
Lower Bounds for Distributed Coin-Flipping and Randomized ConsensusJames Aspnes �AbstractWe examine a class of collective coin-ipping gamesthat arises from randomized distributed algorithms withhalting failures. In these games, a sequence of local coinips is generated, which must be combined to form asingle global coin ip. An adversary monitors the gameand may attempt to bias its outcome by hiding the re-sult of up to t local coin ips. We show that to guaran-tee at most constant bias, 
(t2) local coins are needed,even if (a) the local coins can have arbitrary distribu-tions and ranges, (b) the adversary is required to de-cide immediately whether to hide or reveal each localcoin, and (c) the game can detect which local coins havebeen hidden. If the adversary is permitted to controlthe outcome of the coin except for cases whose prob-ability is polynomial in t, 
(t2= log2 t) local coins areneeded. Combining this fact with an extended versionof the well-known Fischer-Lynch-Paterson impossibilityproof of deterministic consensus, we show that givenan adaptive adversary, any t-resilient asynchronous con-sensus protocol requires 
(t2= log2 t) local coin ips inany model that can be simulated deterministically usingatomic registers. This gives the �rst non-trivial lowerbound on the total work required by wait-free consensusand is tight to within logarithmic factors.1 IntroductionOur results divide naturally into two parts: a lowerbound for asynchronous randomized consensus in a widevariety of models, and a still more general lower boundfor a large class of collective coin-ipping games that�Yale University, Department of Computer Science, 51Prospect Street/P.O. Box 208285, New Haven, CT 06520-8285.Supported by NSF grants CCR-9410228 and CCR-9415410. E-mail: aspnes@cs.yale.edu.

forms the basis of the consensus lower bound but is in-teresting in its own right.Consensus is a fundamental problem in distributedcomputing in which a group of processes must agree ona bit despite the interference of an adversary. (An addi-tional condition forbids trivial solutions that always pro-duce the same answer). In an asynchronous setting, ithas long been known that if an adversary can halt a sin-gle process, then no deterministic consensus algorithmis possible without the use of powerful synchronizationprimitives [CIL87, DDS87, FLP85, Her91, LAA87].In contrast, randomized algorithms can solve con-sensus in a shared-memory system for n processes evenif the adversary can halt up to n � 1 processes. Suchalgorithms are called wait-free [Her91] because any pro-cess can �nish the algorithm without waiting for slower(or possibly dead) processes. These algorithms workeven under the assumption that failures and the tim-ing of all events in the system are under the control ofan adaptive adversary| one that can observe and reactto all aspects of the system's execution (including theinternal states of the processes).The �rst known algorithm that solves shared-memory consensus against an adaptive adversary isthe exponential-time algorithm of Abrahamson [Abr88];since its appearance, numerous polynomial-time algo-rithms have appeared [AH90, ADS89, SSW91, Asp93,DHPW92, BR90, BR91, AW96]. Most of these algo-rithms are built around shared coin protocols in whichthe processes individually generate many random �1 lo-cal coin ips, which are combined by majority voting.The adversary may bias the outcome of the voting byselectively killing processes that have chosen to vote the\wrong" way before they can reveal their most recentvotes to the other processes. To prevent the adversaryfrom getting more than a constant bias, it is necessaryto collect enough votes that the hidden votes shift theoutcome by no more than a constant number of stan-dard deviations. With up to n � 1 failures (as in thewait-free case), this requires a total of 
(n2) local coin-ips, and at least 
(n2) work in order to communicatethese coin-ips.11Some of the algorithms deviate slightly from the simple



Improvements in other aspects of consensus algo-rithms have steadily brought their costs down, from theO(n4) total work of [AH90] to the O(n2 log n) total workof [BR91]. But while these algorithms have steadily ap-proached the 
(n2) barrier, none have broken it. How-ever, no proof was known that consensus could not besolved in less than 
(n2) time; the barrier was solely aresult of the apparent absence of alternatives to usingshared coins based on majority voting. Indeed, it wasasked in [Asp93] if it was necessarily the case that (a) ev-ery consensus protocol contained an embedded sharedcoin protocol; and (b) no shared coin protocol couldachieve better performance than majority voting.1.1 Our ResultsIn this paper we answer both of these questions, thoughthe answers are not as simple as might have been hoped.We show that (a) every t-resilient asynchronous consen-sus protocol in the shared-memory model, with at leastconstant probability, either executes a shared coin pro-tocol with bias at most one minus a polynomial in t orcarries out an expected 
(t2) local coin-ips avoidingit; and (b) any such shared coin protocol requires anexpected 
(t2= log2 t) local coin ips. It follows thatt-resilient asynchronous consensus requires an expected
(t2= log2 t) local coin ips. Since protocols based onmajority voting require only O(t2) local coin ips, thislower bound is very close to being tight.Since we are counting coin-ips rather than opera-tions, the lower bound is not a�ected by deterministicsimulations. So, for example, it continues to hold inmessage-passing models with up to t process failures(since a message channel can be simulated by an un-boundedly large register), or in a shared-memory modelwith counters or cheap atomic snapshots. Furthermore,since our lower bound assumes that local coin ips canhave arbitrary ranges and distributions, we may assumewithout loss of generality that any two successive coin-ips by the same process are separated by at least onedeterministic operation in any of these models| so thelower bound on local coin-ips in fact implies a lowerbound on total work.The lower bound on coin-ipping games is still moregeneral, and holds in any model in which the adversarymay intercept up to t local coin-ips before they are re-vealed, no matter what (deterministic) synchronizationprimitives or shared objects are available. Furthermore,it is tight in the sense that it shows that no constant-biasshared coin can use less than 
(t2) local coins, a boundachieved (ignoring constants) by majority voting.majority-voting approach described here. In the algorithm ofAspnes [Asp93], some votes are generated deterministically. Inthe algorithm of Saks, Shavit, and Woll [SSW91], several coin-ipping protocols optimized for di�erent execution patterns arerun in parallel. In the algorithm of Aspnes and Waarts [AW96],processes that have already cast many votes generate votes withincreasing weights in order to �nish the protocol quickly. How-ever, none of these protocols costs less than simple majority vot-ing in terms of the expected total number of local coin ipsperformed in the worst case.

1.2 Related WorkMany varieties of collective coin-ipping games havebeen studied, starting with the work of Ben-Or andLinial [BOL85]. Many such games assume that the lo-cations of faulty coins are �xed in advance; under theseassumptions very e�cient games exist [AN90, CL93,BOL85, Sak89]. Another assumption that greatly lim-its the power of the adversary is to require that boththe locations and values of faulty coins are �xed in ad-vance; this is the bit extraction problem [CFG+85, Fri92,Vaz85], in which it is possible to derive completely un-biased random bits.If none of these limiting assumptions are made, theadversary gains considerably more power. An excellentsurvey of results for a wide variety of models involvingfair or nearly fair two-valued local coins can be foundin [BOLS87]. Our work di�ers from these in that weallow arbitrary distributions on the local coins. With arestriction to fair coins, Harper's isoperimetric inequal-ity for the hypercube [Har66] implies that the majorityfunction gives the least power to an o�-line adversarythat can see all coins before deciding which to change;and Lichtenstein, Linial, and Saks [LLS89] have shownthat majority is also optimal against an on-line adver-sary similar to the one we consider here. Without such arestriction, the best previously known bound is a boundof 
(1=pn) on the inuence of an adversary that canhide one coin; this is an easy corollary of a theoremabout gaps in martingale sequences due to Cleve andImpagliazzo [CI93].A very nice lower bound on the space used by wait-free shared-memory consensus is due to Fich, Herlihy,and Shavit [FHS93]. They show that any such consensusprotocol must use 
(pn) distinct registers to guaran-tee agreement. Unfortunately, their techniques do notappear to generalize to showing lower bounds on work.2 Coin-Flipping GamesA collective coin-ipping game [BOL85] is an algorithmfor combining many local coins into a single global coin,whose bias should be small even though some of thelocal coins may be obscured by a malicious adversary.Though the particular coin-ipping games we considerhere are motivated by their application to proving lowerbounds on distributed algorithms with failures, they ab-stract away almost all of the details of the original dis-tributed systems and are thus likely to be useful in othercontexts.We assume that the local coins are independent ran-dom variables whose ranges and distributions are arbi-trary. The values of these variables are revealed one ata time to an adversary who must immediately choosewhether to reveal or obscure each value. If the adver-sary chooses to obscure the value of a particular localcoin, the e�ect is to replace it with a default value ?.Repeating this process yields a sequence of values, some



of which are the original values of the random variableand some of which are ?. A function is applied to thissequence to yield an outcome, which may be arbitrarybut which we will usually require to be �1. The adver-sary's power is limited by an upper bound on how manycoins it may obscure.Note that in this description we assume that theadversary cannot predict future local coins; it can onlybase its decision to reveal or obscure a particular coin onits value and the values of earlier coins. In addition, theadversary's interventions are visible. The coin-ippinggame may observe and react to the fact that the adver-sary has chosen to obscure particular local coins, eventhough it has no access to the true values of those coins.Formally, a coin-ipping game is speci�ed by a tree.The leaves of the tree specify the outcomes of the game.Internal nodes correspond to local coin-ips. Coin-ipping games are de�ned recursively as follows. Fixa set of possible outcomes. A coin-ipping game G withmaximum length zero consists of a single outcome; wewill call such a game a constant game and abuse nota-tion by writing its outcome simply as G. A coin-ippinggame G with maximum length n is either a constantgame or consists of1. A random variable representing the �rst local coin-ip in G.2. A function mapping the range of this random vari-able to the set of coin-ipping games with maxi-mum length less than n (the subgames of G). Foreach value � in this range, the resulting subgameis denoted G�.3. A default subgame G? with maximum length lessthan n, corresponding to the e�ect of an adversarychoice to hide the �rst local coin-ip in G.The above de�nition represents a coin-ipping gameas a tree; if we think of G as the root of the tree its chil-dren are the subgames G� for each value of � and thedefault subgame G?. The actual game tree correspond-ing to playing the game against an adversary is a bitmore complicated and involves two plies for each levelof G. We may think of the states of this game as pairs(G;k) specifying the current subgame G and the limitk on how many local coins the adversary may hide (i.e.,the number of faults). To execute the �rst local coin-ip in G, two steps occur. First, the outcome � of thecoin-ip is determined. Second, the adversary choosesbetween revealing �, leading to the state (G�; k); orhiding �, leading to the state (G?; k � 1).In order to prevent the adversary from being able topredict the future or the game from being able to deduceinformation about obscured coins, we demand that allrandom variables on any path through the game tree beindependent.An adversary strategy speci�es for each partial se-quence of local coin-ips whether to hide or reveal the

last coin. We will write G � A for the random variabledescribing the outcome of G when run under the con-trol of an adversary strategy A. If a game G has real-valued outcomes, then for each number of faults k thereexist adversary strategies to maximize or minimize theexpected outcome. De�ne MkG to be the maximum ex-pected outcome and mkG to be the minimum expectedoutcome. These values can be computed recursively asfollows:� If G has length 0, MkG =mkG = G.� If G has positive length, thenMk(G) = E� [max (MkG�;Mk�1G?)] (1)mk(G) = E� [min (mkG�;mk�1G?)] : (2)Most of the time we will assume that the only possi-ble outcomes of a game are �1. In this case the quanti-tiesMk andmk give a measure of how much inuence anadversary with the ability to hide k local coin-ips canget over the outcome. It is necessary to consider bothat once: as we will see later, it is always possible to�nd a game with maximum length n whose minimumexpected outcome mk can be any value in the range[�1; 1]. We will be interested in the best such game,i.e., the one that attains a particular value of mk whileminimizing Mk (or, symmetrically, the game that max-imizes mk for a particular �xed Mk). In general it willturn out to be quite di�cult to �nd this game exactly(although much can be shown about its structure), andso it will be necessary to settle for a lower bound onMkG as a function of n, k, and mkG.2.1 The Structure of Optimal GamesFix a maximum length n and number of failures k. Letus de�ne the range of a game G to be the interval[mkG;MkG]. Then G (strictly) dominates G0 just incase the range of G is a (proper) subset of the rangeof G0; in other words, if G gives the adversary no morecontrol than G0 does. A game G is optimal if it eitherdominates all other games G0 with mkG0 =mkG or if itdominates all other games G0 with MkG0 = MkG. Fork < n, this de�nition will turn out to be equivalent tosaying that no game strictly dominates G.With each k and game G we can associate a point ina two-dimensional space given by the coordinates mkGandMkG. From this geometric perspective the problemwe are interested in is �nding for each value of n andk the curve corresponding to the set of optimal gameswith maximum length n and up to k failures.For some values of n and k this task is an easy one. Ifk = 0, then the (n; 0) curve is just the diagonal runningfrom (�1;�1) to (1; 1), since m0G = M0G for all G.If the other extreme holds and k � n, then for anyG either mkG = �1 or MkG = 1, depending on thedefault outcome of G if all local coins are hidden. Itis not di�cult to see that if MnG = 1, then mnG can



be any value between �1 and 1. For example, G couldset its outcome to be the value of the �rst local coin,or 1 if that coin-ip is hidden; if the adversary wishesto achieve an outcome lower than 1 it must let the �rstlocal coin go through. Similar, if mnG = �1 then MnGcan be any value between �1 and 1. Thus the optimal(n;n) curve consists of the line segment from (�1;�1)to (�1; 1) and the line segment from (�1; 1) to (1; 1).Equations (1) and (2) have a nice geometrical in-terpretation that in principle allows one to determinethe (n; k) curves of optimal games of maximum lengthn with k failures. This process is depicted in Figures 1and 2. Fix a game G. Each subgame G� corresponds toa point (mkG�;MkG�), which must lie somewhere onor above the curve of optimal (n � 1; k) games. Thecontribution of G� to the position of G is given by(min(mkG�;mk�1G?);max(MkG�;Mk�1G?)), whichis a point in the intersection of the region above the(n � 1; k) curve and the rectangle of points dominatedby G?. Since the value of G is the average of these con-tributions, it must correspond to some point in the con-vex closure of this intersection. Provided the (n� 1; k)curve is concave (which is easily proved by induction onn � k as shown below), then all points in the convexclosure are dominated by some point on its lower rightedge: the line segment between the optimal (n; k) gameG0 withMkG0 =Mk�1G? and the optimal (n; k) gameG1 with mkG1 =mk�1G?.Geometrically, this edge is the hypotenuse of a righttriangle inscribed between the (n�1; k) and (n�1; k�1)curves such that its sides are parallel to the axes andits right corner is on the (n � 1; k � 1) curve. To takeinto account all possible choices of G?, it is necessary toconsider all such triangles. By taking the minimum ofthe hypotenuses of these triangles (as shown in Figure2), we obtain the (n; k) curve of all optimal games ofmaximum length n subject to up to k failures. Notethat if the (n�1; k) curve is nondecreasing and concave(true for n � 1 = k, true as the induction hypothesisfor larger n� 1), we may extend each hypotenuse to itscontaining line without a�ecting the minimum, and sothe (n; k) curve as the minimum of concave functions isalso nondecreasing and concave.Let us summarize. From the discussion of the con-straints on G given G?, we have:Theorem 1 For each coin-ipping game G with max-imum length n and up to k failures, there is a G0 suchthat G0 dominates G, G0? dominates G?, and G0 hastwo non-default subgames G00 and G01 with MkG00 =Mk�1G0? and mkG01 =mk�1G0?.One consequence of this theorem is that we can re-place any optimal G with an equivalent G0 in whichthe �rst local coin has exactly two outcomes, and theadversary never prefers hiding a local coin to revealingone. Since the theorem also applies recursively to allsubgames of G, we may assume that these conditionsin fact hold throughout G0. Thus no additional power

is obtained by allowing more than two outcomes to acoin. However, the theorem does not imply that wecan require that all local coins are fair; indeed, for mostoptimal games they will not be.In addition, we have shown the following about theshape of the curves corresponding to optimal games:Theorem 2 Fix n and k with k < n. For each x in[�1; 1], let f(x) be the smallest value of MkG for allG such that mkG = x. Then f is nondecreasing andconcave.Unfortunately, with the exception of some extremecases like k = n � 1, the (n; k) curves do not appear tohave nice algebraic descriptions. So while in principleequations (1) and (2) and the minimum-of-hypotenusesconstruction constrain the curves completely, to obtainany useful bounds from them we will be forced to resortto approximation.2.2 Lower Bounds on Coin-Flipping GamesThe essential idea of our lower bound for coin-ippinggames is to choose a family of functions to act as lowerbounds for the optimal curves as de�ned above, andshow by repeating the inscribed-right-triangle argumentwith these functions that they do in fact provide lowerbounds on the optimal curves given appropriate param-eters. The particular family of functions that we useconsists of all hyperbolas that are symmetric about thediagonal from (�1; 1) to (1;�1) and that pass throughthe corner points (�1;�1) and (1; 1).2 These hyperbo-las are conveniently given bytanh�1 y � tanh�1 x = cfor various values of c. The linear (n; 0) curve corre-sponds exactly to c = 0; the (n;n) curve is the limit asc goes to in�nity. Our goal is to compute values of c asa function of n and k such that for all length-n games,tanh�1MkG� tanh�1mkG � c(n; k):Given c(n � 1; k) and c(n � 1; k � 1), repeatingthe inscribed-right-triangle construction for the result-ing hyperbolas is a not very di�cult exercise in analyticgeometry. Unfortunately, �nding the particular pointon the hypotenuse of the particular triangle that mini-mizes c(n; k) is a bit more involved (details of both stepsare given in the full paper). The ultimate result of thesee�orts is:2We conjecture that a slightly tighter lower bound could beproven using the curves given by ��1(y) � ��1(x) = c, where� is the normal distribution function. An analog of Theorem3 using � instead of tanh would improve the consensus lowerbound in Theorem 6 by a logarithmic factor.
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Figure 1: Graphical depiction of constraints on minimum and maximum expected outcomes of a game G given nand k. Each point in the �gure corresponds to a pair of minimum and maximum expected outcomes. The diagonalrepresents the k = 0 case where these values are the same. The outer edges of the �gure represent the k = n case. Thetwo inner curves represent all optimal games with n�1 voters and either k or k�1 failures. The default subgame G?lies somewhere on or above the (n�1; k�1) curve. All other subgames G� lie on or above the (n�1; k) curve. If G?is �xed, the value of G lies somewhere in the convex closure of the intersection of the region above the (n�1; k) curveand the rectangle dominated by G?. All points in this convex closure, shown shaded in the picture, are dominatedby some point on the hypotenuse of the right triangle inscribed between the (n� 1; k) and (n � 1; k � 1) curves.
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Figure 2: E�ect of considering all choices of G?. Each point on the (n� 1; k� 1) curve corresponds to some possibledefault subgame G?. The hypotenuse of the right triangle with corners on this point and the (n � 1; k) curve givesa set of games which dominate all other games with this �xed G?. The set of optimal games with n voters and kfailures is thus the minimum of the hypotenuses of all such right triangles.



Theorem 3 Let G be a game of length n with outcomeset f�1;+1g. Then for any k � 0, either MkG = 1,mkG = �1, ortanh�1MkG� tanh�1mkG � k2pn : (3)With a little bit of algebra we can turn this intoa lower bound on the length of a general coin-ippinggame given lower bounds on the probabilities of any twodistinct outcomes:Corollary 4 Let G be a coin-ipping game, let x beone of its outcomes, and let A range over k-bullet ad-versaries. If for some � < 12 , minA Pr[G � A = x] � �and minA Pr[G � A 6= x] � �, then the maximum lengthof G is at least 116 � k2ln2 � 1� � 1�Using a truncation argument, we can show that asimilar result holds even if we are considering the ex-pected length of G rather than its maximum length.The theorem below covers both the worst-case expectedlength (when the adversary is trying to maximize therunning time of the protocol) and the best-case expectedlength (when the adversary is trying to minimize therunning time of the protocol). The worst-case boundwill be used later to get a lower bound on consensus.The proof of the theorem is given in the full paper.Theorem 5 Fix k, and let A range over k-bullet adver-saries. Let G be a coin-ipping game with an outcome xsuch that minA Pr[G �A = x] � � and minA Pr[G �A 6=x] � �. Then the worst-case expected length of G is atleast 364 � k2ln2 � 1�=2 � 1�and the best-case expected length is at least132 � �k2ln2 � 1�=2 � 1� :For constant bias, Corollary 4 and Theorem 5 implythat we need 
(t2) local coin ips in both the worst andaverage cases. This is true even though the adversary'spower is limited by the fact that (a) the local coin ipsmay have arbitrary ranges and distributions; (b) theadversary can hide coins, but cannot control them; (c)the adversary must decide which coins to hide or revealimmediately in an on-line fashion; and (d) the algorithmmay observe and react to the choices of which coins tohide. These assumptions were chosen to minimize thepower of the adversary while still capturing the essenceof its powers in a distributed system with failures.

In contrast, it is not di�cult to see that taking amajority of �(t2) fair coins gives a constant bias even if(a) local coins are required to be fair random bits; (b)the adversary can replace up to t values with new valuesof its own choosing; (c) the adversary may observe thevalues of all the local coins before deciding which onesto alter; and (d) changes made by the adversary areinvisible to the algorithm. So the 
(t2) lower bound forconstant bias is tight for a wide range of assumptionsabout the powers of the algorithm and the adversary.32.3 Connection to Randomized Distributed Algo-rithms with FailuresThe importance of coin-ipping games as de�ned abovecomes from the fact that they can often be found em-bedded inside randomized distributed algorithms. Letus discuss briey how this embedding works.Consider a randomized distributed algorithm in amodel in which (a) all random events are internal toindividual processes; and (b) all other nondeterminismis under the control of an adaptive adversary. Supposefurther that the adversary has the power to kill up to kof the processes. Then given any randomized algorithmin which some event X that does not depend on thestates of faulty processes occurs with minimum proba-bility m and maximum probability M , we can extracta coin-ipping game from it as follows. Arbitrarily �xall the nondeterministic choices of the adversary exceptfor the decision whether or not to kill each process im-mediately following each internal random event. (Sincethis step reduces the options of the adversary it canonly increase m and decrease M .) Each step of thecoin-ipping game corresponds to an execution of thedistributed algorithm up to some such random event,which we interpret as the local coin. The adversary'schoice to hide or reveal this local coin corresponds toits power to kill the process that executes the randomevent (thus preventing any other process from learningits value) or to let it run (which may or may not eventu-ally reveal the value). The outcome of the coin-ippinggame is determined by whether or not X occurs in theoriginal system.3 Lower Bound for Randomized ConsensusConsensus is a problem in which a group of n processesmust agree on a bit. We will consider consensus in mod-els in which at most t processes may fail by halting.3The theorem does not apply if the adversary cannot observelocal coin-ips, and so it cannot be used with an oblivious (asopposed to the usual adaptive) adversary. However, the boundon best-case expected length does imply that it is impossibleto construct a \hybrid" constant-bias coin-ipping protocol thatadapts to the strength of the adversary, �nishing quickly againstan oblivious adversary but using additional work to prevent anadaptive adversary from seizing control. This is not the case forconsensus; for example, Chandra's consensus algorithm [Cha96]for a weak adversary switches over to an algorithm that is robustagainst an adaptive adversary if it does not �nish in its usualtime.



Processes that do not halt (i.e., correct processes) mustexecute in�nitely many operations. (A more detaileddescription of the model is given in the full paper).It is assumed that each process starts with some in-put bit and eventually decides on an output bit andthen stops executing the algorithm. Formally, consen-sus is de�ned by three conditions:� Agreement. All correct processes decide thesame value with probability 1.� Non-triviality. For each value v, there existsa set of inputs and an adversary that causes allcorrect processes to decide v with probability 1.� Termination. All correct processes decide withprobability 1.Non-triviality is a rather weak condition, and forapplications of consensus protocols a stronger conditionis often more useful:� Validity. If all processes have input v, all correctprocesses decide v with probability 1.As non-triviality is implied by validity, if we showa lower bound on the total work of any protocol thatsatis�es agreement, non-triviality, and termination, wewill have shown a fortiori a lower bound on any proto-col that satis�es agreement, validity, and termination.Thus we will concentrate on consensus as de�ned by the�rst three conditions.Since the agreement and termination conditions areviolated only with probability zero, we can exclude allschedules in which they are violated without a�ectingthe expected length of the protocol or the independenceand unpredictability of local coin-ips. Thus withoutloss of generality we may assume that not only do agree-ment and termination apply to the protocol as a whole,but they also apply even if one conditions on startingwith some particular �nite execution �.3.1 Overview of the ProofIn a randomized setting, we are concerned with the costof carrying out a consensus protocol in terms of theexpected total work when running against a worst-caseadversary. We show how the coin-ipping lower boundcan be used to show a lower bound on the worst-caseexpected cost of t-resilient randomized consensus in thestandard asynchronous shared-memory model. As inthe coin-ipping bound, we will measure the cost of aconsensus protocol by the total number of local coin-ips executed by the processes. This measure is nota�ected by deterministic simulations, so any results weobtain for the shared-memory model will also apply toany model that can be simulated using shared memory,such as a t-resilient message-passing model.

For each adversary strategy and �nite execution �there is a �xed probability that the protocol will decide 1conditioned on the event that its execution starts with�. (We may speak without confusion of the protocol de-ciding 1, as opposed to individual processes deciding 1,because of the agreement condition.) For any set of ad-versaries, there is a range of probabilities running fromthe minimum to the maximum probability of deciding 1.These ranges are used to de�ne a probabilistic ver-sion of the bivalence and univalence conditions used inthe well-known Fischer-Lynch-Paterson (FLP) impos-sibility proof for deterministic consensus [FLP85]. Wewill de�ne an execution as bivalent if the adversary canforce either outcome with high probability. A v-valentexecution will be one after which only the outcome v canbe forced with high probability. Finally, a null-valentexecution will be one in which neither outcome can beforced with high probability. The notions of bivalenceand v-valence (de�ned formally in the full paper) matchthe corresponding notions for deterministic algorithmsused in the FLP proof; null-valence is new, as it cannotoccur with a deterministic algorithm in which the prob-ability of deciding each value v must always be exactly0 or 1.In outline, the proof that consensus is expensive forrandomized algorithms retains much of the structure ofthe FLP proof. First, it is shown that with at least con-stant probability any protocol can be maneuvered fromits initial state into either a bivalent or a null-valent ex-ecution. Once the protocol is in a bivalent execution,we show that there is a fair, failure-free extension thatleads either to a local coin-ip or a null-valent execution.The result of ipping a local coin after a bivalent exe-cution is, of course, random; but we can show that withhigh probability it leaves us with an execution whichis either bivalent or null-valent or from which we arelikely to return to a bivalent or a null-valent executionafter additional coin-ips. If we do reach a null-valentexecution, the coin-ipping bound applies.Unlike a deterministic protocol, it is possible for arandomized protocol to \escape" through a local coin-ip into an execution in which it can �nish the protocolquickly. But we will be able to show that the probabilityof escaping in this way is small, so that on average manylocal coin-ips will occur before it happens.Details of the lower bound proof are given in the fullpaper. The result is:Theorem 6 Against a worst-case adaptive adversary,any t-resilient consensus protocol for the asynchronousshared-memory model performs an expected
 � t� 1log(t� 1)�2!local coin-ips.The bound counts the number of local coin-ips.Because we allow coin-ips to have arbitrary values



(not just 0 or 1), local coin-ips performed by thesame process without any intervening operations canbe combined into a single coin-ip without increasingthe adversary's inuence. Thus the lower bound on lo-cal coin-ips immediately gives a lower bound on to-tal work. Furthermore, because the coin-ip bound isnot a�ected by changing the model to one that can bedeterministically simulated by shared memory, we getthe same lower bound on total work in any model thatcan be so simulated, no matter how powerful its primi-tives are. So, for example, wait-free consensus requires
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