , it must have been decidedbefore P 's read of Pj 's register but written afterwards. Because each voteis written out before the next vote is decided there can be at most one votefrom Pj which is included in P �P;iXi but is not actually read by P . Thisvote has weight at most Uaj . So we have jP �P;iXi �RP j �Pni=1 Uai Now let�(x) = xa. Then� � �1(y) + c+ 1� = �(Ay)1=A + c+ 1�a = aXk=0 ak!(Ay)k=A(c+ 1)a�kwhich is concave since the second derivative of each term of the sum is neg-ative. The rest follows from Lemma 5.9.55



5.4.5 Choice of parametersLet us summarize the proof of correctness in a single theorem:Theorem 5.14 De�ne A = 2a+ 1TK = �AKn �1=Ag = 1 + c+ 3TKand suppose there exist d > 0, x > d and positive p < n such that all of thefollowing hold: ga � dsTKnA (5.21)gA � 1 + (x� d)22 log(n=p) (5.22)6A2n1=ATK � 1 (5.23)Then the protocol implements a shared coin with agreement parameter at least1� 24�(x) + C1  A2n1=ATK!1=5 + p35 (5:24)where C1 is the constant from Lemma 5.11.Proof: To show that the agreement parameter is at least (5.24) we mustshow that for each z 2 f0; 1g the probability that all processors decide z isat least (5.24). Without loss of generality let us consider only the probabilitythat all processors decide 1; the case of all processors deciding 0 follows bysymmetry.Recall the de�nition � = n(gTK)a. Suppose that P�iXi > xpK, andthat for each processor P , P(�P;i � �i)Xi > �� xpK. Then for each P wehave P �P;iXi > � and by Lemma 5.13 P reads a value greater than 0 duringits �nal read and thus decides 1. 56



Now for this event not to occur, we must either have P�iXi � xpKor P(�P;i � �i)Xi � � � xpK for some P . But as the probability of aunion of events never exceeds the sum of the probabilities of the events, theprobability of failing in any of these ways is at mostPrhX�iXi � xpKi+XP PrhX(�P;i � �i)Xi � �� xpKi� 24�(x) + C1 A2n1=ATK!1=535+ n(p=n) (5.25)by Lemmas 5.11 and 5.12. So the probability some processor decides 0 is atmost (5.25), and thus the probability that all processors decide 1 is at least1 minus (5.25).The running time of the protocol is more easily shown:Theorem 5.15 No processor executes more than (AK)1=A(2+n=c)+2c+2nregister operations during an execution of the shared coin protocol.Proof: First consider the maximum number of votes a processor can cast.After (AK)1=A votes the total variance of the processor's votes will be(AK)1=AXx=1 x2a > Z (AK)1=A0 x2a dx = �(AK)1=A�AA = K;so after at most an additional c votes the processor will execute line 11 ofFigure 5.1 and see a total variance greater than K. Thus each processorcasts at most (AK)1=A + c votes. But each vote costs 1 write operation inline 8, and every c votes costs n reads in line 11, to which must be addeda one-time cost of n reads in line 13. The total number of operations isthus at most �(AK)1=A + c� (1 + dn=ce) + n � ((AK)1=A+ c)(2 +n=c)+n =(AK)1=A(2 + n=c) + 2c + 2n.It remains only to �nd values for a, K, and c which give both a constantagreement parameter and a reasonable running time. As a warm-up, let usconsider what happens if we emulate the protocol of Bracha and Rachman[BR91]:Theorem 5.16 If a = 0, K = 4n2, and c = n4 logn �3, then for n su�cientlylarge the protocol implements a shared coin with agreement parameter at least0:05 in which each processor executes at most O(n2 log n) operations.57



Proof: For the agreement parameter, we have A = 1, TK = 4n, and g =1 + 1=16 log n. Let d = 1=2, x = 1, and p = 1=10. Then (5.21) holds sincega = 1 � dqTK=nA = 1. Furthermore, 1 + (x� d)22 log(n=p)!1=A = 1 + 18(log n� log p)� 1 + 116 log nwhen n2 > 1=p. Thus (5.22) holds. The remaining inequality (5.23) holdsfor n � 2, so by Theorem 5.14 we have a probability of failure of at most�(1) + C1 � 14n2�1=5 + p� 0:842 +O� 1n2=5�+ 0:1which is not more than 0:942 + � for n su�ciently large. In particular forn greater than some n0 this quantity is at most 0:95, and the agreementparameter is thus at least 1 � 0:95.The running time is immediate from Theorem 5.15.Now consider what happens if a is not restricted to be a constant 0.Theorem 5.17 If a = (log n� 1)=2, K = (16n log n)logn(n= log n), and c =n=logn�3, then for n su�ciently large the protocol implements a shared coinwith constant agreement parameter in which each processor executes at mostO(n log2 n) operations.Proof: We have A = log n, TK = 16n log n, and g = 1+ 116 log2 n . Let d = 1=2,x = 1, and p = 1=10.We want to apply Theorem 5.14, so �rst we verify that its premises aresatis�ed. To show (5.21), computega =  1 + 116 log2 n!(logn�1)=2 � e(logn�1)=32 log2 n � e1=32logn58



which for n � 2 will be less than dqTK=nA = 2. To show (5.22), note thatgA =  1 + 116 log2 n!logn � e1=16lognand thus log(gA) � 1=16 log n. Butlog 1 + (x� d)22 log(n=p)! = log 1 + 18 log(n=p)!� 18 log(n=p) � 1128 log2(n=p)= 18(log n � log p) � 1128(log n � log p)2(using the approximation log(1 + x) � x � 12x2). For su�ciently large nthis quantity exceeds 1=16 log n and (5.22) holds. The remaining constraint(5.23) is easily veri�ed, and thus Theorem 5.14 applies and the agreementparameter is at least1 � 24�(1) + C1  log2 nn1= logn(16n log n)!1=5 + 1=1035� 1� �0:842 +O �(log n=n)1=5�+ 0:10�which is at least 0:05 for su�ciently large n. Thus the protocol gives aconstant agreement parameter.Now by Theorem 5.15, the number of operations executed by any singleprocessor is at most (AK)1=A(2 + n=c) + 2c+ 2n, or(log n)1= logn(16n log n)(n= log n)1= lognO(log n) +O(n)which is O(n log2 n).It follows immediately that plugging a coin with the parameters of The-orem 5.17 into the consensus protocol construction of Chapter 3 gives aconsensus protocol that requires an expected O(n log2 n) operations per pro-cessor. It is not di�cult to see that the best bound we can place on the totalnumber of operations is in fact n times this quantity, or O(n2 log2 n). Theworst case is when each processor casts the same number of common votes.59



Chapter 6Conclusions and OpenProblemsIn this thesis I have shown:� A simple algorithm for a robust wait-free shared coin with bias at most� which runs in an expected O(n4=�2) total register operations.� A modi�cation of this algorithm that achieves consensus in an expectedO(n4) total register operations, and which can be implemented usingonly three atomic counters.� The asymptotically fastest known wait-free consensus protocol in theper-processor measure, based on a shared coin that requires only anexpected O(n log2 n) register operations per processor to achieve a con-stant agreement parameter.This chapter discusses how these results �t into the history of wait-freeconsensus, and what di�culties need to be overcome to make further im-provements. It concludes with a list of open problems.6.1 Comparison with other protocolsTable 6.1 gives a comparison of the running times of wait-free consensusprotocols for the shared-memory model. In this table the quantity p is the60



Expected operationsPer processor TotalAbrahamson [Abr88] 2O(n2) 2O(n2)Aspnes and Herlihy [AH90a] O(n4) O(n4)Attiya, Dolev, and Shavit [ADS89] O(n4) O(n4)Chapter 4 ([Asp90]) O(n2(p2 + n)) O(n2(p2 + n))Bracha and Rachman [BR90] O(n(p2 + n)) O(n(p2 + n))Dwork et al. [DHPW92] O(n(p2 + n)) O(n(p2 + n))Saks, Shavit, and Woll [SSW91] O(n4) O(n4)Bracha and Rachman [BR91] O(n2 log n) O(n2 log n)Chapter 5 ([AW92]) O(n log2 n) O(n2 log2 n)Table 6.1: Comparison of consensus protocols.number of active processors as de�ned in Section 4.4. The �rst known pro-tocol was the exponential protocol of Abrahamson [Abr88]. The �rst knownpolynomial-time protocol was that of Aspnes and Herlihy [AH90a]. Attiya,Dolev, and Shavit [ADS89] described a modi�cation of this protocol whichrequired only a bounded amount of space, but which retained the spirit ofthe rounds-based structure of the Aspnes-Herlihy protocol.The protocol of Chapter 4, which also appears in [Asp90], was the �rst toeliminate the use of rounds by using a robust shared coin. Since its �rst ap-pearance its performance was improved by a factor of n by Bracha and Rach-man [BR90] and by Dwork et al. [DHPW92]. Both groups achieved the im-provement by replacing the O(n2) implementation of an atomic counter witha weaker primitive that required only O(n) register operations per counteroperation, and acted su�ciently like a counter to make the consensus proto-col work.The �rst protocol to use the idea of casting votes until a quorum is reached(instead of until a su�ciently large margin of victory is reached) was thatof Saks, Shavit, and Woll [SSW91]. Their protocol was optimized for thespecial case where nearly all of the processors are running in lockstep. Brachaand Rachman [BR91] noticed that the protocol could be sped up by havingeach processor read all the registers only after every O(n= log n) votes; theresulting protocol is a special case of the protocol of Chapter 5 obtained bysetting a to 0. The protocol of Chapter 5, which also appears in [AW92], isthe �rst to use votes of unequal weight, and as a result is the �rst for which61



the maximum expected number of operations executed by a single processoris more than a constant factor less than the maximum executed by all of theprocessors together.6.2 Limits to wait-free consensusThe table shows a considerable evolution of wait-free consensus protocolssince Abrahamson's exponential solution. It is natural to ask how muchbetter consensus protocols can still get.One limitation we quickly run into is the following. If a processor is run-ning by itself, it must read every other processor's register at least once. Ifnot, it cannot distinguish the situation where it really ran �rst all by itselffrom the situation where some other processor (whose register it has not read)ran to completion before it started. In the latter case the processor would berequired by the consistency condition to agree with its unseen predecessor;but without reading that predecessor's register it would have no way of know-ing which value to choose. Thus in any wait-free consensus protocol someprocessor can always be forced to execute at least n � 1 read operations.This 
(n) lower bound is una�ected even if the adversary is substantiallyweakened; the argument remains valid, for example, if the adversary is notallowed to see the internal states of processors or even if it is required tospecify all of its scheduling decisions before the protocol starts. So in factthe O(n log2 n) protocol we have described here is close to the best we canhope for in the per-processor measure, given the assumption of single-writerregisters, even against relatively weak adversaries.On the other hand, the question of how far the total number of opera-tions can be reduced does not have as easy an answer. That some processorcan be forced to execute 
(n) operations does not mean that all processorscan be forced to; it could be the case that if the processors cooperate theycould collectively gather information about the state of the system fasterthan they would independently. In fact, the best known lower bound forexpected total operations is only 
(n log n), based on the minimum num-ber of operations needed to communicate every processor's state to everyother processor [SSW91]. Furthermore, the fact that the protocol of [BR91]achieves a bound of O(n2 log n) on total work shows that some improvementis possible on our protocol, though possibly only at the expense of increasing62



the per-processor bound.However, to get below 
(n2) operations will require at least two break-throughs. The �rst problem is that all of the algorithms we currently haverequire that every processor read every other processor's register directly atsome point, which takes �(n2) total operations. It seems likely that somesort of randomized cooperative technique could allow this dissemination ofinformation to proceed more quickly (possibly at the cost of using very largeregisters); but at present no such technique is known.The second problem is that to reduce the total number of operations below
(n2) it will be necessary to reduce the number of local random choices below
(n2), as local coin-
ips that have no writes between them e�ectively con-solidate into a single random choice from the point of view of the scheduler.This problem appears more di�cult than the �rst, as it requires abandoningthe voting technique at the heart of all currently known wait-free consen-sus protocols. The reason is that in these protocols, the scheduler's poweronly becomes limited when the standard deviation of the total vote becomescomparable to the sum of the votes that the scheduler can withhold. Withunweighted votes, 
(n2) votes are required; for weighted votes the situationis only made worse, as increasing the weight of some votes increases the sumof the withheld votes more quickly than it increases the standard deviation ofthe total vote. It appears that it will be di�cult to get below 
(n2) withoutadopting some decision method that takes more account of the ordering ofevents in the system.6.3 Open problemsThe consensus protocol described in Chapter 5 comes quite close to the limitsof current methods for solving wait-free consensus. Aside from optimizationssuch as eliminating the log n factors from the per-processor bound or reducingthe value of n at which the protocol becomes practical, essentially the onlyquestion remaining is whether the total number of operations can be reducedsubstantially. There are several questions whose answers would shed light onthis problem, as well as many other problems in the area:1. Is it possible in the asynchronous shared-memory model for n proces-sors to collectively read n registers in fewer than �(n2) total operations?63



2. Does every consensus protocol contain a shared coin?3. Can a shared coin with constant agreement parameter be built thatrequires less than 
(n2) total operations? (A closely related question:can a shared coin of arbitrarily small bias � run in less than 
(n2=�2)total operations?)
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