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ABSTRACT
A randomized algorithm is given that solves the wait-free
consensus problem for a shared-memory model with infinitely
many processes. The algorithm is based on a weak shared
coin algorithm that uses weighted voting to achieve a major-
ity outcome with at least constant probability that cannot
be disguised even if a strong adversary is allowed to destroy
infinitely many votes. The number of operations performed
by process i is a polynomial function of i. Additional al-
gorithms are given for solving consensus more efficiently in
models with an unknown upper bound b on concurrency or
an unknown upper bound n on the number of active pro-
cesses; under either of these restrictions, it is also shown that
the problem can be solved even with infinitely many anony-
mous processes by prefixing each instance of the shared coin
with a naming algorithm that breaks symmetry with high
probability. For many of these algorithms, matching lower
bounds are proved that show that their per-process work is
nearly optimal as a function of i, b, or n. The case of n
active processes gives an algorithm for anonymous, adap-
tive consensus that requires only O(n log2 n) per-process
work, which is within a constant factor of the best previ-
ously known non-adaptive algorithm for a strong adversary.
Finally, it is shown that standard universal constructions
based on consensus continue to work with infinitely many
processes with only slight modifications. This shows that in
infinite distributed systems, as in finite ones, with random-
ness all things are possible.

1. INTRODUCTION
There has been much recent interest in the distributed

computing community in algorithms that support arbitrarily
many participants. A natural way to study such algorithms
is to define a system in which infinitely many processes may
join the protocol over time, and see what problems remain
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solvable in such a system. Recent work by Gafni et al. [20]
has shown that wait-free renaming, collect, and snapshot
algorithms exist for infinitely many processes, showing that
many of the fundamental building blocks of shared-memory
distributed algorithms do not require a bound on the number
of processes.

In this paper, we give randomized wait-free algorithms
that allow infinitely many processes to solve the much more
difficult consensus problem [24] under various conditions.
Since the consensus problem is known to be universal for
constructing wait-free data structures [22], these algorithms
show that infinite arrivals are not in themselves an obstacle
to building wait-free algorithms.

1.1 Model
Our model follows that used in previous work on systems

that support infinite arrivals [20], with some additions to
incorporate randomization.

The basic model assumes a countably infinite collection of
processes that communicate by means of a countably infinite
collection of atomic read-write registers, each of which can
store arbitrarily large finite values.1 The reason for assum-
ing infinitely many processes is to model infinite arrivals,
where the number of processes present in the system at any
time is finite, but where this quantity can grow arbitrarily
large over time. Having accepted unboundedly many pro-
cesses, we must also provide unboundedly many registers,
due to the Ω(

√
n) lower bound on the space needed for n-

process consensus proved by Fich et al. [18].
We model concurrency by interleaving. A schedule con-

sists of a sequence of events, each of which is either an atomic
read operation, an atomic write operation, or an internal
coin-flip of some process. Read and write operations have
the usual effects on the shared memory. Coin-flips are ran-
dom transitions internal to a process whose outcome cannot
be predicted by the adversary. All events are treated as
occurring sequentially, with each event transforming a pre-

1Most of our algorithms do not extend to uncountable col-
lections of processes; however, since we assume only finitely
many processes arrive at each finite time, having more than
countably many processes participate in a single execution
would require an execution involving uncountably many
steps. Although the study of executions taking uncountable
time might be of some mathematical interest, the problem
of defining the state of the system at limit points fills us with
dread, and there are likely to be significant complications to
probabilistic analysis with uncountable sets of events. Hence
our assumption of countability throughout.



vious global state into a new global state. The occurrence
of an event is called a step. In any given state there may be
many events that may occur; such events are called pending.

An adversary chooses which pending event occurs at each
step; this adversary may be strong, in which case it can base
this decision on the entire state of the system, including the
contents of registers and internal states of the processes;
or weak, in which case it must choose equivalent pending
events in states that satisfy some given equivalence relation.
Our weak adversary will be the content-oblivious adversary
of [15], which cannot observe contents of registers, values of
pending write operations, or internal states of the processes.
Both strong and weak adversaries are defined by their strate-
gies, functions from partial executions to pending events.

Every process has two special events, which are used to
keep track of the number of processes that are running con-
currently. The first event of any process is a birth event ;
such an event corresponds to the process waking up and be-
ginning its computation. A process may also experience a
death event, corresponding to either termination or a crash
failure. A process that has performed a birth but not a
death is live. For some of our results we assume a bound on
the number of live processes in any state.

Birth events are enabled only in the initial state of a pro-
cess; once born, a process may die, but cannot be born
again. Death events are always enabled for any live pro-
cess. However, we require that an adversary strategy yields
with probability 1 at least one process that, without dy-
ing, either terminates by reaching a state in which it has no
pending operations, or executes infinitely many operations.

Because we have infinitely many processes, we cannot ex-
pect to bound the total work performed by any algorithm.
So we will concentrate instead on the per-process work, the
total number of read and write operations performed by
each process. A protocol is randomized wait-free if the per-
process work is finite with probability 1 for all processes that
execute the protocol. We will only be interested in random-
ized wait-free protocols.

Finally, processes may or may not have identities. Pro-
cesses that do not have identities are anonymous, and must
all share the same code, with the behavior of two processes
diverging only in response to different inputs, different coin-
flip outcomes, or different values read from memory.

1.2 Concurrency bounds
We use the terminology of [20]. Unbounded concurrency

means that there is no limit to the number of processes that
may be live at any one time. Bounded concurrency holds
when there is such a limit in any particular execution. Still
more restrictive is b-bounded concurrency, where this limit
is a fixed value b in all executions.

If the number of processes that are ever live is at most
n, we have n arrivals. Algorithms for the n arrivals model
whose per-process work is bounded as a function of n with-
out n being known to the processes are said to be adaptive.

1.3 Wait-free consensus
The consensus problem is to get a group of processes in a

distributed system to agree on a value.
A consensus protocol is an algorithm that produces such

an agreement. Each process in a consensus protocol has an
input from some specified range and must eventually decide
on some output from the same range. A process may only

decide once, and after deciding it does not participate in the
protocol further.

Correct consensus protocols must satisfy the following
three conditions:

1. Agreement. All processes that decide choose the same
value.

2. Termination. All non-faulty processes eventually de-
cide.

3. Validity. The common decision value is the input of at
least one process.

The special case where the input range is {0, 1} is called bi-
nary consensus. For processes with identities, id-consensus
is consensus where each process’s input is its identifier. Fi-
nally, we will use infinitary consensus to refer to the case
where the input range is an arbitrary countably infinite set.

The consensus problem has been known to be unsolvable
by deterministic algorithms in asynchronous systems with
even a single crash failure since the impossibility result of
Fischer et al. [19], which was proved for a message-passing
model and extended to a shared-memory model by Loui and
Abu-Amara [23]. However, randomized solutions for the
shared-memory model that tolerate the failure of nearly all
processes have been known since the pioneering algorithms
of Chor et al. [16] (for a weak adversary) and Abraham-
son [1] (for a strong adversary). Subsequent efforts by many
authors [2, 4, 5, 7, 9–13, 15, 17, 25] have steadily reduced the
cost of solving consensus with n processes to the current best
known bounds of O(n log2 n) operations per process for the
strong adversary [5] and O(logn) operations per process for
a weak adversary [9].

Most known wait-free consensus algorithms are based on
a reduction from consensus to the weak shared coin prob-
lem, and we, too, use such a reduction in Section 2. A weak
shared coin is a protocol that allows processes to combine
their individual coin flips (which are not immediately visible
to other processes, and thus vulnerable to delay or intercep-
tion by the adversary) into a common global coin flip, which
for each possible value c will appear as c to all processes with
at least a constant defiance probability [4]. Known shared
coin protocols for a strong adversary are all built using some
form of random voting, where each process generates many
random votes based on its own internal coin, and the global
coin value is determined by a (possibly weighted) majority
of the local coins. In such protocols, a strong adversary can
seize control of the shared coin by selectively killing off pro-
cesses that are about to write out votes for the wrong value.
But if enough votes are generated, the size of the majority is
likely to be large enough that removing the lost votes does
not change the winner.

With unweighted voting and n processes, the adversary
can dispose of up to n − 1 votes, and so Θ(n2) votes are
needed to get at least a constant probability of an unbiased
outcome. Obviously any algorithm that depends on per-
forming Θ(n2) operations will be difficult when n is infinite,
so instead we use a weighted voting scheme in which each
process is assigned an identity starting at 1, and processes
with larger identities cast smaller votes (this mechanism is
described in Section 3.1). Though the adversary can still de-
stroy infinitely many votes, by carefully choosing the weights
according to a convergent series we prevent these infinitely
many votes from shifting the outcome of the voting by more



than a constant amount, which turns out to be enough to
construct a shared coin. The cost that we pay for weight-
ing votes is that the expected work done by the i-th process
is now a function of i; however, an argument based on the
lower bound of [3] shows that we cannot hope to do much
better.

For a weak adversary, we can rely much more on the adver-
sary’s inability to see votes until after the processes do. This
allows us to construct a weak shared coin whose per-process
work does not depend on the process’s identity, provided we
can assume either bounded concurrency or bounded arrivals.
These algorithms are described in Section 3.2.

Our reduction to weak shared coin solves only the binary
consensus problem. For larger input ranges, we have a re-
duction from infinitary consensus to binary consensus, de-
scribed in Section 2.2. Infinitary consensus turns out to be
necessary for our universal construction in Section 5.

1.4 Naming
The naming problem requires assigning unique identifiers

to anonymous processes. It is known that assigning unique
identifiers with probability 1 is impossible, even for finitely
many processes and even if consensus is available as a sub-
routine [14]. However, it is still possible to assign unique
identifiers with high probability.

We give several algorithms for assigning unique identi-
fiers to anonymous processes in Section 4. These work with
constant probability, and can be used to build anonymous
shared coins from standard shared coins, assuming the stan-
dard shared coin terminates even when processes share an
identifier.

1.5 Summary of results
Our results for consensus are summarized in Tables 1

and 2. Table 1 gives upper bounds for consensus; these are
all based on the reduction from consensus to weak shared
coins given in Section 2.1. Table 2 gives lower bounds.

2. CONSENSUS
Our basic tool is a generic binary consensus protocol based

on the weak-adversary consensus protocol of [15]. This pro-
tocol works in every variant of the model we consider, pro-
vided it is supplied with an appropriate shared coin algo-
rithm as a subroutine. To implement infinitary consen-
sus, we use an unbalanced tournament tree similar to that
used by Attiya and Bortnikov for adaptive mutual exclu-
sion [6]. We complement these positive results with some
lower bounds on per-process work, based on the lower bound
of [3].

2.1 Binary consensus
In the full paper, we show that a simplified version of

the multi-writer register consensus protocol from [15] solves
consensus for infinite arrivals given any weak shared coin as
a subroutine. The algorithm runs in rounds, and terminates
after each round with a probability at least equal to the
defiance probability of the shared coin for that round.

The round structure permits slowly increasing a “guess”
for a bound on the concurrency or number of arrivals. With
a shared coin that (a) terminates in time polynomial in this
guess, and (b) exhibits a constant defiance probability once
the guess is large enough, the consensus algorithm runs with
the same expected time as the shared coin except for con-

stant factors. By increasing the guesses using a geometric
series, the cost of earlier coins with incorrect guesses in-
creases the total time by only an additional constant factor.
This technique is used to get the bounds in Table 1 where
the algorithm’s performance depends on n or b without ac-
tually knowing n or b; it also handles the case of bounded
concurrency, where the bound b may vary from execution to
execution.

We use special cases of the algorithm for anonymous pro-
cesses and n arrivals. These are described in detail in the
full paper, but we sketch the central ideas here.

With a weak adversary, we run three rounds of the algo-
rithm without a shared coin to enforce validity, and use the
preferences at the end of the last round (for undecided pro-
cesses) as inputs to the O(logn) weak-adversary consensus
protocol of Aumann [9]. The Aumann algorithm is run using
identities in the range 1 to n4 obtained from Algorithm 5,
which are unique with probability at least 1− 1/n2. In case
the Aumann algorithm fails, its outputs are used as inputs
to a second incarnation of the round-based protocol, with
no coin in the first three rounds, and the weak-adversary
coin of Algorithm 2 in subsequent rounds. This last step
may involve O(b log b) = O(n logn) work per process if Al-
gorithm 2 actually runs, but the rarity of this event causes
the expected cost to disappear in the overall O(logn) cost.

With anonymous processes, n arrivals, and a strong ad-
versary, we use as our shared coin the O(n log2 n) work-per-
process coin of Aspnes and Waarts [5], with identities in the
range 1 to n2 again obtained by running Algorithm 5. The
most expensive part of the Aspnes-Waarts coin consists of
O(log2 n) collect operations, in each of which the value of a
register for each participating process is obtained. To avoid
doing n2 reads for each of these collects, we use a tree-based
data structure for doing efficient sparse collects, where only
n positions in an array of n2 registers are nonempty. This
data structure (described in the full paper) allows sparse
collects to be done with O(n) work per collect, plus a cumu-
lative O(n logn) overhead that is shared between all collects
done by any one process.

For 1-bounded concurrency, we can skip the round-based
algorithm entirely, and use an algorithm where each pro-
cess writes its input to a single common register after first
checking to see that no value has previously been written.
As we argue at slightly greater length in the full paper, this
almost-trivial algorithm solves consensus in 2 operations per
process without using randomization, creating a curious sit-
uation. While consensus is solvable quickly, building a weak
shared coin in this model is arbitrarily expensive, as an ex-
amination of the lower bound on weak shared coins from [3]
shows that it requires only 1-bounded concurrency.

Finally, we observe that the algorithm interleaving tech-
nique of Attiya et al. [8] can be used to combine shared
coins to get, for example, a consensus protocol for n arrivals
in which process i performs O(min(Tc · i1+ε, n log2 n)) work,
where Tc is the cost of a collect.

2.2 Infinitary consensus
In the full paper, we give an algorithm for reducing in-

finitary consensus to binary consensus using an unbalanced
tournament tree. Each process starts at a leaf of the tree
determined by the process’s input, and climbs to the root by
executing a binary consensus protocol at each node, adopt-
ing as its preference at each stage the winner of the pre-



Adversary Concurrency Anonymity Operations/process Shared coin

unbounded
no O(Tc · i1+ε) Alg. 1

yes ? —

strong
n arrivals yes O(n log2 n) Alg. 5+ [5]

bounded
no O(Tc · i1+ε) Alg. 1

yes unbounded Alg. 3 + Alg. 1

b-bounded, b ≥ 2
no O(Tc · i1+ε) Alg. 1

yes unbounded Alg. 3 + Alg. 1

1-bounded yes O(1) Not required

weak
n arrivals yes O(logn) Alg. 5+ [9]

bounded yes O(b log b) Alg. 2

b-bounded yes O(b log b) Alg. 2

Table 1: Consensus algorithms. Operations/process are worst-case expected, where Tc is the number of
operations for one collect. The value of n or b in a concurrency bound is not known to the processes. For
bounded concurrency, b is the per-execution bound.

Adversary Concurrency Anonymity Operations/process Proved in

strong

unbounded no Ω(i/ log2 i) Theorem 1

n arrivals no Ω(n/ log2 n) [3]
bounded no ?

b-bounded, b ≥ 2 no ?

1-bounded no Ω(1) trivial

weak any ? ?

Table 2: Lower bounds. Bounded-arrivals and bounded-concurrency lower bounds apply even when n or b is
known.

vious consensus protocol. The tree is the same as used in
the adaptive mutual exclusion protocol of Attiya and Bort-
nikov [6]; it has the property that a process with input k
must climb through 2blog kc + 1 internal nodes (and thus
complete O(log k) binary consensus protocols) to reach the
root.

2.3 Lower bounds

Theorem 1. For any non-anonymous binary consensus
protocol with unbounded concurrency and a strong adver-
sary, the processes can be divided into two sets S and T
such that: (a) there is an ordering p1, p2, . . . of all processes
in S for which the worst-case expected number of write oper-
ations performed by pi is Ω(i/ log2 i); and (b) the worst-case
expected number of write operations performed by any pro-
cess in T is unbounded.

Proof. Let W (p) be the worst-case expected number of
writes performed by process p, or ∞ if this quantity is un-
bounded. Choose an ordering < of the processes by increas-
ing W (p) and let S = p1, p2, . . . be the prefix of this ordering
whose order type is that of the natural numbers. Let T con-
sist of all processes not in S.

Because we are ordering by increasingW , we haveW (pi) ≤
W (pj) when i ≤ j. So for any adversary strategy, the ex-
pected total number of writes performed by p1, . . . pn is at

most
∑n
i=1 W (i) ≤ nW (n). From [3], there is an adver-

sary strategy that runs only the first n processes and ob-
tains expected Ω(n2/ log2 n) writes; it follows that W (n) =
Ω(n/ log2 n).

This establishes the lower bound for each process in S.
For processes in T , observe that any such process p has
W (p) ≥ W (pn) = Ω(n/ log2 n) for arbitrarily large n. It
follows that W (p) is infinite and that the expected running
time of p is unbounded.

3. SHARED COINS
A shared coin with defiance probability δ is a protocol that

guarantees that with probability at least δ all participants
decide 0, and that with probability at least δ all participants
decide 1. A strong shared coin has δ = 1

2
. Wait-free strong

shared coins are known to be impossible in a model where
timing is controlled by a strong adversary [4]. A weak shared
coin is a shared coin where 0 < δ < 1

2
. In this section, we

will show how to construct wait-free weak shared coins under
a variety of assumptions about scheduling.

3.1 Convergent voting
The convergent voting algorithm (Algorithm 1) imple-

ments a weak shared coin for infinitely many processes with
identities 1, 2, 3, . . .. The algorithm resembles the Aspnes-
Waarts shared coin [5], which uses weighted voting to ob-



procedure SharedCoin () returns boolean
shared data: array of single-writer registers r[j]

for each j = 1, 2, . . ., with fields
r[j].variance and r[j].vote, both initially
0

local data: temporary weights w and v

begin
repeat

1 w ← max
(

1
ζ(1+ε)i1+ε ,

1
U
r[i].variance

)
2 if LocalCoin () = true then

v ← +w
else

v ← −w
end

3 write (r[i].variance, r[i].vote) ← (r[i].variance +
w2, r[i].vote + v)

4 Collect (r[j])
5 total ←

∑
j r[j].variance

until total ≥ U
6 Collect (r[j])

7 return
(∑

j r[j].vote > 0
)

end

Algorithm 1: Convergent voting: a weak shared coin for
a strong adversary. Code for process i.

tain early termination with few processes. Here, we are us-
ing weighted voting primarily to allow arbitrarily many pro-
cesses to participate in the protocol while still limiting the
adversary’s control, although, as in the Aspnes-Waarts algo-
rithm, we also increase the weight of long-running processes’
votes to reduce their worst-case running times.

The overall structure of the algorithm is typical of shared
coins based on randomized voting. The processes collec-
tively generate a set of random votes whose sum has large
variance, while making sure that the sum of all outstanding
votes not yet written to the registers is small. Applying a
variant of the Central Limit Theorem (Corollary 9) to the
infinite sequence of all votes ever generated shows that the
total vote is far from the origin with constant probability;
having a small total outstanding vote then ensures that the
adversary’s ability to hide votes does not change the appar-
ent majority from the correct one. To guarantee that the
total outstanding vote is small even with arbitrarily many
unwritten votes, we set the size of process i’s initial votes
using the i-th term in a series that converges to 1, and only
allow the process to generate larger votes when it has already
contributed more than its fair share of the total variance.

Pseudocode for the convergent voting algorithm is given as
Algorithm 1. In Line 1, ζ is the Riemann zeta function given
by ζ(s) =

∑∞
i=1 i

−s. The parameter ε, which can be any
value greater than 0, controls the asymptotic running time of
each process as a function of its identity; choosing different
values of ε trades off the running times of processes with
low identities for those with high identities. The variance
bound U , used in the termination test, is a constant that
does not depend on i or ε, and is chosen so that the size of
the majority when a process leaves the main loop is likely to
be large. The LocalCoin subroutine called in Line 2 is the
local coin of process i; the Collect subroutine in Lines 4
and 6 is any implementation of an infinite-process collect,

for example using the techniques of [20].

Theorem 2. Let U ≥ 1. Then process i completes Al-
gorithm 1 with at most O

(
ζ(1 + ε)i1+εU

)
calls to Collect

and a similar number of write operations.

Proof. Fix i. Let wj be the weight of process i’s j-th
vote, that is, the value of w it computes in its j-th pass
through Line 1. Let uj =

∑j
k=1 w

2
k; note that this is pre-

cisely the value of r[i].variance used to compute wj+1. Since
the total weight process i computes in Line 5 includes the
squares of the weights of its own votes, process i must leave
the loop no later than the first pass j at which uj exceeds
U . We can bound the number of passes it takes through the
loop by showing that uj increases rapidly.

Let m = 1
ζ(1+ε)i1+ε be the value of the first term in Line 1.

For small values of j, wj = m and uj = jm2. This case
continues until uj first exceeds mU , i.e., until j equals t1 =⌈
m−1U

⌉
.

From time t1 on, we have a new process in which the(
1
U
r[i].variance

)
term dominates. Writing this term as ujU

−1,
we have

uj+1 = uj + u2
j U
−2, (1)

for j ≥ t1.
Equation (1) is a difference equation, and it is tempting

to try to approximate the progress of u after t1 with the
similar differential equation u′t = u2

tU
−2, whose solution is

ut = 1
c−tU−2 for some constant c.

Unfortunately, this approach overestimates the rate of
growth of uj , as it assumes an increasing derivative between
j and j+1. Instead, we will proceed by showing that u dou-
bles quickly, and sum a series of doubling times to bound
the first time at which u exceeds U .

Let t2 be the first time at which ut2 exceeds 2ut1 ; since
uj ≥ ut1 for all j ≥ t1, we have

t2 ≤ t1 +

⌈
2ut1 − ut1
u2
t1
U−2

⌉
= t1 +

⌈
u−1
t1 U

2⌉ .
Letting tk be the first time at which utk first exceeds 2kut1 ,
a similar argument shows that

tk ≤ tk−1 +
⌈
2−(k−1)u−1

t1 U
2
⌉
,

from which it follows that

tk ≤ t1 +

k∑
`=1

⌈
2−(`−1)u−1

t1 U
2
⌉
≤ t1 + 2u−1

t1 U
2 + k. (2)

For k = d− lgme, utk ≥ 2− lgm ut1 ≥ m−1mU = U . From
(2) we then have

tk ≤ t1 + 2(mU)−1U2 + d− lgme
≤ m−1U + 2m−1U − lgm+ 2

≤ 3ζ(1 + ε)i1+εU + lg(ζ(1 + ε)) + (1 + ε) lg i+ 2

= O
(
ζ(1 + ε)i1+εU

)
.

Lemma 3. Fix some execution of Algorithm 1. For each
i, let mi be the maximum weight w computed during this
execution in Line 1 by process i. Then

∞∑
i=i

mi ≤ 2, (3)



and, for all i,

mi ≤ 1. (4)

Proof. Since the weights computed in Line 1 can only
increase over time, we can take mi to be the last weight
computed by process i.

Classify each weight mi depending on whether it was com-
puted using 1

ζ(1+ε)i1+ε or 1
U
r[i].variance. We will bound the

sum of the weights in these two classes separately.
The sum of all weights in the first class is at most

∞∑
i=1

1

ζ(1 + ε)i1+ε
=

1

ζ(1 + ε)

∞∑
i=1

1

i1+ε
= 1.

Now consider some process i whose last weight is given
by 1

U
r[i].variance. Since 1

U
r[i].variance = 0 during the first

pass through the loop, in order formi to equal 1
U
r[i].variance,

process i must have executed the call to Collect in Line 4
and avoided terminating the loop before computing mi. It
follows that this call to Collect started at or before the
last time τ at which the sum of the variance fields in the
registers was less than U , and that at time τ , the value of
r[i].variance used to compute mi had already been written
to r[i] in the immediately preceding execution of Line 3.
Since this argument applies to all such processes i, the sum
of all of their last r[i].variance values cannot exceed the sum
of the variance fields in the registers at time τ , and we have

∞∑
i=1

1

U
r[i].variance ≤ 1

U
U = 1.

For each i, mi appears on the left-hand side of one or the
other of the two inequalities; it follows that each individual
mi is at most 1, proving (4). Similarly, summing the two
inequalities gives (3).

Theorem 4. For each δ < 1
2

, there exists a variance
bound U depending only on δ such that Algorithm 1 im-
plements a shared coin with defiance probability δ for any
choice of ε > 0.

Proof. Fix some adversary strategy; then each execution
of Algorithm 1 is determined by the sequence of local coin-
flip values. We will record these using random variables Yi,
where each Yi is the value ±w assigned to v as the result
of the i-th local coin-flip performed by any of the processes
executing Line 2. The Yi thus track the sequence of all votes
and their weights as they are generated, regardless of when
(or whether) these votes are eventually written to memory.
If only some finite number ` votes are generated during some
execution, then we set Yi = 0 when i > `.

Let Fi be the σ-algebra generated by Y1, Y2, . . . Yi. Thus
Yi is trivially measurable Fi. Furthermore, E[Yi|Fi−1] = 0,
since either Yi = 0 because fewer than i votes were gener-
ated, or Yi = ±w with equal probability for some weight
w that is measurable Fi−1. So the Yi form a martingale
difference sequence. We will use Corollary 9 to show that
the sum of this sequence exists and has a distribution close
to normal. We need two facts to apply Corollary 9: tight
bounds on the expected total conditional variance of the Yi,
and an upper bound on the sum of their fourth moments.

First let us characterize the total conditional variance of
the Yi. For each Yi, the conditional variance E[Y 2

i |Fi−1] =

Y 2
i = w2 where w is the weight of the i-th generated vote.

So
∑
i E[Y 2

i |Fi−1] =
∑
i Y

2
i . We can bound this sum from

below by observing that unless
∑
i Y

2
i is at least U , the algo-

rithm does not terminate for any process, which contradicts
Theorem 2 and the assumption that at least one process
takes infinitely many steps. To get an upper bound, divide
the votes Yi into those that are generated while

∑
j r[j].variance

is less than U and those that are generated afterwards.
Since each process checks

∑
j r[j].variance in between each

pair of consecutive votes, each process can generate at most
one “late” vote after this total variance reaches U . From
Lemma 3, these late votes have total weight at most 2 and
individual weights of at most 1; it follows that the sum
of the squares of their weights is at most 2. So we have
U ≤

∑
i Y

2
i ≤ U + 2, and thus U ≤

∑
i E[Y 2

i |Fi−1] ≤ U + 2
as well.

Now let us consider the fourth moments. We have just
shown that

∑
i Y

2
i ≤ U + 2, and we have that each Yi ≤ 1

from Lemma 3. A simple convexity argument shows that
the maximum for

∑
i Y

4
i is reached when U +2 of the Yi are

1 and the rest 0; so
∑
i Y

4
i ≤ U + 2 in any execution. Then∑

i E[Y 4
i ] = E

[∑
i Y

4
i

]
≤ U + 2.

Normalize the sequence Yi by settingXi = YiU
− 1

2 ; {Xi,Fi}
is clearly a martingale difference sequence. Let

V 2
∞ =

∞∑
j=1

E[X2
j |Fi−1] =

∞∑
j=1

E[Y 2
j U
−1|Fi−1] = U−1

∞∑
j=1

Y 2
j .

From the preceding discussion we have that this last sum
lies between U and U+2; thus we have 1 ≤ V 2

∞ ≤ 1+2U−1,
and so E[(V 2

∞ − 1)2] ≤ 4U−2. Similarly, compute

∞∑
j=1

E[X4
j ] =

∞∑
j=1

E[Y 4
j U
−2] ≤ U−2(U + 2) = U−1 + 2U−2.

Let

L∞ = E
[
(V 2
∞ − 1)2]+

∞∑
j=1

E[X4
j ] ≤ U−1 + 6U−2.

Let us insist that U is at least 1, so that we can simplify
this bound to 7U−1.

From Corollary 9, there is a universal constant A such
that when L ≤ 1,∣∣∣∣∣Pr

[
∞∑
j=1

Xi ≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ AL1/5
∞ ≤ A71/5U−1/5. (5)

Returning to the un-normalized votes Yi, (5) becomes∣∣∣∣∣Pr

[
∞∑
j=1

Yi ≤ x

]
− Φ(U−1/2x)

∣∣∣∣∣ ≤ AL1/5
∞ ≤ A71/5U−1/5.

(6)
For any fixed x, in the limit as U goes to infinity, the Φ
term goes to 1/2 and the right-hand side goes to 0. So
for sufficiently large U , the probability that the sum of the
generated votes exceeds x becomes arbitrarily close to 1/2.

Of course, no process necessarily sees the total generated
vote; instead, each process P sees the total generated vote
less some set of votes that were not written out to the reg-
isters by the time P did its final collect in Line 6. But P
starts this collect only after the sum of the variance fields
has reached U , so any vote that P misses must be written
after this time. If Q writes a missed vote, it reads a total



procedure SharedCoin () returns boolean
shared data: coins[1 . . . 2b dlg be+ 1], an array holding

values from the set {0, 1,⊥}, all initial-
ized to ⊥.

local data: count[0], count[1], initially 0.

begin
for i← 1 to 2b dlg be+ 1 do

if coins[i] 6= ⊥ then
coins[i]← LocalCoin()

end
end

1 for i← 1 to 2b dlg be+ 1 do
2 c← coins[i]
3 count[c] = count[c] + 1

end
if count[0] > count[1] then

return 0
else

return 1
end

end

Algorithm 2: Row of coins: a weak shared coin for b-
bounded concurrency and a weak adversary.

variance greater than U during its collect in Line 4, and gen-
erates no more votes. It follows that the votes not seen by
P include at most one vote per process, and that the sum
of all of these missing votes shifts the total by at most 2 by
Lemma 3. Thus if the total generated vote exceeds 2, then
all processes return true; similarly, if the total generated
vote is less than −2, all processes return false. Substituting
±2 for x shows that the probability of either of these events,
which gives a lower bound on the defiance probability δ, can
be set arbitrarily close to 1/2 for sufficiently large U .

3.2 Weak-adversary coin
Pseudocode for a simple weak shared coin algorithm for

a weak adversary and b-bounded concurrency is given in
Algorithm 2. The key to the correctness of the algorithm is
that when the array is first filled, there are at most b − 1
outstanding unwritten votes, any process sees one of at most
b2 distinct subsets of these votes, and that these extra votes
modify the 2b dlg be+1 common votes in each view according
to a biased random walk whose extent we can bound with
Azuma’s inequality.

Theorem 5. In every execution, Algorithm 2 terminates
in O(b log b) steps. Given a weak adversary and b-bounded
concurrency, it implements a weak shared coin with a con-
stant defiance probability.

Proof. Let an invocation’s view of coins be the sequence
of values it reads from coins during its final collect starting
in Line 1. We will begin by showing that all infinitely many
invocations of SharedCoin between them observe at most b2

distinct views of coins; we will then show that all of these
views have the same majority value with at least a constant
probability.

Let C0 be the state of coins following the first write W to
coins[2b dlg be+ 1]; let t0 be the time of this first write. Any
invocation of SharedCoin that starts after this write will see

only non-⊥ entries in coins and will perform no writes. Each
pending invocation at time t0 will perform at most one write
after t0. There can be at most b invocations spanning t0,
and one of them executes W , so at most b− 1 writes occur
after t0. Let t1, t2, . . . tk, where k ≤ b − 1, be the times of
these writes and Ci be the state of coins after the write at
ti.

Now consider the values read from coins by some process
P during its final collect. Note that this collect cannot start
before t0, since before its final collect, P must have observed
or written a non-⊥ entry in every position in coins. There are
two cases: (1) If P ’s final collect starts and ends between
two times ti and ti+1, then P observes Ci; this accounts
for at most b distinct views of coins. (2) If P ’s final collect
spans one or more of the times ti, the view it obtains may or
may not include the values written at these times. However,
there can be at most b invocations spanning each of the at
most b − 1 writes; even if these invocations are all distinct,
between them they see at most b(b − 1) different views of
coins.

Adding the two cases together gives at most b2 distinct
views.

Now let us show that these b2 views all yield the same ma-
jority with constant probability. Let X0 be the number of 1
votes in coins at time t0. By the normal approximation to
the binomial distribution, for large enough b there is a con-
stant probability that X0 exceeds b dlg be+ 5

√
2b dlg be+ 1.

We will show that when this event occurs, all views return
a 1 majority with constant probability. The 0 case is sym-
metric.

Let Xi be the the number of 1 votes read as part of the
i-th view, where each view is ordered by the time at which
the first invocation that obtains that view finishes its final
collect. The difference between X0 and Xi is determined
by the values of up to b − 1 coin-flips written out after t0,
and each view can be specified by identifying which subset
of these b− 1 coin-flips it includes. We will show that with
high probability this difference is less than 5

√
2b dlg be+ 1,

and thus not enough to change the majority value in the
view from that in state C0.

Let N = 2b dlg be+1 be the size of coins. Conditioning on
X0, the probability that any given coin in C0 is a 1 is X0

N
.

Replacing a coin in C0 with a new coin-flip thus changes
the total number of ones by 1

2
− X0

N
on average, and we can

represent the increment due the j-th coin that is replaced
in view i as 1

2
− X0

N
+ Yij , where Yij is a zero-mean random

variable with |Yij | ≤ 2.
Continuing to condition only on X0, the difference Xi−X0

is given by m
2
− mX0

N
+
∑m
j=1 Yij , m ≤ b− 1 is the number

of coins replaced in view i and Yij is as above. The first
two terms are at least −b+1. For the last term, Hoeffding’s
inequality implies that

Pr

[
m∑
j=1

Yij ≤ −4
√

2b dlg be+ 1

]

≤ exp

−
(

4
√

2b dlg be+ 1
)2

8m


≤ exp

(
−2

2b dlg be+ 1

b

)
≤ exp(−4 log b) = b−4.



It follows that, if X0 ≥ b dlg be+ 5
√

2b dlg be+ 1, then Xi >
b dlg be with probability at least b−4.

In this analysis, we have neglected the complication that
the adversary may be able to choose which new coins to in-
clude in view Xi after observing the effects of earlier views.
However, the adversary’s ability to observe these earlier
views is limited. The coins read in Line 2 and counted in
Line 3 affect only the internal state of the process, which
is assumed not to be observable by the adversary, and even
the counts stored in count[] are discarded when the call to
SharedCoin returns. So the only event observable by the
adversary is the return value (as this may affect the later
behavior of the calling process), which tells the adversary
only whether its previous views successfully produced a con-
flicting majority. We will use this fact to show that the ad-
versary’s ability to choose which coins to include does not
give it enough power in most cases to change the outcome
of the shared coin.

Let Ai be the event that Xi has a majority of zeroes. Note
that the coins included in Xi may depend on the outcome
of earlier events Aj . Let Bk be the event

∨k
i=1 Ai, We will

show by induction that when X0 ≥ b dlg be+5
√

2b dlg be+ 1,
Pr[Bk|X0] ≤ kb−4 for each k. Clearly the base case holds
when k = 0.

Now suppose that it holds for k − 1. Let us compute
the probability that Ak occurs, conditioned on Bk−1 not
occurring (that is, on the adversary’s not having won yet).
For any possible view Xk, we have that the probability that
Xk has a zero majority is at most b−4 without conditioning
on ¬Bk−1. So its probability conditioned on ¬Bk−1 is at

most b−4

1−Pr[Bk−1]
. As this bound holds for any view, it holds

in particular for whichever view is chosen to be the k-th view
by the adversary.

Now we can compute

Pr[Bk|X0] =

Pr[Bk−1|X0] + Pr[¬Bk−1|X0] Pr[Ak|¬Bk−1, X0]

≤ Pr[Bk−1|X0] + (1− Pr[Bk−1|X0])
b−4

1− Pr[Bk−1|X0]

= Pr[Bk−1|X0] + b−4

≤ (k − 1)b−4 + b−4

= kb−4.

With k ≤ b2 views, we have a probability of at most b−2

that at least one of them has a zero majority, and thus a
probability of at least 1− b−2 that all have a one majority.
Multiplying by the constant probability that X0 ≥ b dlg be+
5
√

2b dlg be+ 1 then gives a constant probability that all
invocations return 1.

3.3 Lower bounds
In Algorithm 1, the assumption of process identities is

vital. In fact, we can show that with anonymous processes
it is not possible to construct a weak shared coin in the
same model. We conjecture that a similar result holds for
consensus.

Theorem 6. There is no anonymous weak shared coin
algorithm for unbounded concurrency and a strong adver-
sary.

The intuition behind the proof is as follows. If some pro-
cess P returns a particular value when run in isolation with

procedure GetIDb () returns integer
shared data: integer Id, initially 0

begin
1 k ← Id + 1
2 Id← k
3 Let r be chosen uniformly from {1 . . . Nb3k}
4 return Nkb3k + r

end

Algorithm 3: Assigning unique identifiers with b-
bounded concurrency.

some particular low-probability set of coin-flips, the adver-
sary can simulate this process P with a vast army of anony-
mous clones. So long as each clone continues to flip coins the
same way that P did, the adversary will continue to run it
in lockstep with the other clones; in this way no clone ever
observes that it is not alone. With a large enough set of
clones, the adversary can amplify the probability that some
clone flips all coins the right way arbitrarily, thus turning
low probability outcomes of the global coin into high prob-
ability ones.

4. NAMING
We reduce the problem of building a weak shared coin

for anonymous processes to the problem for processes with
identities by using a randomized algorithm that assigns a
unique identifier to every process with high probability. We
give three algorithms for assigning identifiers. The first two
work under the assumption of b-bounded concurrency, where
b is known, and the third under the assumption of at most
n arrivals, where n is known. The assumption that b or n is
known can be removed at a higher level; see Section 2.1. The
assumption that some bound b or n exists in each execution
is necessary given a strong adversary, using an argument
similar to the proof of Theorem 6.

Algorithm 3 assigns unique identifiers with constant prob-
ability even with infinite arrivals, provided concurrency is
bounded by a known constant b. The essential idea is that
preliminary identifiers obtained by reading a single multi-
writer register Id divide the processes into finite classes,
where at most bk processes write k to Id. Within each class,
we can prevent duplicate identities by choosing identifiers
randomly from a large range, the size of this range deter-
mined by b, the preliminary identifier obtained by a process,
and a parameter N .

Theorem 7. With b-bounded concurrency, Algorithm 3
returns duplicate values with probability at most 1

N
.

Proof. First let us show that Id is assigned the value k
in at most bk executions of GetIDb. Consider some execution
consisting of infinitely many invocations of GetIDb. Let us
build a tree of write operations to Id; we will formally set
the root of this tree to be a hypothetical pre-execution write
of the 0 initially found in Id, and each write operation that
writes a value k > 0 in some invocation C will have as its
parent the write operation that previously wrote the value
k − 1 read from Id by C.

Observe that with b-bounded concurrency, each node W
in the tree has at most b children. All such children must be
writes of processes that (a) read Id after W but before the



procedure LazyClock () returns integer
shared data: integer clock[i] for i = 0, 1, . . . b− 1, ini-

tially 0.

begin
c← max(clock[0], clock[1], . . . clock[b− 1]) + 1
clock[c mod b]← c
return c

end

Algorithm 4: Lazy clock for b-bounded concurrency.

next write to Id, and (b) write Id no sooner than the first
write W ′ after W ; thus, all the processes are simultaneously
alive immediately before W ′, and their number is at most
the concurrency bound b. Thus the number of nodes at
depth k is at most bk, and since all writes of k are at depth
k, at most bk writes of k occur.

Now let us estimate the number of collisions between iden-
tifiers for invocations that choose the same value k. (The
range of r in Line 3 and the return value formula in Line 4 are
carefully chosen so that there can be no collisions between
invocations that choose different k). If b = 1, the number is
0, as there is a unique invocation in each class. Otherwise,

there are at most
(
bk

2

)
< b2k/2 pairs of invocations in this

class, and the probability that any two such invocations re-
turn the same value is exactly b−3k/N . Summing over all
pairs gives an expected number of collisions between invo-
cations with preliminary identifier k less than b−k/(2N).
Summing over all k gives

∑∞
k=1

1
2N
b−k = 1

2N(1−1/b)
≤ 1

N

(when b > 1).

Algorithm 3 is adequate for our purposes, as we must pay
arbitrarily large worst-case costs with unbounded arrivals,
and getting hideously large identifiers cannot worsen this al-
ready poor bound. However, we can imagine that for other
applications it might be useful to make stronger guarantees
about the size of identifiers. Algorithm 4 is designed to sub-
stitute for the single register in Algorithm 3; it guarantees
that at most b2 invocations return the same value, and has
additional pleasant counter-like properties. In particular, we
can use Algorithm 4 to guarantee that the i-th process to
complete the LazyClock procedure obtains an identity that
is polynomial in i. We discuss this algorithm further in the
full paper.

With bounded arrivals, we can just choose random identi-
fiers from a sufficiently large range. This has the advantage
of allowing us to guarantee that the identifiers are (rela-
tively) small. For symmetry, we give the algorithm for doing
this as Algorithm 5. It gives a probability of collision of at
most 1/N .

procedure GetIDn () returns integer
begin

Let r be chosen uniformly from {1 . . . N
(
n
2

)
}.

return r
end

Algorithm 5: Assigning unique identifiers with n ar-
rivals.

5. A UNIVERSAL CONSTRUCTION
Herlihy [22] showed that consensus is universal in the

sense that it permits a wait-free implementation of any lin-
earizable shared object with total operations given its se-
quential specification. The essence of the construction is
that each process that wishes to perform an operation an-
nounces the operation, performs a collect of all other pend-
ing operations of other, possibly slower processes, and then
runs consensus to get agreement on which sequence of these
operations will actually occur. The process repeats this
cycle until its pending operation is included in one of the
agreed-upon sequences. Using the infinite-arrivals collect
of [20] and the infinitary consensus protocol of Section 2.2,
essentially the same construction continues to work in the
infinite-arrivals model.

6. OPEN PROBLEMS
Several open problems are apparent from the missing en-

tries in Tables 1 and 2. The most salient is the question
of whether it is possible to build an anonymous consensus
protocol for unbounded concurrency and a strong adversary.
The usual reduction to shared coin does not work, because
the adversary can make the defiance probability of a shared
coin arbitrarily small (Theorem 6). We suspect that an
FLP-style argument similar to that of [3] should work in
this case, but technical complications arise that leave open
the possibility of a consensus protocol that runs for an ar-
bitrarily large but finite time, and that does not embed a
weak shared coin.

Our bounds for the weak adversary are not as tight as for
the strong adversary; in particular, we suspect that the per-
process work for weak-adversary consensus with bounded
concurrency could be much improved.
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APPENDIX

Appendix: A Central Limit Theorem
The proof of Theorem 4 uses a version of the Central Limit
Theorem that applies to martingales with infinitely many
steps. We show that this variant holds in Corollary 9 below.
The corollary follows from a theorem of Hall and Heyde [21],
part of which we restate here as Lemma 8:

Lemma 8 ( [21]). Let {Si =
∑i
j=1 Xj ,Fi, i = 0, 1, 2, . . . n}

be a zero-mean martingale. Let

V 2
n =

n∑
j=1

E
[
X2
j |Fj−1

]
,

and

Ln = E
[
(V 2
n − 1)2]+

n∑
j=1

E[X4
j ].

There exists a fixed constant A such that, when Ln ≤ 1,

|Pr[Sn ≤ x]− Φ(x)| ≤ AL1/5
n , (7)

where Φ is the normal distribution function.

The restriction to finite times is inconvenient for us, so
we’ll get rid of it by taking limits. The result is Corollary 9:

Corollary 9. Let {Si =
∑i
j=1 Xj ,Fi, i = 0, 1, 2, . . .} be

a zero-mean martingale. Let

V 2
∞ =

∞∑
j=1

E
[
X2
j |Fj−1

]
,

and

L∞ = E
[
(V 2
∞ − 1)2]+

∞∑
j=1

E[X4
j ],

and suppose that V 2
∞ is bounded with probability 1.

There exists a fixed constant A such that, when L∞ ≤ 1,
S∞ = limn→∞ Sn exists and

|Pr[S∞ ≤ x]− Φ(x)| ≤ AL1/5
∞ . (8)


