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1 IntroductionCompetitive analysis and distributed algorithms. Thetool of competitive analysis was proposed by Sleator andTarjan [50] to study problems that arise in an on-linesetting, where an algorithm is given an unpredictablesequence of requests to perform operations, and mustmake decisions about how to satisfy its current requestthat may a�ect how e�ciently it can satisfy future re-quests. Since the worst-case performance of an algo-rithm might depend only on very unusual or arti�cialsequences of requests, or might even be unbounded ifone allows arbitrary request sequences, one would like tolook instead at how well the algorithm performs relativeto some measure of di�culty for the request sequence.The key innovation of Sleator and Tarjan was to use asa measure of di�culty the performance of an optimalo�-line algorithm, one allowed to see the entire requestsequence before making any decisions about how to sat-isfy it. They de�ned the competitive ratio, which is thesupremum, over all possible input sequences �, of theratio of the performance achieved by the on-line algo-rithm on � to the performance achieved by the optimalo�-line algorithm on �, where the measure of perfor-mance depends on the particular problem.In a distributed setting there are additional sourcesof nondeterminism other than the request sequence.These include process step times, request arrival times,message delivery times (in a message-passing system)and failures. Moreover, a distributed algorithm has todeal not only with the problems of lack of knowledgeof future requests and future system behavior, but alsowith incomplete information about the current systemstate. Due to the additional type of nondeterminism inthe distributed setting, it is not obvious how to extendthe notion of competitive analysis to this environment.Awerbuch, Kutten, and Peleg [17], and Bartal, Fiat,and Rabani [19] took the �rst steps in this direction.Their work was in the context of job scheduling anddata management. In these papers, and in subsequentwork [4, 14, 15, 21], the cost of a distributed on-linealgorithm1 is compared to the cost of an optimal global-1Because most distributed algorithms have an on-line 
avor,we use the terms distributed algorithm and distributed on-linealgorithm interchangeably.



control algorithm. (This is also done implicitly in theearlier work of Awerbuch and Peleg [18].) As has beenobserved elsewhere (see, e.g. [15], paraphrased here),this imposes an additional handicap on the distributedon-line algorithm in comparison to the optimal algo-rithm: In the distributed algorithm the decisions aremade based solely on local information. It is thus upto the algorithm to learn (at a price) the relevant partof the global state necessary to make a decision. Theadditional handicap imposed on the on-line distributedalgorithm is that it is evaluated against the o�-line algo-rithm that does not pay for overhead of control neededto make an intelligent decision.Ajtai, Aspnes, Dwork, and Waarts [3] argued that insome cases a more re�ned measure is necessary, and thatto achieve this the handicap of incomplete system infor-mation should be imposed not only on the distributedon-line algorithm but also on the optimal algorithm withwhich the on-line algorithm is compared. Otherwise,two distributed on-line algorithms may seem to havethe same competitive ratio, while in fact one of themtotally outperforms the other. Their approach is ulti-mately based on the observation that the purpose ofcompetitive analysis for on-line algorithms is to allowcomparison between on-line algorithms; the �ctitiouso�-line algorithm is merely a means to this end. There-fore, the natural extension of competitiveness to dis-tributed algorithms is to de�ne a distributed algorithmas k-competitive if it never performs more than k timesworse than any other distributed algorithm.Cooperative Collect. To demonstrate the di�erent no-tions of competitiveness, we study the problem of hav-ing processes repeatedly collect values by the cooperativecollect primitive, �rst abstracted by Saks, Shavit, andWoll [49], described below.2We assume the standard model for asynchronousshared-memory computation, in which n processes com-municate by reading and writing to a set of single-writern-reader registers. (We con�ne ourselves to single-writerregisters because the construction of registers that canbe written to by more than one process is one of theprincipal uses for the cooperative collect primitive.) Asusual, a step is a read or a write to a shared variable.The algorithms are required to be wait-free: there is ana priori bound on the number of steps a process musttake in order to satisfy a request, independent of thebehavior of the other processes.Many algorithms in the wait-free shared-memorymodel have an underlying structure in which processesrepeatedly collect values using the cooperative collectprimitive. In the cooperative collect primitive, pro-cesses perform the collect operation { an operation inwhich the process learns the values of a set of n reg-isters, with the guarantee that each value learned isfresh: it was present in the register at some point dur-ing the collect. If each process reads every register,then this condition is trivially satis�ed; however, thisalgorithm will perform a lot of redundant work when2Much of this discussion is taken from [3].

there is high concurrency. Interestingly, this is the(trivial) solution that is used in current literature onwait-free shared-memory applications in the standardshared memory model, including nearly all algorithmsknown to us for consensus, snapshots, coin 
ipping,bounded round numbers, timestamps, and multi-writerregisters [1, 2, 5, 6, 7, 8, 9, 11, 13, 20, 22, 23, 24, 25, 28,29, 32, 34, 35, 38, 39, 40, 42, 51].3We assume that the schedule { which processes takesteps at which times, and when the registers are up-dated { is under the control of an adversary. Intuitively,if all n processes are attempting to perform collect op-erations concurrently, the work can be partitioned sothat each process performs signi�cantly fewer than nreads. Thus, more sophisticated protocols may allowone process p to learn values indirectly from anotherprocess q. Nevertheless, the worst-case cost for any dis-tributed algorithm is always as high as the cost of thena��ve algorithm, as follows. Suppose p1 performs a col-lect in isolation. If p2 later performs a collect, it cannotuse the values obtained by p1, since they might not befresh. For this reason p2 must read all the registers it-self. Continuing this way, we can construct an executionin which every algorithm must have each process readall n registers. Thus, the worst-case cost for any dis-tributed algorithm is always as high as the cost of thena��ve algorithm.The example shows that a worst-case measure isnot very useful for evaluating cooperative collect algo-rithms. A similar example shows that a competitiveanalysis that proceeds by comparing a distributed algo-rithm to an ideal global-control algorithm gives equallypoor results. The underlying di�culty arises because aglobal-control algorithm knows when registers are up-dated. Thus in the case where none of the registershave changed since a process's last collect, it can sim-ply return the values it previously saw, doing no reador write operations. On the other hand, any distributedalgorithm must read all n registers to be sure that newvalues have not appeared, which gives an in�nite com-petitive ratio, for any distributed algorithm. Thus thecompetitive measure of [17, 19] does not allow one todistinguish between the na��ve algorithm and algorithmsthat totally dominate it.Competitive Latency. Observing the above was whatled [3] to de�ne a competitive measure for distributedalgorithms, called latency competitiveness. The com-petitiveness presented in [3] allows such a distinction,i.e. between the na��ve cooperative collect algorithmand algorithms that dominate it. To characterize thebehavior of an algorithm over a range of possible sched-ules they de�ne the competitive latency of an algorithm.Intuitively, the competitive latency measures the ratiobetween the amount of work that an algorithm needsto perform in order to carry out a particular set ofcollects, to the work done by the best possible algo-3[49, 48] present interesting collect algorithms that do notfollow the pattern of the naive algorithm. Both works howeverconsider considerably stronger models than the standard sharedmemory model considered here.



rithm (champion) for carrying out those collects giventhe same schedule. In their model the schedule includesthe timing of both system events and user requests. (SeeFigure 1.) As discussed above, they re�ne previous no-tions by requiring that this best possible algorithm be adistributed algorithm. Though the choice of this cham-pion algorithm can depend on the schedule, and thusit can implicitly use its knowledge of the schedule tooptimize performance (say, by having a process read aregister that contains many needed values), it cannotcut corners that would compromise safety guarantees ifthe schedule were di�erent (as it would if it allowed aprocess not to read a register because it \knows" fromthe schedule that the register has never been writtento).They then present the �rst (and so far the only) com-petitive algorithms for the cooperative collect problem.The basic technique in their algorithms is a mechanismthat allows processes to read registers cooperatively, byhaving each process read registers in an order deter-mined by a �xed permutation of the registers. Theyde�ne the collective latency of an algorithm to be theworst case number of steps required to complete a setof collects that are in progress at a certain time. Usingthe trivial collect algorithm, even if n processes performcollects concurrently, there are a total of n2 reads, i.e.the collective latency of the trivial algorithm is O(n2).[3] presents the �rst algorithms that cross this barrier.Their principal technical achievement is providing thesenontrivial bounds on the collective latency of their algo-rithms. The techniques they present o�er rather deepinsight into the combinatorial structure of the problemand may be of more general use.Competitive analysis and modularity. The Ajtai etal. [3] approach was successful: it distinguishes betweenthe naive algorithm and faster cooperative collect algo-rithms; moreover, they provide such faster cooperativecollect algorithms. Since collects appear either explic-itly or implicitly in a wide variety of wait-free shared-memory algorithms, intuitively, a competitive collectprotocol would translate into faster versions of thesealgorithms. However, competitive analysis in generalappears to forbid a modular construction of competi-tive algorithms. If A is an algorithm that uses a sub-routine B, the fact that B is competitive says nothingat all about A's competitiveness, since A must com-pete against algorithms that do not use B. Clearly, thislack of modularity impedes the development of practicalcompetitive algorithms.1.1 Our resultsThis paper overcomes this di�culty.Competitive throughput. We de�ne a new measureof competitive performance for distributed algorithms,called competitive throughput, that for the �rst time per-mits a general method for the modular construction ofcompetitive distributed algorithms. Throughput mea-sures the number of tasks carried out by an algorithm

given a particular schedule. (See Figure 2.) The obser-vation is that when analyzing a distributed algorithmit may be helpful to distinguish between two sourcesof nondeterminism, user requests (the input) and sys-tem behavior (the schedule). The work that comparesa distributed algorithm with global control algorithm[4, 14, 15, 17, 18, 19, 21] implicitly makes this dis-tinction by having the on-line and o�-line algorithmscompete only on the same input, generally hiding thedetails of the schedule in a worst-case assumption ap-plied only to the on-line algorithm. The competitive la-tency model of [3] applies the same input and scheduleto both the on-line and the o�-line algorithms. In thepresent work the key insight is to preserve the split be-tween the input and the schedule, as implicitly done in[4, 14, 15, 17, 18, 19, 21], but to reverse the approach ofthis previous work by assuming a worst-case input buta competitive schedule. That is, when comparing thenumber of tasks performed by a candidate algorithmwith those performed by an optimal champion, we willassume that both are distributed algorithms that mustdeal with the same pattern of failures and asynchrony,but that the user requests given to the candidate arechosen to minimize the candidate's performance whilethe requests given to the champion are chosen to maxi-mize the champion's performance.Note that when comparing steps done by the candi-date algorithm and champion algorithms, we considerthe standard shared memory model for asynchronousshared memory computations, in which each step is anatomic read or write of shared memory. As explainedabove, this model is a natural model for the collect prim-itive; moreover, it has a simple mathematical structureand hence does not obscure the issues introduced in thepaper. There is nothing in our notion of throughputcompetitiveness however that prohibits considering it inthe context of more detailed models for multiprocessorarchitectures, such as one that takes into account theissue of contention (i.e. the number of processes tryingto access the same variable concurrently). To incorpo-rate contention one could simply make a process incura stall step instead of a usual step in case of contention,following the lines of [30]. Note however that in thestandard model considered in this paper, where a stepis an atomic read or write to a single-writer n-readerregister, the issue of contention is of lesser e�ect.Relative Competitiveness. An important property ofcompetitive throughput is that it allows competitivealgorithms to be constructed modularly. We de�nea notion of relative competitiveness such that if Ais a k-relative-competitive algorithm that calls an l-competitive subroutine B, then the combined algorithmA � B is kl-competitive.Competitive throughput is a natural measure to ap-ply when the speci�c input has little e�ect on the num-ber of tasks that can be completed, and most of thevariation between executions is due to the schedule.This is often the case for shared-memory distributed



Figure 1: Latency model. New high-level operations (ovals) start at times speci�ed by the scheduler (vertical bars).Scheduler also speci�es timing of low-level operations (small circles). Cost to algorithm is number of low-leveloperations actually performed (�lled circles).Figure 2: Throughput model. New high-level operations (ovals) start as soon as previous operations end. Schedulercontrols only timing of low-level operations (�lled circles). Payo� to algorithm is number of high-level operationscompleted.algorithms.4 Nevertheless, we do not view the notion ofthroughput competitiveness as replacing the notion oflatency competitiveness. Competitive latency has theadvantage of being more re�ned since the on-line ando�-line algorithms are competing both on the scheduleand on the input, i.e. have the same schedule and in-put. However, the competitive latency model, becauseit uni�es the schedule and the input, seems unsuitedto the modular construction of competitive algorithms.(A naive application of the latency model would onlyallow a candidate algorithm A to be compared againsta champion that not only uses the same subroutine Bbut provides it with exactly the same requests arrivingat exactly the same times.)Cooperative Collect. As mentioned above, the prin-cipal technical di�culty of Ajtai et al. [3] was bound-ing the collective latency of their cooperative collects.They used this bound in order to provide a bound onthe competitive latency of the cooperative collects. Touse a bound on collective latency in order to bound thethroughput competitiveness, one needs new, nontrivialideas. Doing this is the principal technical achievementof our paper. In particular, we show that any collectalgorithm with certain natural properties can be ex-tended to a throughput-competitive implementation of4Where it is not (for example, when implementing an objectthat provides both cheap and expensive operations) we can oftenadjust the description of the problem to �t the measure. Oneway to do this is to join cheap operations to succeeding expensiveoperations. An example of this technique is given by the write-collect primitive described in Section 5.

a slightly stronger primitive, a write-collect.For the fastest algorithm of [3] our result gives athroughput competitive ratio of O(n3=4 log2 n). This ishigh, but the algorithms of [3] are the only ones thatcross the trivial bound of O(n) and hence the fastestcurrent algorithms available. Moreover we show thatthey are nearly optimal: no cooperative collect algo-rithm can obtain a throughput competitiveness betterthan 
(pn). This high lower bound may indicate thatan interesting research avenue may be to re�ne the no-tion of throughput competitiveness to re
ect more accu-rately the performance of distributed algorithms. Cur-rently throughput competitiveness, introduced here, isthe most re�ned measure for evaluating throughput ofdistributed algorithms: the standard worst case mea-sure and the approach of comparing a distributed algo-rithm with an ideal global control algorithm, will bothgive 
(n) performance; and as described above the mea-sure of [3] does not allow modularity.It is the modularity property of throughput competi-tiveness that allows us to derive competitive versions ofwell-known shared-memory algorithms that are struc-tured around the collect primitive, among which are thefastest known atomic snapshot algorithm, due to Attiyaand Rachman [13], and the bounded round numbersabstraction due to Dwork, Herlihy, and Waarts [29].An important consequence of the modularity of thethroughput-competitive measure is that better algo-rithms for doing collects will immediately give betteralgorithms that use collects.Thus, we see our paper as making two main contri-butions: one is the introduction of a modular measure-



ment for competitiveness, whose interest is justi�ed bythe throughput competitiveness of the cooperative col-lect algorithms; and the other is a technique for provingthroughput competitiveness, which may apply to otherdistributed problems.Due to lack of space, proofs are omitted or onlysketched. A full version including detailed proofs isavailable [10].1.2 Other Related WorkA notion related to allowing only correct distributedalgorithms as champions is the very nice idea of com-paring algorithms with partial information only againstother algorithms with partial information. This was in-troduced by Papadimitriou and Yannakakis [46] in thecontext of linear programming; their model correspondsto a distributed system with no communication. A gen-eralization of this approach has recently been describedby Koutsoupias and Papadimitriou [41].In addition, there is a long history of interest in op-timality of a distributed algorithm given certain condi-tions, such as a particular pattern of failures [26, 31,37, 43, 44, 45], or a particular pattern of message de-livery [12, 33, 47]. In a sense, work on optimalityenvisions a fundamentally di�erent role for the adver-sary in which it is trying to produce bad performanceboth in the candidate algorithm and in what we wouldcall the champion algorithm; in contrast, the adversaryused in competitive analysis usually cooperates with thechampion.Nothing in the literature corresponds in generalityto our notion of relative competitiveness (De�nition 2)and the Composition Theorem (Theorem 3) that usesit. Some examples of elegant specialized constructionsof competitive algorithms from other competitive algo-rithms in a distributed setting are the natural potentialfunction construction of Bartal, Fiat, and Rabani [19]and the distributed paging work of Awerbuch, Bartal,and Fiat [16]. However, not only do these constructionsdepend very much on the particular details of the prob-lems being solved, but in addition they permit no con-currency, i.e. they assume that no two operations areever in progress at the same time. (This assumptiondoes not hold in general in typical distributed systems.)In contrast, the present work both introduces a generalconstruction of modular competitive distributed algo-rithms and does so in the natural distributed settingthat permits concurrency.1.3 Possible ExtensionsOur work de�nes modular competitiveness and relativecompetitiveness by distinguishing between two sourcesof nondeterminism, one of which is shared between theon-line and o�-line algorithms, i.e. the schedule, andthe other is not, i.e. the input. One can de�ne analo-gous notions to modular competitiveness and to relativecompetitiveness by considering any two sources of non-determinism, one of which is shared between the on-line and o�-line algorithms, and one that is not. For

example, we can obtain a notion of modular optimal-ity, relative optimality, and a composition theorem foroptimality, as follows: Let the shared nondeterminismcorrespond to observable properties of a system and letthe distinct nondeterminism correspond to hidden prop-erties. Then replace the best-case assumption for theo�-line algorithm's input with a worst-case assumption.All of our de�nitions and results concerning modularity,including the composition theorem, will carry through,provided the replacement is done consistently. This isan interesting possible extension of this work that wouldbe worth pursuing.2 The ModelWe assume the standard model for asynchronousshared-memory computation, in which n processes com-municate by reading and writing to a set of single-writern-reader atomic registers. Time proceeds in discreteunits, in each of which some process takes a singleatomic step. As usual, a step is a read or a write toa shared variable. The timing of events in the system isassumed to be under the control of an adversary, whois allowed to see the entire state of the system (includ-ing the internal states of the processes). The adversarydecides at each time unit which process gets to take thenext step; these decisions are summarized in the sched-ule, which formally is just a sequence of process id's.We require our algorithms to be wait-free: there is ana priori bound on the number of steps a process musttake in order to satisfy a request, independent of thebehavior of the other processes.Most architectures provide some primitives that arestronger than atomic registers, such as Read-Modify-Write operation in which a register can be read andwritten in a single atomic step, and there are good rea-sons to study what can be done given such primitives.Nevertheless, the standard setting of atomic registers iswell motivated. Among other reasons, stronger prim-itives are typically much more expensive than a readof an atomic register because of interactions with thecache hierarchy. When a process needs to perform anatomic read, it can often �nd the value in its cache (acache hit), and hence does not need to actually go tothe shared memory. In contrast, each time a processinitiates a Read-Modify-Write operation, it must loadfrom the shared memory.We continue with the description of the model. Pro-cesses are always assumed to be carrying out tasks froma request sequence provided by the adversary. The re-quest sequence corresponds to the inputs to the n pro-cesses and may be thought of as partitioned into n sub-sequences, one controlling each process. We do not as-sume that the request sequence is part of the schedule.The reason is that we want to be able to compare dif-ferent algorithms on the same schedule even if thesealgorithms do not necessarily implement the same setof tasks.Since in the present work we are only working withdeterministic algorithms, we can assume that the re-quest sequence and schedule are �xed in advance. This



assumption is not required for our results but allows thepresentation to be simpli�ed. A more general approachwould be to assume that both are generated on the 
yby an adaptive adversary.We will also assume that the algorithms we con-sider are implementing objects which are abstract con-current data structures with well-de�ned interfaces andcorrectness conditions. We will assume that these ob-jects are manipulated by invoking tasks of some sort,that we can count the number of tasks completed byan algorithm implementing an object, and that we candistinguish correct implementations from incorrect im-plementations. Otherwise the details of objects will beleft unspeci�ed unless we are dealing with speci�c ap-plications.3 The MeasuresCompetitive throughput. The competitive throughputof an algorithm measures how many tasks an algorithmcan complete in a given amount of time. We measurethe algorithm against a champion algorithm that runsunder the same schedule. We do not assume that bothalgorithms are given the same request sequence; we re-quire only that the two request sequences be made upof tasks for the same object T .Some notation: for each algorithm A, schedule�, and request sequence R, de�ne done(A;�; R) tobe the total number of tasks completed by all pro-cesses when running A according to the schedule� and request sequence R. De�ne optT (�) to bemaxA� ;R� done(A�; �;R�), where A� ranges over all cor-rect implementations of T and R� ranges over all requestsequences composed of T -tasks. (Thus optT (�) repre-sents the performance of the best correct algorithm run-ning on the best-case input for the schedule �.)De�nition 1 Let A be an algorithm that implementsan object T . Then A is k-throughput-competitive for Tif there exists a constant c such that, for any schedule �and request sequence R,done(A;�; R) + c � 1k optT (�): (1)This de�nition follows the usual de�nition of com-petitive ratio.Relative competitiveness. The full power of the com-petitive throughput measure only becomes apparentwhen we consider modular algorithms. Under many cir-cumstances, it will be possible to show that an algorithmthat uses an undetermined subroutine is competitive rel-ative to the object implemented by that subroutine, inthe sense that plugging in any competitive algorithmfor the subroutine gives a competitive version of thealgorithm as a whole. This intuition gives rise to thede�nition of relative throughput-competitiveness givenbelow.As in the de�nition of throughput-competitiveness,we consider a situation in which A is an algorithm im-plementing some object T . Here, however, we assume

that A depends on a (possibly unspeci�ed) subroutineimplementing a di�erent object U . For any speci�c al-gorithm B that implements U , we will write A � B forthe composition of A with B, i.e., for that algorithmwhich is obtained by running B whenever A needs tocarry out a U -task.5De�nition 2 An algorithm A isk-throughput-competitive for T relative to U if thereexists a constant c such that for any B that implementsU , and any schedule � and request sequenceR for whichthe ratios are de�ned,done(A �B;�; R) + cdone(B;�;RA) � 1k � optT (�)optU(�) ; (2)where RA is the request sequence corresponding to thesubroutine calls in A when running according to R and�. As in the preceding de�nition, the additive constantc is included to avoid problems with granularity. Thecondition that the ratios are de�ned (which in essenceis just a requirement that � be long enough for B tocomplete at least one U -task) is needed for the samereason.4 Composition of Competitive AlgorithmsTheorem 3 (Composition) Let A be an algorithmthat is k-throughput-competitive for T relative to U , andassume there exists a constant c such that for all sched-ules �, c optU (�) � optT (�) :6 (3)Let B be an l-throughput-competitive algorithm for U .Then A � B is kl-throughput-competitive for T .It is worth noting that the theorem can be appliedmore than once to obtain a kind of transitivity. If A im-plements T competitively relative to U , B implements Ucompetitively relative to V , and C implements V com-petitively, then applying the theorem �rst to B and C,and then to A and B �C, shows that A �B �C is com-petitive.5 The Write-Collect ObjectThe write-collect object acts like a set of n single-writern-reader atomic registers and provides two operationsfor manipulating these registers. A collect operation re-turns the values of all of the registers, with the guaran-tee that any value returned was not overwritten beforethe start of the collect. (This condition is trivially sat-is�ed by an algorithm that reads all n registers directly,5For this de�nition it is important that A not execute anyoperations that are not provided by U . In practice the di�cultiesthis restriction might cause can often be avoided by treating Uas a composite of several di�erent objects.6Intuitively, this condition requires that for every T -task thatwe can �nish, we can �nish at least 1=c U-tasks. In e�ect it saysthat T is not a weaker object than U is.



but may be more di�cult for an algorithm in which pro-cesses may learn values indirectly from other processes.)A write-collect operation writes a new value to the pro-cess's register and then performs a collect. It must sat-isfy this rather weak serialization condition: given twowrite-collects a and b, if the �rst operation of a precedesthe �rst operation of b, then b returns the value writtenby a as part of its vector; but if the �rst operation ofa follows the last operation of b, then b does not returnthe value written by a. (Again, this condition is triv-ially satis�ed by the naive algorithm that simply does awrite followed by n reads.)The write-collect operation is motivated by the factthat many shared-memory algorithms execute collectsinterspersed with write operations (some examples aregiven in Section 8.6 A Throughput-Competitive Implementation ofWrite-CollectTo implement a write-collect we start with the coopera-tive collect algorithm of [3]. This algorithm has severaldesirable properties:1. All communication is through a set of single-writerregisters, one for each process, and the �rst opera-tion of the cooperative collect is a write operation.2. No collect operation ever requires more than 2nsteps to complete.3. For any schedule, and any set of collects that arein progress at some time t, there is a bound on thetotal number of steps required to complete thesecollects. (Showing this bound is nontrivial; a proofcan be found in [3]).These properties are what we need from a cooper-ative collect implementation to prove that it gives athroughput-competitive write-collect. The �rst prop-erty allows us to ignore the distinction between col-lect and write-collect operations (at least in the can-didate): we can include the value written by thewrite-collect along with this initial write, and thustrivially extend a collect to a write-collect with nochange in the behavior of the algorithm. In e�ect, ourthroughput-competitive write-collect algorithm is sim-ply the latency-competitive collect of [3], augmented bymerging the write in a write-collect with the �rst writedone as part of the collect implementation.The last two properties tell us that any write-collectsin progress at a given time will �nish soon, from whichit would seem to follow that the number of write-collectsthat are completed will be large. However, to show thatthe number of collects and/or write-collects completedby a modi�ed cooperative collect algorithm with theseproperties is proportional to the number completed bya champion algorithm is not easy. In Section 6.1, weshow a bound on the throughput-competitiveness of anyalgorithm with the above properties.

6.1 Proof of CompetitivenessIn order to show that a collect algorithm gives athroughput-competitive write-collect, we must do twothings. First, we must prove a lower bound on the num-ber of collects done by the algorithm based on someproperties of the schedule. As noted above, for algo-rithms in which a collect starts with a write this gives alower bound on the number of mixed collects and write-collects as well. Second, we must show that those sameproperties of the schedule imply an upper bound on thenumber of collects done by any correct algorithm. Sincea write-collect includes a collect, an upper bound on thecollects done by the champion implies a correspondingupper bound on the number of mixed collects and write-collects. Thus in both cases we can concentrate solelyon collect operations.Given an algorithm A and a schedule �, de�ne theprivate latency of a process p at time t to be the numberof steps (i.e., atomic read and write operations) doneby p after t and before the end of the last collect thatp started at or before t. If this quantity is bounded forall �, p, and t, denote the bound by UPL(A).Similarly, given an algorithm A, the collective la-tency at time t is de�ned [3] as the sum over all pro-cesses p of the private latency for p at time t, and isdenoted by CL(A; t). If this quantity is bounded forall A and �, denote the bound by UCL(A). Note thatUCL(A) may be much smaller than n �UPL(A) as con-current processes may cooperate to �nish their collectsquickly; for example, in the cooperative collect protocolof [3], UPL = 2n but UCL = O(n3=2 log2 n).We denote by FCThp(A; t) the fractional collectivethroughput in algorithm A of a process p at point tin time, and de�ne it inductively as follows. Whent = 0, FCThp(A;0) = 0. If at time t, some pro-cess q (which may or may not be equal to p) per-forms a step as part of a collect operation C, thenFCThp(A;t) = FCThp(A; t� 1) + 1UCL(A)+2n if at leastone of the following holds:1. p is in the middle of a collect operation thatstarted no earlier than C started;2. This step of q is the last step it performs before pstarts a new collect operation; or3. This step of q is the �rst step it performs after thelast collect completed by p.If none of the conditions hold, then FCThp(A; t) =FCThp(A;t� 1).A rough intuition is that the increment 1UCL(A)+2nrepresents how much of the current collective latency is\used up" by q. The 2n in the denominator is an artifactof the operations (up to two per process) in classes (2)or (3), and should not be confused with the value ofUPL(A) for any particular algorithm.Analogously, the fractional private throughput in al-gorithm A of a process p at point t in time is de-noted by FPThp(A; t) and is de�ned inductively as fol-lows. When t = 0, FThp(A; 0) = 0. If at time t,



p performs a step as part of a collect operation, thenFPThp(A; t) = FPThp(A;t � 1) + 1UPL(A) ; otherwise,FPThp(A; t) = FPThp(A; t � 1). Again, the intuitionhere is that the increment 1UPL(A) represents how muchof p's private latency is used up by the step at time t.The fractional throughput in algorithm A of a processp at point t in time is denoted by FThp(A; t) and isde�ned as (FCThp(A; t) + FPThp(A; t))=2.Lemma 4 Let A be a cooperative collect algorithm forwhich UPL(A) and UCL(A) are de�ned. Then in anyexecution of A, the total number of collects completed byall processes by time t in A is at leastPp FThp(A; t)�n.The n corresponds to collects that have not yet �n-ished at time t.Lemma 5 Let A be an algorithm for which UPL(A)and UCL(A) are de�ned. Let I = (t1; t2] be a timeinterval in which n steps are performed andm processesperform steps. Then Pp FThp(t2) �Pp FThp(t1) �12 � nUPL + m22�(UCL+2n)�.Lemma 6 Let A be a cooperative collect algorithm. LetI = (t1; t2] be a time interval in which n steps are per-formed and m processes perform steps. Then, the num-ber of collects completed in this interval is at most m.Combining the results of Lemmas 4, 5 and 6 gives:Theorem 7 Let A be a cooperative collect algorithm forwhich UPL(A) and UCL(A) are de�ned. Then A isq 8(UCL+2n) UPLn -throughput-competitive.The theorem can be applied to give an immediateupper bound on the throughput-competitiveness of anycooperative collect algorithm A for which the privateand collective latencies are always bounded. For exam-ple, plugging the bounds on the private and collectivelatencies of the faster algorithm of [3] into the formulain Theorem 7, it immediately follows that this algo-rithm is O(n3=4 log2 n)-throughput-competitive. Sincethat algorithm has the property that the �rst operationof any collect is a write, and the write-collect operationis strictly stronger than collect, this immediately givesus O(n3=4 log2 n)-throughput-competitive write-collectalgorithm as well. This bound is the �rst to cross thetrivial n bound, and, as implied by the lower bound ofthe following section, this bound is nearly optimal. (Asimilar discussion applies to the slower algorithm of [3].)7 Lower Bound on Throughput Competitiveness ofCollectTheorem 8 No cooperative collect protocol has athroughput competitiveness less than 
(pn).

Sketch of Proof: To overcome the additive constant,we build up an arbitrarily-long schedule out of phases,where in each phase the ratio of champion to candidatecollects is 
(pn). The essential idea is that in eachphase, most of the work will be done by a single \patsy"process, chosen at the beginning of the phase. Pro�tingfrom the patsy's labors, in the champion algorithm, willbe pn \active" processes (�xed for all phases). Thesesame processes, in the candidate algorithm, will notbene�t from the patsy's work, since we will terminate aphase as soon as any active process discovers the patsyor completes a collect started in that phase.Each phase consists of one or more rounds. Theschedule for a round consists of one step for each ac-tive process, followed by n+pn+1 steps for the patsy,and ended by one additional step for each active pro-cessor. In the champion algorithm: (1) the active pro-cesses write out timestamps; (2) the patsy reads thesetimestamps; (3) the patsy reads the registers; (4) thepatsy writes out a summary of the register values withthe timestamps attached; and (5) the active processesread this summary. Because the patsy reads the times-tamps before it reads the registers, the active processeswill know that the patsy's values are fresh. Thus thechampion completes pn + 1 collects per round.In the candidate, each active processor completes ex-actly one collect per phase. We enforce this by endinga phase as soon as some active processor obtains all theregister values or �nds the patsy; to avoid di�culties weattach a special \cleanup round" in which each proces-sor is given just enough steps to complete its current col-lect. Since no active processor reads the patsy's registeruntil the last round of the phase, the active processescannot mark the values they write with a timestampthat will allow the patsy to trust them. Thus, the patsywill complete roughly the same one collect per round asin the champion.The only issue left is how to choose a patsy that willnot be found quickly. If the patsy is chosen uniformlyat random, expected 
(n) active-processor reads will beneeded either to �nd it or to read all the register values,giving 
(pn) expected rounds. Ignoring some technicaldetails, this gives roughly 
(n) collects per phase for thechampion, versus O(pn) for the candidate, for a ratioof 
(pn).8 ApplicationsArmed with a throughput-competitive write-collect al-gorithm and Theorem 3, it is not hard to obtainthroughput-competitive versions of many well-knownshared-memory algorithms. Examples include snap-shot algorithms [2, 5, 8, 11, 13, 23], the bounded roundnumbers abstraction [29], concurrent timestamping sys-tems [25, 28, 32, 34, 35, 40], and time-lapse snap-shot [28]. Here we elaborate on some simple examples.Atomic snapshots. A snapshot object simulates an ar-ray of n single-writer registers that support a scan-update operation which writes a value to one of the reg-isters (an \update") and returns a vector of values for



all of the registers (a \scan"). A scan-update is dis-tinguished from the weaker write-collect operation byvirtue of a much stronger serialization condition; infor-mally, this says that the vector of scanned values mustappear to be a picture of the registers at some par-ticular instant during the execution. Snapshot objectsare very useful tools for constructing more complicatedshared-memory algorithms, and they have been exten-sively studied [2, 5, 8, 11, 23] culminating in the protocolof Attiya and Rachman [13] which uses only O(log n) al-ternating writes and collects to complete a scan-updateoperation.We will apply Theorem 3 to get a competitive snap-shot. Let T be a snapshot object and U a write-collectobject. Because a scan-update can be used to simulatea write-collect or collect, we have optT (�) � optU (�)for any schedule �, and the inequality (3) is satis�ed.Furthermore, if A is the Attiya-Rachman snapshot, Bis any write-collect algorithm, and R is any request se-quence of scan-update operations, then for any �,done(A � B;�;R) + 1done(B;�;RA) � 1O(log n) � 1O(log n) � optT (�)optU (�)which means that the Attiya-Rachman snapshotis O(log n)-throughput-competitive relative to write-collect. By Theorem 3, plugging in a k-throughput-competitive implementation of write-collect thus givesan O(k log n)-throughput-competitive snapshot proto-col.Bounded round numbers. A large class of wait-freealgorithms that communicate via single-writer multi-reader atomic registers have a communication structurebased on asynchronous rounds. Starting from round1, at each round the process performs a computation,and then advances its round number and proceeds tothe next round. A process's actions do not depend onits exact round number but only on the distance of itscurrent round number from those of other processes.Moreover, the process's actions are not a�ected by anyprocess whose round number lags behind its own bymore than a �nite limit. The round numbers increaseunboundedly over the lifetime of the system.Dwork, Herlihy and Waarts [29] introduced thebounded round numbers abstraction, which can beplugged into any algorithm that uses round numbersin this fashion, transforming it into a bounded algo-rithm. The bounded round numbers implementation in[29] provides four operations of varying di�culty; how-ever, the use of these operations is restricted. As aresult, we can coalesce these operations into a singleoperation, an advance-collect, which advances the cur-rent process's round number to the next round and col-lects the round numbers of the other processes. Usingtheir implementation, only O(1) alternating writes andcollects are needed to implement an advance-collect.Again we can apply Theorem 3. Let T be a boundedround numbers object (i.e., an object providing theadvance-collect operation) and let U be write-collect.Because an advance-collect must gather information
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