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Abstract

We define a novel measure of competitive performance
for distributed algorithms based on throughput, the
number of tasks that an algorithm can carry out in a
fixed amount of work. An important property of the
throughput measure i1s that it is modular: we define a
notion of relative competitiveness with the property that
a k-relatively competitive implementation of an object
T using a subroutine U, combined with an l-competitive
implementation of U, gives a kl-competitive algorithm
for T. We prove the throughput-competitiveness of an
algorithm for a fundamental building block of many
well-known distributed algorithms: the cooperative col-
lect primitive. This permits a straightforward construc-
tion of competitive versions of these algorithms— the
first examples of algorithms obtained through a gen-
eral method for modular construction of competitive
distributed algorithms. Moreover, we provide a lower
bound that shows that the throughput competitiveness
of the cooperative collect algorithm we study is nearly
optimal.

Thus, we see our paper as making two main contri-
butions: one is the introduction of a modular measure-
ment for competitiveness, whose interest is justified by
the throughput competitiveness of the cooperative col-
lect algorithms; and the other is a technique for proving
throughput competitiveness, which may apply to other
distributed problems.
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1 Introduction

Competitive analysis and distributed algorithms. The
tool of competitive analysis was proposed by Sleator and
Tarjan [50] to study problems that arise in an on-line
setting, where an algorithm is given an unpredictable
sequence of requests to perform operations, and must
make decisions about how to satisfy its current request
that may affect how efficiently it can satisfy future re-
quests. Since the worst-case performance of an algo-
rithm might depend only on very unusual or artificial
sequences of requests; or might even be unbounded if
one allows arbitrary request sequences, one would like to
look instead at how well the algorithm performs relative
to some measure of difficulty for the request sequence.
The key innovation of Sleator and Tarjan was to use as
a measure of difficulty the performance of an optimal
off-line algorithm, one allowed to see the entire request
sequence before making any decisions about how to sat-
isfy it. They defined the competitive ratio, which is the
supremum, over all possible input sequences o, of the
ratio of the performance achieved by the on-line algo-
rithm on & to the performance achieved by the optimal
off-line algorithm on o, where the measure of perfor-
mance depends on the particular problem.

In a distributed setting there are additional sources
of nondeterminism other than the request sequence.
These include process step times, request arrival times,
message delivery times (in a message-passing system)
and failures. Moreover, a distributed algorithm has to
deal not only with the problems of lack of knowledge
of future requests and future system behavior, but also
with incomplete information about the current system
state. Due to the additional type of nondeterminism in
the distributed setting, it is not obvious how to extend
the notion of competitive analysis to this environment.

Awerbuch, Kutten, and Peleg [17], and Bartal, Fiat,
and Rabani [19] took the first steps in this direction.
Their work was in the context of job scheduling and
data management. In these papers, and in subsequent
work [4, 14, 15, 21], the cost of a distributed on-line
algorithm® is compared to the cost of an optimal global-

'Because most distributed algorithms have an on-line flavor,
we use the terms distributed algorithm and distributed on-line
algorithm interchangeably.



control algorithm. (This is also done implicitly in the
earlier work of Awerbuch and Peleg [18].) As has been
observed elsewhere (see, e.g. [15], paraphrased here),
this imposes an additional handicap on the distributed
on-line algorithm in comparison to the optimal algo-
rithm: In the distributed algorithm the decisions are
made based solely on local information. It is thus up
to the algorithm to learn (at a price) the relevant part
of the global state necessary to make a decision. The
additional handicap imposed on the on-line distributed
algorithm is that it is evaluated against the off-line algo-
rithm that does not pay for overhead of control needed
to make an intelligent decision.

Ajtai, Aspnes, Dwork, and Waarts [3] argued that in
some cases a more refined measure is necessary, and that
to achieve this the handicap of incomplete system infor-
mation should be imposed not only on the distributed
on-line algorithm but also on the optimal algorithm with
which the on-line algorithm is compared. Otherwise,
two distributed on-line algorithms may seem to have
the same competitive ratio, while in fact one of them
totally outperforms the other. Their approach is ulti-
mately based on the observation that the purpose of
competitive analysis for on-line algorithms is to allow
comparison between on-line algorithms; the fictitious
off-line algorithm is merely a means to this end. There-
fore, the natural extension of competitiveness to dis-
tributed algorithms is to define a distributed algorithm
as k-competitive if it never performs more than & times
worse than any other distributed algorithm.

Cooperative Collect. To demonstrate the different no-
tions of competitiveness, we study the problem of hav-
ing processes repeatedly collect values by the cooperative
collect primitive, first abstracted by Saks, Shavit, and
Woll [49], described below.?

We assume the standard model for asynchronous
shared-memory computation, in which n processes com-
municate by reading and writing to a set of single-writer
n-reader registers. (We confine ourselves to single-writer
registers because the construction of registers that can
be written to by more than one process is one of the
principal uses for the cooperative collect primitive.) As
usual, a step is a read or a write to a shared variable.
The algorithms are required to be wait-free: there is an
a prior: bound on the number of steps a process must
take in order to satisfy a request, independent of the
behavior of the other processes.

Many algorithms in the wait-free shared-memory
model have an underlying structure in which processes
repeatedly collect values using the cooperative collect
primitive.  In the cooperative collect primitive, pro-
cesses perform the collect operation — an operation in
which the process learns the values of a set of n reg-
isters, with the guarantee that each value learned is
fresh: 1t was present in the register at some point dur-
ing the collect. If each process reads every register,
then this condition is trivially satisfied; however, this
algorithm will perform a lot of redundant work when

?Much of this discussion is taken from [3].

there is high concurrency. Interestingly, this is the
(trivial) solution that is used in current literature on
wait-free shared-memory applications in the standard
shared memory model, including nearly all algorithms
known to us for consensus, snapshots, coin flipping,
bounded round numbers, timestamps, and multi-writer
registers [1, 2, 5, 6, 7, 8, 9, 11, 13, 20, 22, 23, 24, 25, 28,
29, 32, 34, 35, 38, 39, 40, 42, 51].°

We assume that the schedule — which processes take
steps at which times, and when the registers are up-
dated — is under the control of an adversary. Intuitively,
if all » processes are attempting to perform collect op-
erations concurrently, the work can be partitioned so
that each process performs significantly fewer than n
reads. Thus, more sophisticated protocols may allow
one process p to learn values indirectly from another
process ¢. Nevertheless, the worst-case cost for any dis-
tributed algorithm is always as high as the cost of the
naive algorithm, as follows. Suppose p; performs a col-
lect in 1solation. If po later performs a collect, it cannot
use the values obtained by p1, since they might not be
fresh. For this reason p, must read all the registers it-
self. Continuing this way, we can construct an execution
in which every algorithm must have each process read
all n registers. Thus, the worst-case cost for any dis-
tributed algorithm is always as high as the cost of the
naive algorithm.

The example shows that a worst-case measure is
not very useful for evaluating cooperative collect algo-
rithms. A similar example shows that a competitive
analysis that proceeds by comparing a distributed algo-
rithm to an ideal global-control algorithm gives equally
poor results. The underlying difficulty arises because a
global-control algorithm knows when registers are up-
dated. Thus in the case where none of the registers
have changed since a process’s last collect, it can sim-
ply return the values it previously saw, doing no read
or write operations. On the other hand, any distributed
algorithm must read all n registers to be sure that new
values have not appeared, which gives an infinite com-
petitive ratio, for any distributed algorithm. Thus the
competitive measure of [17, 19] does not allow one to
distinguish between the naive algorithm and algorithms
that totally dominate it.

Competitive Latency. Observing the above was what
led [3] to define a competitive measure for distributed
algorithms, called latency competitiveness. The com-
petitiveness presented in [3] allows such a distinction,
i.e. between the naive cooperative collect algorithm
and algorithms that dominate it. To characterize the
behavior of an algorithm over a range of possible sched-
ules they define the competitive latency of an algorithm.
Intuitively, the competitive latency measures the ratio
between the amount of work that an algorithm needs
to perform in order to carry out a particular set of
collects, to the work done by the best possible algo-

3[49, 48] present interesting collect algorithms that do not
follow the pattern of the naive algorithm. Both works however
consider considerably stronger models than the standard shared
memory model considered here.



rithm (champion) for carrying out those collects given
the same schedule. In their model the schedule includes
the timing of both system events and user requests. (See
Figure 1.) As discussed above, they refine previous no-
tions by requiring that this best possible algorithm be a
distributed algorithm. Though the choice of this cham-
pton algorithm can depend on the schedule, and thus
it can implicitly use its knowledge of the schedule to
optimize performance (say, by having a process read a
register that contains many needed values), it cannot
cut corners that would compromise safety guarantees if
the schedule were different (as it would if it allowed a
process not to read a register because it “knows” from
the schedule that the register has never been written
to).

They then present the first (and so far the only) com-
petitive algorithms for the cooperative collect problem.
The basic technique in their algorithms is a mechanism
that allows processes to read registers cooperatively, by
having each process read registers in an order deter-
mined by a fixed permutation of the registers. They
define the collective latency of an algorithm to be the
worst case number of steps required to complete a set
of collects that are in progress at a certain time. Using
the trivial collect algorithm, even if n processes perform
collects concurrently, there are a total of n’ reads, i.e.
the collective latency of the trivial algorithm is O(n?).
[3] presents the first algorithms that cross this barrier.
Their principal technical achievement is providing these
nontrivial bounds on the collective latency of their algo-
rithms. The techniques they present offer rather deep
insight into the combinatorial structure of the problem
and may be of more general use.

Competitive analysis and modularity. The Ajtal et
al. [3] approach was successful: it distinguishes between
the naive algorithm and faster cooperative collect algo-
rithms; moreover, they provide such faster cooperative
collect algorithms. Since collects appear either explic-
itly or implicitly in a wide variety of wait-free shared-
memory algorithms, intuitively, a competitive collect
protocol would translate into faster versions of these
algorithms. However, competitive analysis in general
appears to forbid a modular construction of competi-
tive algorithms. If A is an algorithm that uses a sub-
routine B, the fact that B is competitive says nothing
at all about A’s competitiveness, since A must com-
pete against algorithms that do not use B. Clearly, this
lack of modularity impedes the development of practical
competitive algorithms.

1.1 Our results

This paper overcomes this difficulty.

Competitive throughput. We define a new measure
of competitive performance for distributed algorithms,
called competitive throughput, that for the first time per-
mits a general method for the modular construction of
competitive distributed algorithms. Throughput mea-
sures the number of tasks carried out by an algorithm

given a particular schedule. (See Figure 2.) The obser-
vation is that when analyzing a distributed algorithm
it may be helpful to distinguish between two sources
of nondeterminism, user requests (the input) and sys-
tem behavior (the schedule). The work that compares
a distributed algorithm with global control algorithm
[4, 14, 15, 17, 18, 19, 21] implicitly makes this dis-
tinction by having the on-line and off-line algorithms
compete only on the same input, generally hiding the
details of the schedule in a worst-case assumption ap-
plied only to the on-line algorithm. The competitive la-
tency model of [3] applies the same input and schedule
to both the on-line and the off-line algorithms. In the
present work the key insight is to preserve the split be-
tween the input and the schedule, as implicitly done in
[4, 14, 15, 17, 18, 19, 21], but to reverse the approach of
this previous work by assuming a worst-case input but
a competitive schedule. That is, when comparing the
number of tasks performed by a candidate algorithm
with those performed by an optimal champion, we will
assume that both are distributed algorithms that must
deal with the same pattern of failures and asynchrony,
but that the user requests given to the candidate are
chosen to minimize the candidate’s performance while
the requests given to the champion are chosen to magi-
mize the champion’s performance.

Note that when comparing steps done by the candi-
date algorithm and champion algorithms, we consider
the standard shared memory model for asynchronous
shared memory computations, in which each step is an
atomic read or write of shared memory. As explained
above, this model is a natural model for the collect prim-
itive; moreover, it has a simple mathematical structure
and hence does not obscure the issues introduced in the
paper. There is nothing in our notion of throughput
competitiveness however that prohibits considering it in
the context of more detailed models for multiprocessor
architectures, such as one that takes into account the
issue of contention (i.e. the number of processes trying
to access the same variable concurrently). To incorpo-
rate contention one could simply make a process incur
a stall step instead of a usual step in case of contention,
following the lines of [30]. Note however that in the
standard model considered in this paper, where a step
is an atomic read or write to a single-writer n-reader
register, the issue of contention is of lesser effect.

Relative Competitiveness. An important property of
competitive throughput is that it allows competitive
algorithms to be constructed modularly. We define
a notion of relative competitiveness such that if A
is a k-relative-competitive algorithm that calls an I-
competitive subroutine B, then the combined algorithm
Ao B is kl-competitive.

Competitive throughput is a natural measure to ap-
ply when the specific input has little effect on the num-
ber of tasks that can be completed, and most of the
variation between executions is due to the schedule.
This is often the case for shared-memory distributed



Figure 1: Latency model. New high-level operations (ovals) start at times specified by the scheduler (vertical bars).
Scheduler also specifies timing of low-level operations (small circles). Cost to algorithm is number of low-level

operations actually performed (filled circles).

Figure 2: Throughput model. New high-level operations (ovals) start as soon as previous operations end. Scheduler
controls only timing of low-level operations (filled circles). Payoff to algorithm is number of high-level operations

completed.

algorithms.! Nevertheless, we do not view the notion of
throughput competitiveness as replacing the notion of
latency competitiveness. Competitive latency has the
advantage of being more refined since the on-line and
off-line algorithms are competing both on the schedule
and on the input, ¢.e. have the same schedule and in-
put. However, the competitive latency model, because
it unifies the schedule and the input, seems unsuited
to the modular construction of competitive algorithms.
(A naive application of the latency model would only
allow a candidate algorithm A to be compared against
a champion that not only uses the same subroutine B
but provides it with exactly the same requests arriving
at exactly the same times.)

Cooperative Collect. As mentioned above, the prin-
cipal technical difficulty of Ajtai et al. [3] was bound-
ing the collective latency of their cooperative collects.
They used this bound in order to provide a bound on
the competitive latency of the cooperative collects. To
use a bound on collective latency in order to bound the
throughput competitiveness, one needs new, nontrivial
ideas. Doing this is the principal technical achievement
of our paper. In particular, we show that any collect
algorithm with certain natural properties can be ex-
tended to a throughput-competitive implementation of

*Where it is not (for example, when implementing an object
that provides both cheap and expensive operations) we can often
adjust the description of the problem to fit the measure. One
way to do this is to join cheap operations to succeeding expensive
operations. An example of this technique is given by the write-
collect primitive described in Section 5.

a slightly stronger primitive, a write-collect.

For the fastest algorithm of [3] our result gives a
throughput competitive ratio of O(n®/*log?n). This is
high, but the algorithms of [3] are the only ones that
cross the trivial bound of O(n) and hence the fastest
current algorithms available. Moreover we show that
they are nearly optimal: no cooperative collect algo-
rithm can obtain a throughput competitiveness better
than Q(y/n). This high lower bound may indicate that
an interesting research avenue may be to refine the no-
tion of throughput competitiveness to reflect more accu-
rately the performance of distributed algorithms. Cur-
rently throughput competitiveness, introduced here, is
the most refined measure for evaluating throughput of
distributed algorithms: the standard worst case mea-
sure and the approach of comparing a distributed algo-
rithm with an ideal global control algorithm, will both
give 1(n) performance; and as described above the mea-
sure of [3] does not allow modularity.

It is the modularity property of throughput competi-
tiveness that allows us to derive competitive versions of
well-known shared-memory algorithms that are struc-
tured around the collect primitive, among which are the
fastest known atomic snapshot algorithm, due to Attiya
and Rachman [13], and the bounded round numbers
abstraction due to Dwork, Herlihy, and Waarts [29].
An important consequence of the modularity of the
throughput-competitive measure is that better algo-
rithms for doing collects will immediately give better
algorithms that use collects.

Thus, we see our paper as making two main contri-
butions: one is the introduction of a modular measure-



ment for competitiveness, whose interest is justified by
the throughput competitiveness of the cooperative col-
lect algorithms; and the other is a technique for proving
throughput competitiveness, which may apply to other
distributed problems.

Due to lack of space, proofs are omitted or only
sketched. A full version including detailed proofs is
available [10].

1.2 Other Related Work

A notion related to allowing only correct distributed
algorithms as champions is the very nice idea of com-
paring algorithms with partial information only against
other algorithms with partial information. This was in-
troduced by Papadimitriou and Yannakakis [46] in the
context of linear programming; their model corresponds
to a distributed system with no communication. A gen-
eralization of this approach has recently been described
by Koutsoupias and Papadimitriou [41].

In addition, there is a long history of interest in op-
timality of a distributed algorithm given certain condi-
tions, such as a particular pattern of failures [26, 31,
37, 43, 44, 45], or a particular pattern of message de-
livery [12, 33, 47]. In a sense, work on optimality
envisions a fundamentally different role for the adver-
sary in which it is trying to produce bad performance
both in the candidate algorithm and in what we would
call the champion algorithm; in contrast, the adversary
used in competitive analysis usually cooperates with the
champion.

Nothing in the literature corresponds in generality
to our notion of relative competitiveness (Definition 2)
and the Composition Theorem (Theorem 3) that uses
it. Some examples of elegant specialized constructions
of competitive algorithms from other competitive algo-
rithms in a distributed setting are the natural potential
function construction of Bartal, Fiat, and Rabani [19]
and the distributed paging work of Awerbuch, Bartal,
and Fiat [16]. However, not only do these constructions
depend very much on the particular details of the prob-
lems being solved, but in addition they permit no con-
currency, ¢.e. they assume that no two operations are
ever in progress at the same time. (This assumption
does not hold in general in typical distributed systems.)
In contrast, the present work both introduces a general
construction of modular competitive distributed algo-
rithms and does so in the natural distributed setting
that permits concurrency.

1.3 Possible Extensions

Our work defines modular competitiveness and relative
competitiveness by distinguishing between two sources
of nondeterminism, one of which is shared between the
on-line and off-line algorithms, i.e. the schedule, and
the other is not, ¢.e. the input. One can define analo-
gous notions to modular competitiveness and to relative
competitiveness by considering any two sources of non-
determinism, one of which is shared between the on-
line and off-line algorithms, and one that is not. For

example, we can obtain a notion of modular optimal-
ity, relative optimality, and a composition theorem for
optimality, as follows: Let the shared nondeterminism
correspond to observable properties of a system and let
the distinct nondeterminism correspond to hidden prop-
erties. Then replace the best-case assumption for the
off-line algorithm’s input with a worst-case assumption.
All of our definitions and results concerning modularity,
including the composition theorem, will carry through,
provided the replacement is done consistently. This is
an interesting possible extension of this work that would
be worth pursuing.

2 The Model

We assume the standard model for asynchronous
shared-memory computation, in which n processes com-
municate by reading and writing to a set of single-writer
n-reader atomic registers. Time proceeds in discrete
units, in each of which some process takes a single
atomic step. As usual, a step is a read or a write to
a shared variable. The timing of events in the system is
assumed to be under the control of an adversary, who
is allowed to see the entire state of the system (includ-
ing the internal states of the processes). The adversary
decides at each time unit which process gets to take the
next step; these decisions are summarized in the sched-
ule, which formally i1s just a sequence of process id’s.
We require our algorithms to be wait-free: there is an
a priort bound on the number of steps a process must
take in order to satisfy a request, independent of the
behavior of the other processes.

Most architectures provide some primitives that are
stronger than atomic registers, such as Read-Modify-
Write operation in which a register can be read and
written in a single atomic step, and there are good rea-
sons to study what can be done given such primitives.
Nevertheless, the standard setting of atomic registers is
well motivated. Among other reasons, stronger prim-
itives are typically much more expensive than a read
of an atomic register because of interactions with the
cache hierarchy. When a process needs to perform an
atomic read, it can often find the value in its cache (a
cache hit), and hence does not need to actually go to
the shared memory. In contrast, each time a process
initiates a Read-Modify-Write operation, it must load
from the shared memory.

We continue with the description of the model. Pro-
cesses are always assumed to be carrying out tasks from
a request sequence provided by the adversary. The re-
quest sequence corresponds to the inputs to the n pro-
cesses and may be thought of as partitioned into n sub-
sequences, one controlling each process. We do not as-
sume that the request sequence is part of the schedule.
The reason is that we want to be able to compare dif-
ferent algorithms on the same schedule even if these
algorithms do not necessarily implement the same set
of tasks.

Since in the present work we are only working with
deterministic algorithms, we can assume that the re-
quest sequence and schedule are fixed in advance. This



assumption is not required for our results but allows the
presentation to be simplified. A more general approach
would be to assume that both are generated on the fly
by an adaptive adversary.

We will also assume that the algorithms we con-
sider are implementing objects which are abstract con-
current data structures with well-defined interfaces and
correctness conditions. We will assume that these ob-
jects are manipulated by invoking tasks of some sort,
that we can count the number of tasks completed by
an algorithm implementing an object, and that we can
distinguish correct implementations from incorrect im-
plementations. Otherwise the details of objects will be
left unspecified unless we are dealing with specific ap-
plications.

3 The Measures

Competitive throughput. The competitive throughput
of an algorithm measures how many tasks an algorithm
can complete in a given amount of time. We measure
the algorithm against a champion algorithm that runs
under the same schedule. We do not assume that both
algorithms are given the same request sequence; we re-
quire only that the two request sequences be made up
of tasks for the same object T

Some notation: for each algorithm A, schedule
o, and request sequence R, define done(A, o, R) to
be the total number of tasks completed by all pro-
cesses when running A according to the schedule
o and request sequence R. Define opt (o) to be
max 4= g+ done(A*, o, R*), where A* ranges over all cor-
rect implementations of T"and R* ranges over all request
sequences composed of T-tasks. (Thus opt, (o) repre-
sents the performance of the best correct algorithm run-
ning on the best-case input for the schedule o.)

Definition 1 Let A be an algorithm that implements
an object T'. Then A is k-throughput-competitive for T'
of there exists a constant ¢ such that, for any schedule o
and request sequence R,

done(A,0, R) 4+ ¢ > %OptT(CI’). (1)

This definition follows the usual definition of com-
petitive ratio.

Relative competitiveness. The full power of the com-
petitive throughput measure only becomes apparent
when we consider modular algorithms. Under many cir-
cumstances, it will be possible to show that an algorithm
that uses an undetermined subroutine is competitive rel-
ative to the object implemented by that subroutine, in
the sense that plugging in any competitive algorithm
for the subroutine gives a competitive version of the
algorithm as a whole. This intuition gives rise to the
definition of relative throughput-competitiveness given
below.

As in the definition of throughput-competitiveness,
we consider a situation in which A is an algorithm im-
plementing some object 7. Here, however, we assume

that A depends on a (possibly unspecified) subroutine
implementing a different object U. For any specific al-
gorithm B that implements U, we will write A o B for
the composition of A with B, i.e., for that algorithm
which is obtained by running B whenever A needs to
carry out a U-task.”

Definition 2 An algorithm A 18
k-throughput-competitive for 7' relative to U if there
exists a constant ¢ such that for any B that implements
U, and any schedule o and request sequence R for which
the ratios are defined,

done(AoB,o, R)+ ¢

optr(0)
done(B, o, Ra) (2)

1
k opty(a)’

2

where Ra is the request sequence corresponding to the
subroutine calls in A when running according to R and
o.

As in the preceding definition, the additive constant
¢ 1s included to avoid problems with granularity. The
condition that the ratios are defined (which in essence
is just a requirement that o be long enough for B to
complete at least one U-task) is needed for the same
reason.

4 Composition of Competitive Algorithms

Theorem 3 (Composition) Let A be an algorithm
that is k-throughput-competitive for T' relative to U, and
assume there exists a constant ¢ such that for all sched-
ules o,

copty (o) > opty(o) b (3)

Let B be an l-throughput-competitive algorithm for U.
Then Ao B is kl-throughput-competitive for T'.

It is worth noting that the theorem can be applied
more than once to obtain a kind of transitivity. If A im-
plements T competitively relative to U, B implements U
competitively relative to V', and C implements V' com-
petitively, then applying the theorem first to B and C,
and then to A and B o C, shows that Ao Bo (' is com-

petitive.

5 The Write-Collect Object

The write-collect object acts like a set of n single-writer
n-reader atomic registers and provides two operations
for manipulating these registers. A collect operation re-
turns the values of all of the registers, with the guaran-
tee that any value returned was not overwritten before
the start of the collect. (This condition is trivially sat-
isfied by an algorithm that reads all n registers directly,

5For this definition it is important that A not execute any
operations that are not provided by U. In practice the difficulties
this restriction might cause can often be avoided by treating U
as a composite of several different objects.

SIntuitively, this condition requires that for every T-task that
we can finish, we can finish at least 1/¢ U-tasks. In effect it says
that 7 is not a weaker object than U is.



but may be more difficult for an algorithm in which pro-
cesses may learn values indirectly from other processes.)
A write-collect operation writes a new value to the pro-
cess’s register and then performs a collect. It must sat-
isfy this rather weak serialization condition: given two
write-collects a and b, if the first operation of a precedes
the first operation of b, then b returns the value written
by a as part of its vector; but if the first operation of
a follows the last operation of b, then b does not return
the value written by a. (Again, this condition is triv-
ially satisfied by the naive algorithm that simply does a
write followed by n reads.)

The write-collect operation is motivated by the fact
that many shared-memory algorithms execute collects
interspersed with write operations (some examples are
given in Section 8.

6 A Throughput-Competitive Implementation of
Write-Collect

To implement a write-collect we start with the coopera-
tive collect algorithm of [3]. This algorithm has several
desirable properties:

1. All communication is through a set of single-writer
registers, one for each process, and the first opera-
tion of the cooperative collect is a write operation.

2. No collect operation ever requires more than 2n
steps to complete.

3. For any schedule, and any set of collects that are
in progress at some time ¢, there is a bound on the
total number of steps required to complete these
collects. (Showing this bound is nontrivial; a proof
can be found in [3]).

These properties are what we need from a cooper-
ative collect implementation to prove that it gives a
throughput-competitive write-collect. The first prop-
erty allows us to ignore the distinction between col-
lect and write-collect operations (at least in the can-
didate): we can include the value written by the
write-collect along with this initial write, and thus
trivially extend a collect to a write-collect with no
change in the behavior of the algorithm. In effect, our
throughput-competitive write-collect algorithm is sim-
ply the latency-competitive collect of [3], augmented by
merging the write in a write-collect with the first write
done as part of the collect implementation.

The last two properties tell us that any write-collects
in progress at a given time will finish soon, from which
it would seem to follow that the number of write-collects
that are completed will be large. However, to show that
the number of collects and/or write-collects completed
by a modified cooperative collect algorithm with these
properties is proportional to the number completed by
a champion algorithm is not easy. In Section 6.1, we
show a bound on the throughput-competitiveness of any
algorithm with the above properties.

6.1 Proof of Competitiveness

In order to show that a collect algorithm gives a
throughput-competitive write-collect, we must do two
things. First, we must prove a lower bound on the num-
ber of collects done by the algorithm based on some
properties of the schedule. As noted above, for algo-
rithms in which a collect starts with a write this gives a
lower bound on the number of mixed collects and write-
collects as well. Second, we must show that those same
properties of the schedule imply an upper bound on the
number of collects done by any correct algorithm. Since
a write-collect includes a collect, an upper bound on the
collects done by the champion implies a corresponding
upper bound on the number of mixed collects and write-
collects. Thus in both cases we can concentrate solely
on collect operations.

Given an algorithm A and a schedule o, define the
private latency of a process p at time ¢ to be the number
of steps (i.e., atomic read and write operations) done
by p after ¢ and before the end of the last collect that
p started at or before ¢. If this quantity is bounded for
all o, p, and ¢, denote the bound by UPL(A).

Similarly, given an algorithm A, the collective la-
tency at time ¢ is defined [3] as the sum over all pro-
cesses p of the private latency for p at time ¢, and is
denoted by C'L(A,t). If this quantity is bounded for
all A and o, denote the bound by UCL(A). Note that
UCL(A) may be much smaller than n - UPL(A) as con-
current processes may cooperate to finish their collects
quickly; for example, in the cooperative collect protocol
of [3], UPL = 2n but UCL = O(n*/?log?n).

We denote by FCTh,(A,t) the fractional collective
throughput in algorithm A of a process p at point ¢
in time, and define it inductively as follows. When
t = 0, FCTh,(A,0) = 0. If at time ¢, some pro-
cess ¢ (which may or may not be equal to p) per-
forms a step as part of a collect operation C, then
FCTh,(A,t) = FCTh,(A, t —1)+ UCL(lm if at least
one of the following holds:

1. p is in the middle of a collect operation that
started no earlier than C started;

2. This step of ¢ is the last step it performs before p
starts a new collect operation; or

3. This step of ¢ is the first step it performs after the
last collect completed by p.

If none of the conditions hold, then FCTh,(A,t) =
FCTh,(A,t —1).

A rough intuition is that the increment U(jL(lm
represents how much of the current collective latency is
“used up” by ¢. The 2n in the denominator is an artifact
of the operations (up to two per process) in classes (2)
or (3), and should not be confused with the value of
UPL(A) for any particular algorithm.

Analogously, the fractional private throughputin al-
gorithm A of a process p at point ¢ in time is de-
noted by FPThy(A,t) and is defined inductively as fol-
lows. When ¢ = 0, FTh,(A,0) = 0. If at time ¢,



p performs a step as part of a collect operation, then
FPTh,(A,t) = FPTh,(A,t —1) + m; otherwise,
FPTh,(A,t) = FPThy(A,t — 1). Again, the intuition
here is that the increment TFLA) represents how much
of p’s private latency is used up by the step at time ¢.

The fractional throughputin algorithm A of a process
p at point ¢ in time is denoted by FTh,(A,t) and is
defined as (FCTh,(A,t) + FPThy(A,t))/2.

Lemma 4 Let A be a cooperative collect algorithm for
which UPL(A) and UCL(A) are defined. Then in any
execution of A, the total number of collects completed by
all processes by time t in A is at least Zp FTh,(A, t)—n.

The n corresponds to collects that have not yet fin-
ished at time t.

Lemma 5 Let A be an algorithm for which UPL(A)
and UCL(A) are defined. Let I = (t1,t2] be a time

interval in which n steps are performed and m processes

perform steps. Then Zp FThy(t2) — Zp FThy(t1) >
77 m2
% (m + 2.(UCL +2n))’

Lemma 6 Let A be a cooperative collect algorithm. Let
I = (t1,t2] be a time interval in which n steps are per-
formed and m processes perform steps. Then, the num-
ber of collects completed in this interval is at most m.

Combining the results of Lemmas 4, 5 and 6 gives:

Theorem 7 Let A be a cooperative collect algorithm for
which UPL(A) and UCL(A) are defined. Then A is

A/ w-throughput-competitive.

The theorem can be applied to give an immediate
upper bound on the throughput-competitiveness of any
cooperative collect algorithm A for which the private
and collective latencies are always bounded. For exam-
ple, plugging the bounds on the private and collective
latencies of the faster algorithm of [3] into the formula
in Theorem 7, it immediately follows that this algo-
rithm is O(n®/* log? n)-throughput-competitive. Since
that algorithm has the property that the first operation
of any collect is a write, and the write-collect operation
is strictly stronger than collect, this immediately gives
us 0(113/4 log? n)-throughput-competitive write-collect
algorithm as well. This bound is the first to cross the
trivial » bound, and, as implied by the lower bound of
the following section, this bound is nearly optimal. (A
similar discussion applies to the slower algorithm of [3].)

7 Lower Bound on Throughput Competitiveness of
Collect

Theorem 8 No cooperative collect protocol has a
throughput competitiveness less than Q(y/n).

Sketch of Proof: To overcome the additive constant,
we build up an arbitrarily-long schedule out of phases,
where in each phase the ratio of champion to candidate
collects is Q(y/n). The essential idea is that in each
phase, most of the work will be done by a single “patsy”
process, chosen at the beginning of the phase. Profiting
from the patsy’s labors, in the champion algorithm, will
be v/n “active” processes (fixed for all phases). These
same processes, in the candidate algorithm, will not
benefit from the patsy’s work, since we will terminate a
phase as soon as any active process discovers the patsy
or completes a collect started in that phase.

Each phase consists of one or more rounds. The
schedule for a round consists of one step for each ac-
tive process, followed by n ++/n + 1 steps for the patsy,
and ended by one additional step for each active pro-
cessor. In the champion algorithm: (1) the active pro-
cesses write out timestamps; (2) the patsy reads these
timestamps; (3) the patsy reads the registers; (4) the
patsy writes out a summary of the register values with
the timestamps attached; and (5) the active processes
read this summary. Because the patsy reads the times-
tamps before it reads the registers, the active processes
will know that the patsy’s values are fresh. Thus the
champion completes v/n + 1 collects per round.

In the candidate, each active processor completes ex-
actly one collect per phase. We enforce this by ending
a phase as soon as some active processor obtains all the
register values or finds the patsy; to avoid difficulties we
attach a special “cleanup round” in which each proces-
sor is given just enough steps to complete its current col-
lect. Since no active processor reads the patsy’s register
until the last round of the phase, the active processes
cannot mark the values they write with a timestamp
that will allow the patsy to trust them. Thus, the patsy
will complete roughly the same one collect per round as
in the champion.

The only issue left is how to choose a patsy that will
not be found quickly. If the patsy is chosen uniformly
at random, expected (n) active-processor reads will be
needed either to find it or to read all the register values,
giving 2(y/n) expected rounds. Ignoring some technical
details, this gives roughly €2(n) collects per phase for the
champion, versus O(y/n) for the candidate, for a ratio

of Q(y/n). ]

8 Applications

Armed with a throughput-competitive write-collect al-
gorithm and Theorem 3, it is not hard to obtain
throughput-competitive versions of many well-known
shared-memory algorithms. Examples include snap-
shot algorithms [2, 5, 8, 11, 13, 23], the bounded round
numbers abstraction [29], concurrent timestamping sys-
tems [25, 28, 32, 34, 35, 40], and time-lapse snap-
shot [28]. Here we elaborate on some simple examples.

Atomic snapshots. A snapshot object simulates an ar-
ray of n single-writer registers that support a scan-
update operation which writes a value to one of the reg-
isters (an “update”) and returns a vector of values for



all of the registers (a “scan”). A scan-update is dis-
tinguished from the weaker write-collect operation by
virtue of a much stronger serialization condition; infor-
mally, this says that the vector of scanned values must
appear to be a picture of the registers at some par-
ticular instant during the execution. Snapshot objects
are very useful tools for constructing more complicated
shared-memory algorithms, and they have been exten-
sively studied [2, 5, 8, 11, 23] culminating in the protocol
of Attiya and Rachman [13] which uses only O(log n) al-
ternating writes and collects to complete a scan-update
operation.

We will apply Theorem 3 to get a competitive snap-
shot. Let T be a snapshot object and U a write-collect
object. Because a scan-update can be used to simulate
a write-collect or collect, we have optr (o) < opty (o)
for any schedule &, and the inequality (3) is satisfied.
Furthermore, if A is the Attiya-Rachman snapshot, B
is any write-collect algorithm, and R is any request se-
quence of scan-update operations, then for any o,

done(Ao B,o, R)+1 1 1
done(B, 0, Ra) = O(logn) —

_optp(a)
O(log n) opty(o)

which means that the Attiya-Rachman snapshot
is O(log n)-throughput-competitive relative to write-
collect. By Theorem 3, plugging in a k-throughput-
competitive implementation of write-collect thus gives
an O(klog n)-throughput-competitive snapshot proto-
col.

Bounded round numbers. A large class of wait-free
algorithms that communicate via single-writer multi-
reader atomic registers have a communication structure
based on asynchronous rounds. Starting from round
1, at each round the process performs a computation,
and then advances its round number and proceeds to
the next round. A process’s actions do not depend on
its exact round number but only on the distance of its
current round number from those of other processes.
Moreover, the process’s actions are not affected by any
process whose round number lags behind its own by
more than a finite limit. The round numbers increase
unboundedly over the lifetime of the system.

Dwork, Herlihy and Waarts [29] introduced the
bounded round numbers abstraction, which can be
plugged into any algorithm that uses round numbers
in this fashion, transforming it into a bounded algo-
rithm. The bounded round numbers implementation in
[29] provides four operations of varying difficulty; how-
ever, the use of these operations is restricted. As a
result, we can coalesce these operations into a single
operation, an advance-collect, which advances the cur-
rent process’s round number to the next round and col-
lects the round numbers of the other processes. Using
their implementation, only O(1) alternating writes and
collects are needed to implement an advance-collect.

Again we can apply Theorem 3. Let T be a bounded
round numbers object (i.e., an object providing the
advance-collect operation) and let U be write-collect.
Because an advance-collect must gather information

from every process in the system, it implicitly contains
a collect, and thus opty (o) < opty (o) for all sched-
ules 0. An argument similar to that used above for the
Attiya-Rachman snapshot thus shows that plugging a k-
throughput-competitive implementation of write-collect
into the Dwork-Herlihy-Waarts bounded round numbers
algorithm gives an O(k)-throughput-competitive algo-
rithm.

The bounded round numbers object provides an in-
teresting example of how composite objects can be built.
Suppose that we have an algorithm that uses both
the advance-collect operation from a bounded round
numbers object to organize its computation, and the
write-collect and collect operations provided by a write-
collect object to communicate between processes. We
can consider all three operations as being provided by
a composite object obtained from a bounded round
numbers object built on top of write-collect object,
which passes requests for collects and write-collects
directly to the underlying write-collect object. It is
not hard to see that this composite object will be
O(1)-competitive relative to write-collect, and that it
will thus be O(k)-throughput-competitive if an O(k)-
throughput-competitive write-collect implementation is
used.

Given an algorithm that implements a third object
whose operations are at least as difficult as a collect (the
cheapest of the three operations of the composite ob-
ject), and that uses at most ! advance-collects, collects,
and write-collects for each operation, Theorem 3 applies
to show that this algorithm will be O(kl)-throughput-
competitive.
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