
Learning a Circuit by Injecting Values

[Extended Abstract]

Dana Angluin ∗ James Aspnes ∗† Jiang Chen ∗ Yinghua Wu ∗‡

ABSTRACT
We propose a new model for exact learning of acyclic cir-
cuits using experiments in which chosen values may be as-
signed to an arbitrary subset of wires internal to the circuit,
but only the value of the circuit’s single output wire may
be observed. We give polynomial time algorithms to learn
(1) arbitrary circuits with logarithmic depth and constant
fan-in and (2) Boolean circuits of constant depth and un-
bounded fan-in over AND, OR, and NOT gates. Thus, both
AC0 and NC1 circuits are learnable in polynomial time in
this model. Negative results show that some restrictions
on depth, fan-in and gate types are necessary: exponen-
tially many experiments are required to learn AND/OR cir-
cuits of unbounded depth and fan-in; it is NP-hard to learn
AND/OR circuits of unbounded depth and fan-in 2; and it is
NP-hard to learn circuits of bounded depth and unbounded
fan-in over AND, OR, and threshold gates, even when the
target circuit is known to contain at most one threshold gate
and that threshold gate has threshold 2. We also consider
the effect of adding an oracle for behavioral equivalence.
In this case there are polynomial-time algorithms to learn
arbitrary circuits of constant fan-in and unbounded depth
and to learn Boolean circuits with arbitrary fan-in and un-
bounded depth over AND, OR, and NOT gates. A corollary
is that these two classes are PAC-learnable if experiments
are available.

1. INTRODUCTION
We introduce a new model of active learning for acyclic

circuits in which we may inject chosen values on an arbitrary
subset of wires but can observe only the value of the circuit’s
output wire. Our results illuminate the relative importance
of manipulation and observation in discovering the structure

∗Department of Computer Science, Yale University. Email:
{angluin,aspnes,criver}@cs.yale.edu, y.wu@yale.edu.
†Supported in part by NSF grants CNS-0305258 and CNS-
0435201.
‡Supported by NSF grant CNS-0305258.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

of networks modeled as circuits.
Gene regulatory networks are an important area in which

Boolean network models have been used. In one variant of
the basic model, each node in a finite network represents a
gene, which has a current state of active or inactive. The
states of all nodes in the network are updated synchronously;
for each node there is a Boolean function giving its new
state in terms of the current states of some subset of the
other nodes. A key point is that the node states are fully
observable: it is assumed that gene expression data gives
the state of every node in the network at every time step.
The discovery problem is to learn the updating functions
of all the nodes (note that one needs to learn both the set
of inputs and the functionality of each node). Of course
this is difficult if the updating function may be an arbitrary
Boolean function; further assumptions generally restrict the
fan-in or types of the possible updating functions. One of the
main difficulties in this problem is to discover the topology
of the network (which nodes are inputs to which node).

Akutsu et al. [1] describe an approach to the discovery
problem that models the experimental capability of multi-
ple gene disruption and overexpression. At each time step
several selected genes may be disrupted (put in the inactive
state), several other selected genes may be overexpressed
(put in the active state), while unaffected genes are updated
as usual. In this model the states of the nodes are fully con-
trollable as well as fully observable. For networks of N nodes
and fan-in bounded by k, Akutsu et al. give an O(N2k) algo-
rithm for the discovery task. Ideker, Thorsson, and Karp [7]
also consider this model and give more practical discovery
methods for acyclic networks, using information theoretic
criteria to select genes to disrupt or overexpress. These re-
sults show that if the class of updating functions is suffi-
ciently restricted, the problem of learning the structure of a
network in this model is tractable.

By contrast, there is ample evidence that learning Boolean
circuits or formulas from their input-output behaviors may
be computationally intractable. Positive learnability results
include those for fairly limited classes, including proposi-
tional Horn formulas [2] general read once Boolean formu-
las [3], and decision trees [5], and those for specific distri-
butions, including AC0 circuits [12], DNF formulas [8] and
AC0 circuits with a limited number of majority gates [9].
(Note that algorithms in both papers [12] and [9] for
learning AC0 circuits and their variants run only in quasi-
polynomial time.) Valiant gives cryptographic evidence for
the difficulty of PAC learning general Boolean circuits [15].
Kearns and Valiant [10] show that specific cryptographic

assumptions imply that NC1 circuits and TC0 circuits are
not PAC learnable in polynomial time. These negative re-
sults have been strengthened to the setting of PAC learning
with membership queries [4], even with respect to the uni-
form distribution [11].

For these results on learning circuits and formulas, obser-
vation and control are both restricted: values on internal
wires cannot be observed or manipulated. A natural ques-
tion is: What are the relative contributions of full observa-
tion and full control to the tractability of learning Boolean
networks?

Our new model addresses this question: we postulate
full control and restricted observation. Our results show
that the ability to inject values into the circuit gives the
learner considerable power, but not as much as would be
the case with full observation. In particular, with value in-
jection queries, NC1 circuits and AC0 circuits are exactly
learnable in polynomial time, but our negative results show
that the depth limitations are necessary. However, if behav-
ioral equivalence queries are also available, the depth limi-
tations can be removed, which also implies the polynomial
time PAC-learnability of these classes with value injection
queries.

2. THE MODEL

2.1 Circuits
We define a variant of the usual circuit model that has no

distinguished inputs and permits a finite set Σ of at least two
different values on wires. A circuit C consists of N wires,
W = {w1, w2, . . . , wN}, and for each wire wi a gate gi that
determines the value on this wire. The size of the circuit is
N . The wire wN is assumed to provide the output of the
circuit as a whole. A gate consists of a function mapping
Σk to Σ, and a vector of k integers from [1, N] specifying
the input wires of the gate. The value k is the fan-in of the
gate. Gates of fan-in zero compute constant functions. The
maximum fan-in taken over all the gates in the circuit is the
fan-in of the circuit. We define the circuit graph to have a
node for each wire/gate pair and a directed edge from node
i to node j if wi is one of the input wires to gate j. Until
Section 7, we assume that the graph of the circuit is acyclic.
We define the depth of the circuit to be the number of edges
in the longest path in the circuit graph.

2.2 Behavior
We focus on the behavior of a circuit in response to ex-

periments in which we fix the values of certain wires and
observe the final output of the circuit. Define an experiment
to be a vector s in (Σ ∪ {∗})N , where si specifies the value
of wi (if it is in Σ) or leaves the value of wi unaltered (if it
is ∗). If si ∈ Σ, we say wi is fixed in s; otherwise, it is free
in s. The value of wi given s, written wi(s), is defined as

wi(s) =

(

gi(wi1(s), wi2(s), . . . , wiki
(s)) if si = ∗,

si if si 6= ∗.
(1)

where gate i has function gi and inputs (i1, i2, . . . , iki
). We

remark that gates of fan-in zero, which compute constant
functions, give the base cases for the above recursive defini-
tion. The output of the circuit given an experiment s is the
output of wire wN , that is, wN (s); this is also denoted C(s).

The behavior of a circuit is the function mapping ex-
periments s to C(s). Two circuits C and C′ are behav-
iorally equivalent, if they have the same behavior, that is, if
∀s ∈ (Σ ∪ {∗})N , C(s) = C′(s). To compare our work with
previous work on learning circuits, we treat the gates of fan-
in zero as the input gates and denote the number of input
gates by n. An experiment is input-only if it fixes every in-
put gate and leaves every other gate free. The input-output
behavior of a circuit C is the restriction of its behavior func-
tion to input-only experiments. Clearly behavioral equiv-
alence implies equality of input-output behaviors but not
conversely. Behavioral equivalence is more constrained by
the internal structure of the circuits.

An important special case is Boolean circuits, for which
Σ = {0, 1}. The input-output behavior of a Boolean circuit
is just the usual concept of a circuit computing a Boolean
function of n inputs. NC1 circuits are Boolean circuits
with constant fan-in and depth O(log n). AC0 circuits
are Boolean circuits of constant depth and polynomial size
whose gates are unbounded fan-in AND, OR, and NOT. The
threshold function Θt is the Boolean function that is 1 if and
only if at least t of its inputs are 1. TC0 circuits are Boolean
circuits of constant depth and polynomial size whose gates
are unbounded fan-in threshold, AND, OR and NOT.

2.3 Queries
We assume that the learner can get information about the

circuit by specifying an experiment s and observing C(s),
the output of the circuit. Such an action is termed a value
injection query, abbreviated VIQ. We also define a behav-
ioral equivalence query, abbreviated BEQ: the learner pro-
poses a circuit C′, and, if it is not behaviorally equivalent
to the target circuit C, receives in response a counterexam-
ple, that is, an arbitrarily chosen experiment s such that
C′(s) 6= C(s). To be consistent with previous usage, we use
the term membership query, for a VIQ restricted to an input-
only experiment s, although C(s) may be non-binary, and
the term equivalence query, for a query that tests whether
the proposed circuit C′ has the same input/output behavior
as the target circuit C and returns an arbitrary input-only
experiment s witnessing C′(s) 6= C(s) if not. An algorithm
that learns the (full) behavior of any circuit from a given
class using VIQ’s and BEQ’s also learns the input/output
behavior of any circuit from the class using VIQ’s and equiv-
alence queries. Then a standard polynomial time transfor-
mation yields a PAC learning algorithm using VIQ’s for in-
put/output behavior of circuits in the class, which implies
the following.

Proposition 1. If a class of circuits is learnable in poly-
nomial time with VIQ’s and BEQ’s, then the input/output
behaviors of circuits in the class are PAC-learnable in poly-
nomial time using VIQ’s.

2.4 The Problem
The learning problems we address are: by making VIQ’s

(respectively, VIQ’s and BEQ’s) to a target circuit C, find a
behaviorally equivalent circuit C′. Both C and C′ use gates
from a specified class F .

We remark that it is not possible to discover the exact
structure of the target circuit, even when all wires are rele-
vant. The following example shows that the same behavior
may be exhibited by structurally distinct circuits. The three
circuits C1, C2, and C3 shown in Figure 1 are behaviorally

Table 1: Summary of our results

Depth Fan-in Gates Query types Learnability Reference

Unbounded Unbounded AND/OR VIQ 2Ω(N) queries Theorem 2
Unbounded 2 AND/OR VIQ NP-hard Theorem 3
Constant Unbounded AND/OR/Θ2 VIQ/BEQ NP-hard Theorem 6
Logarithmic Constant Arbitrary VIQ Poly-time Theorem 19
Constant Unbounded AND/OR/NOT VIQ Poly-time Theorem 21
Unbounded Constant Arbitrary VIQ/BEQ Poly-time Theorem 22
Unbounded Unbounded AND/OR/NOT VIQ/BEQ Poly-time Theorem 25

AND
 OR

AND

G1

I
1

G2

I
2
V

AND
 OR

AND

G1

I
1

G2

I
2
V

AND
 OR

AND

G1

I
1

G2

I
2
V

Figure 1: Three equivalent circuits

equivalent, where G1 and G2 are arbitrary gate functions.
Only when G2 and V both have value 1 (respectively, 0) can
the value of G1 propagate through the depth 1 AND gate
(respectively, OR gate). Therefore we cannot decide which
one of G2 and V is an input of G1, and similarly in the other
case.

3. RESULT SUMMARY
We investigate the computational tractability of these prob-

lems for classes of circuits defined by restrictions on depth,
fan-in, and F . Our results are summarized in Table 1.

Section 4 contains negative results for exact learning with
VIQ’s and BEQ’s. In Section 5 we give an algorithm, Cir-
cuitBuilder, that takes a class of gates F and a set U of ex-
periments and constructs a circuit C′ by making VIQ’s on
experiments in U and their one-symbol perturbations, and
then finding a gate for each wire consistent with the results.
If U contains for every wire and every gate that is wrong for
that wire a witness experiment that excludes the incorrect
gate, then the resulting circuit is behaviorally equivalent to
the target circuit. We then show how to construct appropri-
ate sets of experiments U for the class of log-depth constant
fan-in circuits and for the class of AC0 circuits. In Sec-
tion 6, we extend these methods to use BEQ’s as well as
VIQ’s, and show that the limitations on circuit depth can
be removed for both classes.

3.1 Learnability of the gates
What is the relationship between the learnability of cir-

cuits in our model and learnability of the class F of permit-
ted gates? A depth 1 circuit consists of n input gates and
one gate g depending on some subset of the inputs; if any
nontrivial circuits are to be learnable, then depth 1 circuits
must be learnable in the same sense. Therefore, we assume
that the class of permitted gates F is learnable.

For depth 1 circuits, a VIQ reduces to a membership
query. Classes F of gates for which depth 1 circuits are
learnable in polynomial with membership queries include

(1) the class of gates with fan-in at most some constant k
over an arbitrary finite value set Σ and (2) the class of all
symmetric Boolean gates (which includes unbounded fan-in
AND, OR, NAND, NOR, threshold and parity gates.)

Another aspect of the learnability of depth 1 circuits is the
consistency problem, defined as follows. The input is a set E
of prohibited pairs (s, σ) where s is an input-only experiment
(recall that an input-only experiment fixes all input gates),
σ ∈ Σ is a value, and the desired output is a depth 1 circuit
C′ over F such that C′(s) 6= σ for every pair (s, σ) ∈ E.
For Boolean circuits, because C′(s) 6= 0 implies C′(s) = 1
and similarly C′(s) 6= 1 implies C′(s) = 0, the consistency
problem can be stated as finding C′ that agrees with given
values of experiments in E. We remark that the consistency
problem is a computational problem and therefore each s
should fix all input gates for the problem to be well defined.
One of the major differences between the consistency prob-
lem and the problem of learning with membership queries is
that in the consistency problem no information is provided
beyond the set E and hence one may not be able to query
Hamming neighbors of an experiment. For the class of arbi-
trary gates with fan-in at most k, the consistency problem
can be solved in time O(nk). There is also a polynomial time
algorithm to solve the consistency problem over the class of
unbounded fan-in AND, OR, NAND, NOR, NOT and pari-
ties. However, Lemma 5 shows that the consistency problem
is NP-hard over the class of unbounded fan-in AND, OR,
and thresholds. CircuitBuilder makes use of algorithms for
the consistency problem. Lemma 4 shows that polynomial
time learnability with VIQ’s and BEQ’s implies a polyno-
mial time algorithm for consistency in certain cases.

3.2 Relation to circuit testing
A central challenge for learning algorithms in our model is

to propagate the effects of a changed value on some internal
wire to the observable output of the circuit. Our methods
are similar in some respects to the idea of path sensitiza-
tion in circuit testing, used to detect whether the output of
some gate is “stuck” at a constant value instead of comput-
ing the correct value of its inputs [6]. Path sensitization is
not a complete method: there are examples of single stuck-
at faults in acyclic circuits that cannot be detected by path
sensitization, though they are detectable by other tests. In
our model, the ability to inject values on internal wires gives
the approach greater power. However, this power does not
trivialize the problem; the negative results in Section 4 illus-
trate the subtle “shadowing” or “filtering” effects that limit
the power of VIQ’s.

4. WHAT CANNOT BE LEARNED
EFFICIENTLY?

Figure 2 presents a gadget, which is an AND/OR circuit
of fan-in 2 that computes Y = Θ2(X, V, W). We can view
V and W as controlling a switch: only when their values are
different will the value of X be passed on to Y . Gadgets
can be concatenated to get a gadget chain (see Figure 3), in
which the value of X is passed on to Y only when every pair
Vi and Wi have different values. The chain can be used to
“hide” part of the circuit unless the values of Vi and Wi are
complements of each other. In Figure 3, exactly one of each
pair Vi and Wi is an input to the big AND gate. The learner
has to guess which combination of them are the inputs to
the AND gate, which yields the following negative result.

OR

AND

AND

OR

OR

X
 Y

V
W

V
 W

Figure 2: The gadget

AND
 Gadget

V
n

W
n

Gadget

V
2

W
2

…
 Gadget

V
1

W
1

V
1

W
2

…

V
n

W
3

Figure 3: A hidden AND gate and the gadget chain

Theorem 2. Learning the class of acyclic Boolean AND/OR

circuits requires 2Ω(N) VIQ’s.

Proof. Suppose an adversary reveals the gadget chain
and the fact that the last gate is an AND gate with exactly
one of each pair Vi and Wi as an input, but hides the exact
combination. When there exists a pair Vi and Wi that are
both set 0 or 1, the output of the circuit is determined by
the gadget chain. In particular, it is determined by the pair
with smallest index that are both set 0 and 1 (the pairs is
ordered according to their distances to the output gate as
in Figure 3). The adversary answers 0 if the pair are set 0
and 1 if the pair are set 1.

Only when for every pair, Vi and Wi are set differently,
will the value of the big AND gate affect the output of the
circuit. There are 2n such settings of V ’s and W ’s. The
adversary answers 0 until only one setting remains. The
theorem then follows because N = O(n).

Theorem 2 gives an exponential information-theoretic lower
bound, using a deep circuit and a gate of large fan-in. The
following construction uses the gadget chain to give a com-
putational hardness result for deep circuits with fan-in 2.

Theorem 3. Learning the class of fan-in 2 AND/OR cir-
cuits using VIQ’s is NP-hard.

Proof. We use the implicit negation enforced by the gad-
get chain to construct a circuit representing a CNF formula,
for which a satisfying instance must be found in order to ex-
pose a hidden part of the circuit.1 We associate a Boolean
1Using a NOT gate would not achieve the same effect be-
cause we can override its output in an experiment.

AND

AND

AND

OR

OR
G

V
1

W
2

V
3

Figure 4: G ∧ (x1 ∨ x2 ∨ x3)

variable xi with each pair Vi and Wi, and let xi = 1 if
Vi = 1, Wi = 0 and 0 if Vi = 0, Wi = 1 (we only deal
with the case that Vi and Wi are set differently thanks to
the gadget chain). Then the circuit in Figure 4 computes
G∧(x1∨x2∨x3). We can chain such clauses by replacing G
with the output of the succeeding clause and finally connect
the output of the first clause to the gadget chain shown in
Figure 3 (note that the big AND gate is not part of the gad-
get chain). Let g be an AND gate of fan-in 2 with different
inputs than V ’s and W ’s. We connect the output of g to
the last clause of the clause chain (by replacing G of the last
clause by the output of g). In order to learn the circuit, we
have to be able to observe the output of g because we are not
able to distinguish between this circuit and the circuit with
g being replaced by an OR gate if we can not observe g’s
output. In this construction, the functionality of g matters
if there exists an satisfying assignment to all clauses.

As in the proof of Theorem 2, when there exists a pair
Vi and Wi that are both set to 0 and 1, the output of the
circuit is determined by the gadget chain regardless of other
parts of the circuit. Suppose every pair of Vi and Wi are set
differently. In order to observe g’s output, we must compute
an assignment to V ’s and W ’s that satisfies all clauses in the
clause chain, since otherwise the circuit output will simply
be 0. In other words, we have to solve the 3-SAT problem.
Because the gadget chain consists of AND/OR gates of fan-
in 2, the theorem follows.

AND

AND

AND

OR

AND

OR

OR

…

g

w
2

w
3

w
1

P
s
(s assigns 0 to w
1
 and 1 to both w
2
 and w
3
)

w
1

w
2

w
n

…

Figure 5: The “filtering” circuit and an illustration

of a filtering path Ps with three input wires.

The gadget chain is a deep circuit, but in the following
construction we use AND and OR gates to achieve a con-
stant depth filter that forces a learning algorithm to solve the
consistency problem for F (defined in Section 3.1). Given
(1) any depth 1 circuit with input wires w1, w2, . . . , wn and
gate g from a class F of Boolean gates and (2) a set E of
input-only experiments, we add the following structure to
construct another circuit C as follows (see Figure 5). For
each s ∈ E, which assign each wi to 0 or 1, we add a dis-
tinct directed path Ps of length 3 consisting of g, a new
AND gate, a new OR gate, and the output gate. Let each
wire wi that is set 0 in s be an input of the OR gate of Ps.

Let each wire wi that is set 1 in s be an input of the AND
gate of Ps. The construction has the property that if the
assignment to w1, w2, . . . , wn is not s, either the output of
the AND gate or the output of the OR gate in Ps is deter-
mined, and hence the output of g can not be passed through
the path Ps. Therefore, Ps “filters” out all assignments in
E except s. Finally, we take the output gate of the whole
circuit to be an AND gate.2

Lemma 4. There is a polynomial time algorithm using
VIQ’s and BEQ’s to learn circuits from the above class if
and only if there is a polynomial time algorithm for the con-
sistency problem over F.

Proof. Suppose the consistency problem is solvable in
polynomial time. The structure of a target circuit C from
the class, (except for the identity of gate g) can be learned
using VIQ’s in a straightforward fashion, which determines
the corresponding set E. For each s ∈ E (which corresponds
to a path), we construct an experiment s′ that agrees with
s on w1, w2, . . . , wn, and sets the output gate and the OR
gate and the AND gate in Ps free, sets all the other OR
gates 1. It is clear that C(s′) = g(s). Therefore, we can
learn the value g(s) for each s ∈ E and learn g using the
algorithm that solves the consistency problem. Let g′ be the
function learned. g and g′ are equivalent on experiments of
E. Because of the filtering structure of C, the only experi-
ments in which the value of g matters are those that assign
w1, w2, . . . , wn in the exactly same way as some s ∈ E does.
Therefore, we conclude that the learned circuit is equivalent
to C.

Conversely, suppose that there is a polynomial time learn-
ing algorithm. We can construct a circuit that corresponds
to the consistency problem and simulate VIQ’s by evaluat-
ing the circuit. We simulate BEQ’s only when the proposed
gate for g does not solve the consistency problem since oth-
erwise the learning algorithm solves the consistency problem
and we are done. Denote the proposed gate by g′. Let C′

be the proposed circuit. We show that whenever g′ does not
solve the consistency problem, we can find a counterexam-
ple to C′. Therefore, the learning algorithm must propose a
gate that solves the consistency problem.

There are two cases. When the inputs of g′ are contained
in the set {w1, w2, . . . , wn}, there must exist an s ∈ E such
that g′(s) 6= g(s) as g′ does not solve the consistency prob-
lem. In fact, we can find such an s in polynomial time
by simulating a membership query algorithm on g′ (recall
that we assume that gates are learnable with membership
queries). Among all the queries the algorithm makes, a
query must be made to distinguish g and g′ and the query
can serve as s. Suppose w.l.o.g. that g(s) = 1 and g′(s) = 0.
We construct s′ as before. We give s′ as a counterexample if
C(s′) 6= C′(s′). Otherwise, we construct two experiments s′0
and s′1 that set in s′ the corresponding wire of g to 0 and 1
respectively. By our construction, we know that C(s′0) = 0
and C(s′1) = 1. However, we have that C(s′) = C(s′1) (since
g(s) = 1) and that C′(s′) = C′(s′0) (since g′(s) = 0). There-
fore C′(s′0) = C′(s′) = C(s′) = C(s′1) = 1 6= C(s′0). Thus s′0
is a counterexample to C′.

If g′ depends on an AND/OR gate h that lies in a path Ps

for some s ∈ E, construct s′, s′0 and s′1 as before. Let w be
the corresponding wire of g and w′ be the corresponding wire

2Note that we cannot use the same method to replace the
gadget chain because it would require |E| to be exponential.

of h. Suppose that C and C′ agree on all three experiments.
Compare s′0 and s′1. In the proposed circuit C′, w′ must
take the same value on s′0 and s′1, because the fact that g′

depends on w′ and that C′ is acyclic implies that in C′, w′

is not reachable from w and therefore changing the value on
w will not affect the value on w′ (see also Proposition 9).
However, by construction, in C, w′ takes value 0 on s′0 and
value 1 on s′1, which means that, on either of s′0 and s′1, w′

takes different values in C and C′. Suppose w.l.o.g. it is s′0.
Then for s′0, w takes value 0 in C and value 1 in C′. Set w′

to 1 in s′0 and let the resulting experiment be s′2. We have
that C′(s′2) = C′(s′0) = C(s′0) = 0 but C(s′2) = 1. Thus, s′2
is a counterexample to C′.

Lemma 5. The consistency problem is NP-hard for the
class of unbounded fan-in AND, OR, and Θ2 gates.

Proof. We reduce a 3-SAT instance φ over the variables
xi for i ∈ [1, n] to the consistency problem for this class. The
input wires are {I1, I2, I3, V1, W1, V2, W2, . . . , Vn, Wn}. Let
G denote the output wire of the unknown gate. We define
a correspondence between literals of φ and wires: literal xi

corresponds to wire Vi literal xi corresponds to wire Wi. We
design the set of experiments and their outputs as follows,
so as to constrain the unknown gate to be a Θ2 gate with
its inputs corresponding to a satisfying assignment of φ.

• For each of the eight experiments assigning 0 and 1 to
I1, I2, and I3, with all Vi = Wi = 0, the output value is
Θ2(I1, I2, I3). This guarantees that G cannot be AND
or OR, and must therefore be a Θ2 gate whose inputs
include I1, I2, and I3.

• For each i, on the experiment with I1 = Vi = Wi = 1
and all other input wires assigned 0, the output value
is 1. This implies at least one of Vi and Wi is an input
wire of G.

• For each i, on the experiment with Vi = Wi = 1 and
all other input wires assigned 0, the output value is 0.
This implies not both Vi and Wi are inputs to G.

• For each clause of φ, on the experiment that sets I1

and the three wires corresponding to the three literals
in the clause to 1 and all other wires to 0, the output
is 1. This ensures that at least one wire corresponding
to a literal in the clause is an input to G.

It is easily verified that φ is satisfiable if and only if there is
a gate G from the specified class of gate functions consistent
with these experiment/value pairs.

Lemma 4 and Lemma 5 establish the following theorem.

Theorem 6. Learning constant depth AND/OR/Θ2 cir-
cuits with VIQ’s and BEQ’s is NP-hard.

5. LEARNING WITH EXPERIMENTS
In this section, we give algorithms for arbitrary circuits

with logarithmic depth and constant fan-in and Boolean
circuits of constant depth and unbounded fan-in over AND,
OR and NOT gates. Therefore, we show that both AC0 and
NC1 circuits are learnable in polynomial time with VIQ’s.
One of the main issues is to learn the set of inputs for each

gate. We remark that the gates in the circuit that the algo-
rithms output may not have the same set of inputs as the
target circuit (see Figure 1).

First we develop some tools. A partial experiment is a
partial function from [1, N] to Σ ∪ {∗}, where some wires
are unspecified. Let s be an experiment and τ be a partial
experiment. Define s|τ to be the experiment obtained by
replacing in s the settings of all wires that are specified in
τ by the corresponding settings in τ . Let s and t be two
experiments. We say that t � s if the set of free wires in t
is a subset of the set of free wires in s. We say t ≺ s if t � s
and there is at least one free wire in s that is fixed in t. Let s
be an experiment with wire w set free. We call s|w=σ, where
σ ∈ Σ, the (w, σ)-perturbation of s. If C(s) 6= C(s|w=σ), we
say s is (w, σ)-exposing.

Consider any gate g with inputs (i1, i2, . . . , il). We over-
load g to take an experiment s as an argument. That is, let
g(s) = g(wi1(s), wi2(s), . . . , wil

(s)), where wi(s) is the value
of wire wi on s in the target circuit C. The following useful
facts are easily verified.

Proposition 7. Let s and t be two experiments with the
output wire set free. If s and t agree on every wire that is
either free in s or an input to a wire that is free in s then
C(s) = C(t).

Proposition 8. C(s) = C(s|w=w(s)).
(This is meaningful only when w is set free in s. In this
case, w(s) is the value the corresponding gate computes. The
proposition simply says that if we fix w to the value it takes
on an experiment s, the circuit output stays the same.)

Proposition 9. Let w and u be two wires and suppose
there is no path from w to u in the graph of the circuit. Then
u(s) = u(s|w=σ) for any experiment s and σ ∈ Σ.

The main task of our learning algorithms is to find a “cor-
rect” gate function for each wire. Formally speaking, a gate
g is wrong for a wire w, if there exists an experiment s that
fixes all of g’s inputs and is (w, g(s))-exposing. We call such
an s a witness experiment for g and w. Otherwise, we say
that g is correct for w.

Lemma 10. Let C′ be a circuit with the same set of wires
as C. If C′ is acyclic and every gate of C′ is correct for the
corresponding wire in C, C′ is behaviorally equivalent to C.

Proof. Suppose to the contrary that C′ is not behav-
iorally equivalent to C. Let s be a minimal experiment
such that C′(s) 6= C(s). Let w be a free wire in exper-
iment s and g be its corresponding gate in C′, chosen so
that all g’s inputs are fixed in s (such a wire exists because
C′ is acyclic and the input gates of C′ are considered to
have fixed inputs because they have no inputs). By Propo-
sition 8, we have C′(s) = C′(s|w=g(s)). By the minimality of
s, we have C′(s|w=g(s)) = C(s|w=g(s)), which then implies
that C(s|w=g(s)) 6= C(s). This contradicts the fact that g is
correct for w.

5.1 Constructing a circuit
Let F be a class of gates containing all the gates in the

target circuit C. We describe an important subroutine, Cir-
cuitBuilder (Algorithm 1), that takes a set of experiments
U and constructs an acyclic circuit C′ using gates from F .
CircuitBuilder builds C′ from the bottom up, starting with

gates of fan-in zero. At each iteration, CircuitBuilder at-
tempts to add another wire to C′ by choosing a gate in F
among those that depend only on wires that are already in
C′. This method has the advantage of building an acyclic
circuit, which is crucial because the dependence between
gates is not always clear, as in Figure 1.

Define U to be a sufficient set of tests for C and F if for
every wire wi in C and every gate g ∈ F that is wrong for
wi, U contains at least one witness for g and wi. In the
remainder of this section we prove the following.

Theorem 11. If U is a sufficient set of tests for C and
F then C′ is behaviorally equivalent to C, where C′ is the
circuit constructed by CircuitBuilder. Moreover, the queries
can be made non-adaptively.

Let Uw denote the set of experiments in U with w set free.
In CircuitBuilder, since before we replace s by s|w=g(s), we
check whether C(s) = C(s|w=g(s)) for s in Uw, we do not
need to make queries on the replacing experiments in U .
However, we may have to make queries on the perturbations
of replacing experiments. This would require the algorithm
to make queries adaptively. Instead, in CircuitBuilder, we
maintain another set of experiments V which contains all
possible perturbations of experiments in U at the beginning
of the algorithm. Similarly, let Vw denote the set of exper-
iments in V with w set free. In Lemma 13, we will show
that after replacement, V still contains all necessary pertur-
bations of experiments in U . In Lemma 14, we show that
even in V , a replacing experiment will have the same circuit
output as the original one. Therefore, we only need to make
queries on U ∪ V at the beginning of the algorithm. The
algorithm is non-adaptive.

Algorithm 1 CircuitBuilder

INPUT: U and F .
OUTPUT: C′.
1: ∀w, ∀s ∈ Uw, ∀σ ∈ Σ, let V contain the (w, σ)-

perturbation of s.
2: Make a VIQ on every experiment s ∈ U ∪ V .
3: C′ ← ∅. Z ←W .
4: while Z is not empty do

5: for w ∈ Z do

6: if there exists a function g ∈ F that depends
only on wires in C′, such that ∀s ∈ Uw, C(s) =
C(s|w=g(s)) then

7: Add w and g to C′ and remove w from Z.
8: ∀s ∈ Uw ∪ Vw, replace s by s|w=g(s).
9: break

At each iteration of the algorithm, experiments in U ∪ V
may be replaced. We make the following claims about the
replacements.

Lemma 12. At any iteration, for any s ∈ U ∪ V , no wire
in C′ is set free in s.

Proof. This is because we fix the wire to a value when-
ever we add it to C′.

The following lemma says that if s ∈ U and t ∈ V are
an experiment and perturbation pair, and w is the corre-
sponding wire, they will continue to be such a pair until w
is added to C′.

Lemma 13. Consider any iteration, any w ∈ Z and any
s ∈ Uw, and let s0 be the version of s at the start of the
algorithm. For any σ ∈ Σ, let t0 be the (w, σ)-perturbation
of s0 at the start of the algorithm and t be the replacement of
t0 at the iteration considered. Then t is a (w, σ)-perturbation
of s.

Proof. The statement is clearly true at the start of the
algorithm. At each previous iteration, at most one setting
of s and t will be changed. We only need to show that each
replacement will replace the same value for s and t. The
lemma then follows by observing that the replaced value is
an output of a function that depends on wires that do not
include w (w has not been added to C′) and that s and t
differ only at their settings of w.

Together with Lemma 13, the following lemma shows that
although we need to compare the circuit outputs of replace-
ment experiments and their perturbations, we do not need
to make any further VIQ’s.

Lemma 14. Suppose U is a sufficient set of tests for C
and F. At any iteration consider any s ∈ U ∪ V and let s0

be the version of s at the start of the algorithm. Then we
have C(s) = C(s0).

If s ∈ U , there is nothing to prove since the algorithm
checks the equality before making the replacement. The
case that s ∈ V is a little bit trickier. We prove an even
more general lemma, from which the case s ∈ V follows.

Lemma 15. Suppose U is a sufficient set of tests for C
and F. Let g be the function that the algorithm chooses for
gate w. Then g is correct for w. That is, ∀s with g’s input
wires fixed, C(s) = C(s|w=g(s)).

Proof. W.l.o.g., let w be the first wire added to C′ for
which the statement in the lemma does not hold. Suppose
g is wrong for w. By the assumption that U is sufficient
for C and F , there exists an experiment s0 ∈ U at the
start of the algorithm such that s0 fixes all g’s inputs, and
C(s0) 6= C(s0|w=g(s0)). Let s ∈ U be the replacement of
s0 at the iteration w is added to C′. We have that C(s) =
C(s0) 6= C(s0|w=g(s0)) = C(s|w=g(s0)), by the assumption
that w is the first wire violating the condition. Moreover,
g(s) = g(s0) because s0 and s both fixes all g’s input wires
and therefore should agree on them. Therefore, we have

C(s) 6= C(s|w=g(s))

which contradicts the choice of g.

Lemma 15 together with Lemma 10 show that if U is a
sufficient set, C′ is behaviorally equivalent to C. Lemma
13 and 14 show that all the queries can be made at the
beginning of the algorithm, which establishes Theorem 11.
Lemma 12 validates the operation of picking a function g,
which amounts to solving the following consistency problem
(defined in Section 3.1). Let E be the projection of Uw to C′

(note that all wires in C′ are fixed) and let the prohibited
pairs (t, σ) be those t ∈ E and σ ∈ Σ such that there is an
experiment in Uw that agrees with t and is (w, σ)-exposing.

The next lemma shows that the algorithm terminates in
N iterations.

Lemma 16. At each iteration, the algorithm adds one wire
to C′.

Proof. First we observe that there is at least one wire w
in Z whose input wires are all contained in C′, because the
circuit graph of C is acyclic. The true gate of w in C will
survive every if-test in the algorithm.

5.2 Test paths
One of the key ideas at the heart of our algorithms is to

use test paths. A test path is an experiment whose free wires
are a directed path from some wire w to wN , through which
w is exposed. Let a side wire of a test path be a fixed wire
that is an input to a gate whose corresponding wire is set
free. The meaning of test paths is made clear in the following
lemma, which says that using test paths is sufficient.

Lemma 17. Let s be a (w, σ)-exposing experiment, where
σ ∈ Σ. Let s∗ � s be a minimal (w, σ)-exposing experiment.
Then the free wires in s∗ are a directed path in the graph of
C, which starts with w and ends with the output wire wN .
(s∗ is a test path.)

Proof. When w = wN , the directed path is just wN

itself. Suppose the claim is true for any free wire whose cor-
responding gate has w as an input. First we claim that only
those wires that w can reach (in the underlying digraph)
can be free in s∗. This is because these wires take the same
values in s∗ and the perturbations s∗|w=σ (see Proposition
9). Thus, we can set them to the corresponding values and
the resulting experiment is still (w, σ)-exposing, which con-
tradicts the minimality of s∗.

Let u be a free wire in s∗ whose only free input wire is
w. u must exist, because the underlying digraph is acyclic.
Let σ0 = w(s∗) and β0 = u(s∗) and β = u(s∗|w=σ). We
claim that s∗|w=σ0

is a minimal (u, β)-exposing experiment.
Let us view the circuit as a function of values of w and u.
That is, let F (x, y) = C(s∗|w=x,u=y). By the assumption,
we have F (σ0, β0) 6= F (σ, β). By the minimality of s∗, we
have F (σ0, β) = F (σ, β). Thus, we have

F (σ0, β) 6= F (σ0, β0)

which implies that s∗|w=σ0
is (u, β)-exposing. Suppose on

the contrary that there exists s′ ≺ s∗ is (u, β)-exposing. We
set both w and u free in s′ and let the resulting experiment
be s′′. Let F ′′(x, y) = C(s′′|w = x, u = y). Again, by the
assumption and the minimality of s∗, we have

F ′′(σ0, β0) 6= F ′′(σ0, β) = F ′′(σ, β)

Therefore, we conclude s′′ is (w, σ)-exposing by observing
that w(s′′) = σ0, u(s′′) = β0 and u(s′′|w=σ) = β, which
leads to a contradiction.

Therefore, we conclude that s∗|w=σ0
is a minimal (u, β)-

exposing experiment. By induction, its free wires consist of
a directed path starting with u and ending with wN . We
append w to this path to obtain the directed path in s∗.

5.3 Learning log depth circuits with constant
fan-in

We use CircuitBuilder to give an algorithm that learns an
arbitrary log depth bounded fan-in circuit. The algorithm
does not perform any additional queries and hence is non-
adaptive. The main idea is based on the observation that in
an acyclic circuit of depth d and fan-in k, there are at most d
free wires and at most kd side wires in a test path. There are
at most |Σ|O(kd) settings of these wires. If we randomly as-
sign one of Σ∪{∗} to each wire with equal probabilities, the

probability that we generate one of the settings is 1/|Σ|O(kd).

We can generate all settings using |Σ|O(kd) log 1
δ

random ex-
periments, which succeeds with probability at least 1 − δ.
We can also generate them deterministically using a univer-
sal set construction. The following definition of universal
set is adapted from Seroussi and Bshouty [14]. An experi-
ment set U is called (N, l)-universal if for every set of indices
R = {r1, r2, . . . , rl} ⊆ [N], the projection of U to R con-
tains all (|Σ|+ 1)l l-tuples. It is shown in [13] that a (N, l)-

universal set of size 2O(l log |Σ|) log N can be constructed in
polynomial time.3 Let U be a (N, (d + 1)(k + 1))-universal
set and let F be the class of all gates of fan-in at most k.
We show that U is sufficient for C and F .

Lemma 18. U is a sufficient set for C and F.

Proof. Let s be a witness experiment that g is wrong
for w; all g’s inputs are fixed in s. Let s∗ � s be a min-
imal (w, g(s))-exposing experiment. According to Lemma
17, there are at most d free wires and dk side wires in s.
Since U is a universal set, there exists an experiment s0 ∈ U
at the beginning of the algorithm, such that s0 agrees with
s∗ in all s∗’s free wires and side wires and also all g’s inputs
(there are at most (d+1)(k+1) wires). Proposition 7 shows
that s0 is a witness experiment that g is wrong for w.

Whenever kd = O(log N), the size of U is polynomial

in N and so is that of V . It takes time NO(k) to solve
the consistency problem for a function of k variables, by
checking every possible combination of k inputs. When k is
a constant, this is polynomial.

Theorem 19. Log depth bounded fan-in circuits can be
learned non-adaptively in polynomial time using VIQ’s.

5.4 Learning AC0 circuits
Theorem 6 precludes polynomial time algorithms for learn-

ing constant depth unbounded fan-in circuits with fairly sim-
ple gates. In this section, we show that if we allow only AND
and OR gates (it is easy to extend it to NAND, NOR and
NOT), constant depth unbounded fan-in Boolean circuits
are learnable. Thus we show that AC0 circuits are learn-
able with VIQ’s.

We are not able to use a universal set, since k can be as
large as Ω(N). Instead, we use Algorithm 2 to gather the
necessary test paths adaptively. Algorithm 2 begins with
learning the output gate, which can be easily done for AND
and OR gates. It then sets one of its input wires free and
fixes the other input wires so that the free input wire is still
relevant. In particular, it sets the other input wires to 1 if
the output gate is an AND gate, or 0 if the output gate is an
OR gate. This partial experiment is then used to find (some
of) the inputs of the corresponding gate. The algorithm goes
on exploring the whole circuit. We remark that Algorithm
2 alone is not sufficient, because some input wires may be
fixed as side wires and therefore hidden to the learner.

Let U contain all tests that are made in Algorithm 2 and
F be all AND and OR gates. The following lemma shows
the correctness of the learning algorithm.

Lemma 20. U is sufficient for C and F.
3The paper [13] only deals with binary vectors. But it can be
easily extended to the non-binary case by viewing each non-
binary literal in Σ∪{∗} as a binary vector of size log(|Σ|+1).

Algorithm 2 Gathering test paths for a constant depth
AND/OR circuit

1: Let Γ contain the partial experiment that sets the output
wire free, {wN = ∗}.

2: Let 1 (0) be an experiment that sets all wires to 1 (0),
3: while Γ is not empty do

4: Pick τ ∈ Γ and remove it from Γ.
5: if C(1|τ) 6= C(0|τ) then

6: Let Z = {w| w unspecified in τ , and C(1|τ,w=0) 6=
C(1|τ) or C(0|τ,w=1) 6= C(0|τ) }.

7: for w ∈ Z do

8: if C(1|τ,w=0) 6= C(1|τ) then

9: Add τ |w=∗,∀w′∈Z\{w},w′=1 to Γ. {AND gate}
10: else if C(0|τ,w=1) 6= C(0|τ) then

11: Add τ |w=∗,∀w′∈Z\{w},w′=0 to Γ. {OR gate}

Proof. Suppose s is a witness experiment that g is wrong
for w and s∗ � s is a minimal (w, g(s))-exposing experiment.
Let u be the successor of w in the directed path from w to
wN (Lemma 17). We define two partial experiments τu and
τw. τu sets all free wires in the directed path before u and
their side wires as in s∗ and sets u free. τw is similarly
defined. We claim that τw is added to Γ in Algorithm 2. We
assume inductively τu has been added to Γ.

Compare τu and τw. Those wires unspecified by τu but
specified by τw are side wires that are inputs only to u. They
are set to 1 if u is an AND gate and 0 if u is an OR gate so
as to keep w relevant. Furthermore, we observe that

1. If u is an AND gate, C(1|τu) 6= C(0|τu) and
C(1|τu,w=0) 6= C(1|τu);

2. If u is an OR gate, C(1|τu) 6= C(0|τu) and
C(0|τu,w=1) 6= C(0|τu).

Therefore, τw must be added. Thus U
must contain the following sets of experiments
{0|τw ,1|τw}, {1|τw ,w′=0| w′ unspecified in τw}, and
{0|τw ,w′=1| w′ unspecified in τw}. Let g∗ be the gate w
in the target circuit C. The two projected functions g|τw

and g∗|τw (fixing some inputs of the functions) must be
different, because otherwise it contradicts the fact that
s∗ is a witness experiment. By case analysis, we can
show that there exists at least one of the above-mentioned
experiments s0, such that g(s0) 6= g∗(s0). This s0 serves
our purpose.

It is clear that each partial experiment collected by Algo-
rithm 2 corresponds to a directed path in the circuit C. Thus
the number of partial experiments is bounded by O(Nd) =
poly(N) when the depth d is a constant. The size of U
and the number of tests are hence polynomially bounded.
The theorem then follows from the fact that the consistency
problem for AND/OR gates can be solved in polynomial
time.

Theorem 21. AC0 circuits are learnable in polynomial
time using VIQ’s.

6. LEARNING WITH EXPERIMENTS AND
COUNTEREXAMPLES

BEQ’s overcome the obstacles of Theorem 2 and Theo-
rem 3, because the counterexample has to give away the

combination when an appropriate hypothesis circuit is pre-
sented. However, the result in Theorem 6 still applies. As-
suming both VIQ’s and BEQ’s are available, we give polyno-
mial time algorithms to learn both arbitrary constant fan-in
circuits and AND/OR circuits with unbounded depth.

Both algorithms repeatedly make a BEQ on a candidate
circuit C′ until C′ is behaviorally equivalent to the target cir-
cuit. Each counterexample s is processed to give a minimal
counterexample s∗ � s such that C′(s∗) 6= C(s∗). This pro-
cess, Minimize, can easily be done with O(N) VIQ’s. The
minimal counterexample is then used in rebuilding the can-
didate circuit C′. As in the proof of Lemma 10, a minimal
counterexample is a witness experiment that a candidate
gate g is wrong for a wire w. Therefore, each counterexam-
ple eliminates at least one candidate gate for at least one
wire. For constant fan-in circuits, this immediately leads
to a learning algorithm, in which we use a refinement of
CircuitBuilder, which instead of checking each gate with re-
spect to U , just picks a gate that is not eliminated for the
corresponding wire. The algorithm is polynomial because
there are at most |F| = NO(k) gates to eliminate.

Theorem 22. Bounded fan-in circuits are learnable in
polynomial time using VIQ’s and BEQ’s.

However, the same method does not work for AND/OR
circuits, as |F| is exponential. But each minimal counterex-
ample still proves a gate wrong for a wire w. Let us denote
each counterexample by a pair indicating the outputs of the
true gate and the proposed gate. A (1, 0) counterexample
eliminates the constant 0 gate and similarly a (0, 1) coun-
terexample eliminates the constant 1 gate. Counterexamples
for AND/OR gates can be divided into two types, namely,
input removing and input demanding counterexamples. For
instance, if the proposed gate and the true gate are both
AND gates, a (1, 0) counterexample says that the 0-inputs
(inputs that are set 0) of the proposed gate are not inputs
of the true gate. Such a counterexample causes the removal
of the 0-inputs from the potential input set and is called in-
put removing. Let R∧

w contain all inputs removed by input
removing counterexamples for wire w.

A (0, 1) counterexample implies that inputs of the pro-
posed gate does not include all inputs of the true gate. Such
a counterexample is called input demanding. Let T∧

w be a
collection of sets of wires. We add the set of inputs of the
proposed gate to T∧

w when an input demanding counterex-
ample is received. Any AND gate whose inputs are com-
pletely contained in any set of T∧

w can not be the true gate
and is therefore eliminated. We can view T∧

w as constraints
on candidate gates for wire w. An analogous argument ap-
plies when both gates are OR gates. Let R∨

w be analogous
to R∧

w and T∨
w be analogous to T∧

w .
When the true gate and the proposed gate are of different

types, we will process each counterexample as if they were
the same type. It can be verified that even when the two
gates are of different types, each counterexample will either
add some wires to R∧

w or R∨
w or add a set to T∧

w or T∨
w and

therefore make some progress. For example, if the true gate
is an OR gate and the proposed gate is an AND gate, we
treat the counterexample as if the true gate was an AND
gate. Thus, we will add 0-inputs of the proposed gate to R∧

w

upon receiving a (1, 0) counterexample, and add the whole
set of inputs of the proposed gate to T∧

w upon receiving a
(0, 1) counterexample. An important fact is that the true

gate will never be eliminated. This is because only when the
proposed gate is of the same type as the true gate will there
be any restriction on the true gate, and the true gate will not
be eliminated in these cases as we have already discussed.

Algorithm 3 Building the proposed circuit

INPUT: ∀w ∈ W , R∧
w, T∧

w , R∨
w, T∨

w and the set of constant
functions Cw for wire w that are not eliminated.

OUTPUT: C′.
1: C′ ← ∅. Z ← (w1, w2, . . . , wN).
2: while Z is not empty do

3: Pop the first wire w in Z.
4: if Cw 6= ∅ then

5: Add w to C′ with one of the functions in Cw.
6: else if ∀t ∈ T∧

w , C′\R∧
w * t then

7: Add w to C′ with AND of wires in C′\R∧
w .

8: else if ∀t ∈ T∨
w , C′\R∨

w * t then

9: Add w to C′ with OR of wires in C′\R∨
w.

10: else

11: Put w at the end of Z.

We use Algorithm 3 to build the proposed circuit C′. At
each iteration, we try to add a wire in Z to C′. We put Z in
a queue and let the initial order be w1, w2, . . . , wN . At each
iteration, the first wire in the queue will be considered. If it
is not added to C′, it will be put at the end of the queue. We
add the wire to C′ only if one of the following is true. One of
the two constant functions is not eliminated; C′\R∧

w is not
contained in any set of T∧

w ; C′\R∨
w is not contained in any

set of T∨
w . We add the wire with a constant function, AND

of wires in C′\R∧
w, or OR of wires in C′\R∨

w , respectively.
Now we bound the number of counterexamples each wire

can receive. There are at most 2 counterexamples that elim-
inate constant functions. There are at most O(N) input
removing counterexamples. The most subtle case is input
demanding counterexamples. We identify the phase number
of the learning algorithm with the number of counterexam-
ples it has received (recall that the algorithm rebuilds C′

each time a counterexample is received). In Algorithm 3,
let the round number of an iteration be the number of times
the wire being considered has been added to the queue. Let
Iw(t) be the round number of the iteration that w is added
to C′ at phase t. We will show that Iw(t) will never de-
crease in the following. The intuition is that we add more
constraints on w as we receive more counterexamples.

Let C′
(w,i)(t) be the set C′ when w is considered at round

i in phase t. If we order pairs in W × [1, N] first by their
round number and then by the order of wires in W , we have
that C′

(w,i)(t) = {w′|(w′, Iw′(t)) ≤ (w, i)}. Together with

Rw’s and Tw’s, C′
(w,i)(t) decides whether w can be added to

the circuit at round i in phase t. In the following, we show
that C′

(w,i)(t) never gets bigger. In other words, the set of

wires C′ that are available when w is considered to be added
at round i is a subset of the corresponding set of wires in
the previous phase. Therefore, if w is not added at round i
in the previous phase, it is likely that it will not be added at
round i at this phase. The key observation in the reasoning
is that if a set C′ cannot pass the test with R∧

w and T∧
w , and

R∨
w and T∨

w ,

1. no subset of C′ can pass the test;

2. C′ cannot pass the test if we add more wires to R∧
w

and R∨
w or more sets to T∧

w and T∨
w .

Lemma 23. For any wire w, if C′
(w,i)(t) exists and the

algorithm does not end at phase t, C′
(w,i)(t + 1) exists and

C′
(w,i)(t + 1) ⊆ C′

(w,i)(t).

Proof. We do induction on the pairs (w, i). The lemma
clearly holds for (w1, 1) as C′

(w1,1)(t) is always empty. Sup-
pose it holds for all pairs that precede (w, i). Suppose there
exists a wire w′ in C′

(w,i)(t + 1)\C′
(w,i)(t). We have that

(w′, j = Iw′(t + 1)) ≤ (w, i). Therefore, w′ is added at
the jth round at phase t + 1 but after the jth round at
phase t. This implies (using the observations 1 and 2) that
C′

(w′,j)(t + 1) * C′
(w′,j)(t), because R∧

w and R∨
w, and T∧

w

and T∨
w only grow when more counterexamples are received.

This leads to a contradiction.

It follows (also using the observations 1 and 2) that

Corollary 24. Iw(t) is non-decreasing.

Now let us bound Iw(t). Recall that the true gate will
never be eliminated. Therefore, whenever C′ contains all
inputs of the true gate, w will be added. Thus, if the true
gate of w is a constant gate, Iw(t) = 1. If the true gate of
w depends only on constant gates, Iw(t) ≤ 2. In general,
we have that Iw(t) ≤ max(Iwi1

(t), Iwi2
(t), . . . , Iwik

(t)) +

1, where wij
(j ∈ [1, k]) is an input of a true gate of w.

Therefore, Iw(t) ≤ d.
Each input demanding counterexample for wire w at phase

t + 1 will eliminate the gate that Algorithm 3 picked for w
at round Iw(t) in phase t, by adding all inputs of the gate
to T∧

w or T∨
w . By Lemma 23 and the observations 1 and

2, this means that at phase t + 1, we cannot pick gates of
the same type again for w at or before round Iw(t). Thus
Iw(t) will increase when w receives at most 2 input demand-
ing counterexamples, one for AND gates and the other for
OR gates. Therefore, we can bound the number of input
demanding counterexamples by O(d) per wire.

Theorem 25. AND/OR/NOT circuits with unbounded fan-
in and unbounded depth are learnable in polynomial time
using VIQ’s and BEQ’s.

7. OTHER RESULTS
We also consider an extension of our model, namely, the

synchronous model, where time is quantized and we can in-
ject values as well as observe the output of the circuit at each
time step. The circuits may be cyclic in this new model.
A generalization of the methods of this paper shows that
the classes of bounded fan-in circuits and AND/OR/NOT
circuits are also learnable in polynomial time in the syn-
chronous model.

8. REFERENCES
[1] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano.

Identification of gene regulatory networks by strategic
gene disruptions and gene overexpressions. In SODA
’98: Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 695–702,
Philadelphia, PA, USA, 1998. Society for Industrial
and Applied Mathematics.

[2] D. Angluin, M. Frazier, and L. Pitt. Learning
conjunctions of Horn clauses. Machine Learning,
9:147–164, 1992.

[3] D. Angluin, L. Hellerstein, and M. Karpinski.
Learning read-once formulas with queries. J. ACM,
40:185–210, 1993.

[4] D. Angluin and M. Kharitonov. When won’t
membership queries help? J. Comput. Syst. Sci.,
50(2):336–355, 1995.

[5] N. H. Bshouty. Exact learning boolean functions via
the monotone theory. Inf. Comput., 123(1):146–153,
1995.

[6] H. Fujiwara. Logic Testing and Design for Testability.
MIT Press, 1986.

[7] T. Ideker, V. Thorsson, and R. Karp. Discovery of
regulatory interactions through perturbation:
Inference and experimental design. In Pacific
Symposium on Biocomputing 5, pages 302–313, 2000.

[8] J. C. Jackson. An efficient membership-query
algorithm for learning DNF with respect to the
uniform distribution. J. Comput. Syst. Sci.,
55(3):414–440, 1997.

[9] J. C. Jackson, A. R. Klivans, and R. A. Servedio.
Learnability beyond AC0. In STOC ’02: Proceedings
of the thirty-fourth annual ACM symposium on
Theory of computing, pages 776–784, New York, NY,
USA, 2002. ACM Press.

[10] M. Kearns and L. Valiant. Cryptographic limitations
on learning boolean formulae and finite automata. J.
ACM, 41(1):67–95, 1994.

[11] M. Kharitonov. Cryptographic hardness of
distribution-specific learning. In STOC ’93:
Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 372–381,
New York, NY, USA, 1993. ACM Press.

[12] N. Linial, Y. Mansour, and N. Nisan. Constant depth
circuits, Fourier transform, and learnability. Journal
of the ACM, 40(3):607–620, 1993.

[13] J. Naor and M. Naor. Small-bias probability spaces:
Efficient constructions and applications. In ACM
Symposium on Theory of Computing, pages 213–223,
1990.

[14] G. Seroussi and N. H. Bshouty. Vector sets for
exhaustive testings of logic circuits. In IEEE
Transactions on Information Theory, volume 34,
pages 513–522, May 1988.

[15] L. G. Valiant. A theory of the learnable. Commun.
ACM, 27:1134–1142, 1984.

