
Wait-Free Data Struturesin the Asynhronous PRAM ModelJames AspnesShool of Computer SieneCarnegie-Mellon UniversityPittsburgh, PA 15213 Maurie HerlihyDigital Equipment CorporationCambridge Researh LaboratoryOne Kendall SquareCambridge MA, 02139May 22, 2000AbstratA wait-free implementation of a data objet in shared memory is one that guaranteesthat any proess an omplete any operation in a �nite number of steps, regardless of theexeution speeds of the other proesses. Muh of the literature on wait-free synhronizationhas foused on the onstrution of atomi registers, whih are memory loations that anbe read or written instantaneously by onurrent proesses. This model, in whih a set ofasynhronous proesses ommuniate through shared atomi registers, is sometimes knownas asynhronous PRAM. It is known, however, that the asynhronous PRAM model is notsuÆiently powerful to onstrut wait-free implementations of many simple data types suhas lists, queues, staks, test-and-set registers, and others. In this paper, we give an algebraiharaterization of a large lass of objets that do have wait-free implementations in asyn-hronous PRAM, as well as a general algorithm for implementing them.Contat Author: M. Herlihy, herlihy�rl.de.om (617) 621-6646.

0



1 Problem StatementA onurrent objet is a data struture sharedby asynhronous onurrent proesses. An im-plementation of a onurrent objet is wait-free if it guarantees that any proess will om-plete any operation in a �nite number of steps,regardless of the exeution speeds of the otherproesses. The wait-free ondition is a naturalproperty to require of asynhronous systems.It guarantees that no proess an be preventedfrom ompleting an operation by variationsin other proesses' speeds, or by undetetedhalting failures. Even in a failure-free system,a proess an enounter unexpeted delay bytaking a page fault or ahe miss, exhaustingits sheduling quantum, or being swapped out.Similar problems arise in heterogeneous arhi-tetures, where some proessors may be inher-ently faster than others, and some memory lo-ations may be slower to aess. The wait-freeondition rules out many onventional algo-rithmi tehniques suh as busy-waiting, on-ditional waiting, or ritial setions, sine thefailure or delay of a single proess within aritial setion will prevent the non-faulty pro-esses from making progress.The fundamental problem in this area is thefollowing: under what irumstanes an weonstrut a wait-free implementation of oneonurrent objet from another? Elsewhere[10, 11℄, we have shown that any objet Xan be assigned a onsensus number, whih isthe largest number of proesses (possibly in�-nite) that an ahieve asynhronous onsensus[8℄ by applying operations to a shared X . Noobjet with onsensus number n an be imple-mented by an objet with a lower onsensusnumber in a system of n or more proesses, butany objet with onsensus number n is univer-sal (it implements any other objet) in a sys-tem of n or fewer proesses. By omputing theonsensus numbers of existing synhronizationprimitives, one an derive an in�nite hierarhy

of suessively more powerful synhronizationprimitives.In this paper, we extend our earlier resultsby investigating the lass of objets that havewait-free implementations using only atomiread and write operations applied to individualmemory ells. This model is sometimes knownas asynhronous PRAM [7, 9℄. Many re-searhers have investigated tehniques for on-struting suh memory ells, alled atomi reg-isters, from simpler primitives [5, 6, 14, 17, 18,20, 21, 22, 23℄. Despite the impressive amountof intelletual energy that has been applied tothese onstrutions, it is not diÆult to showthat atomi registers have onsensus number1, and thus the asynhronous PRAM model istoo weak to support wait-free implementationsof any objet with a higher onsensus num-ber, inluding ommon data types suh as sets,queues, staks, priority queues, or lists, most ifnot all the lassial synhronization primitives,suh as test-and-set, ompare-and-swap, andfeth-and-add, and simple memory-to-memoryoperations suh as move or swap. These ob-servations raise an intriguing question: what,if anything, are atomi registers good for?In this paper, we give a new harateriza-tion of a wide lass of objets that do havewait-free implementations in the asynhronousPRAM model. This haraterization is al-gebrai in nature, in the sense that it is ex-pressed in terms of simple ommutativity andoverwriting properties of the data type's se-quential spei�ation. We present a tehniquefor transforming a sequential objet implemen-tation into an n-proess wait-free implemen-tation requiring a worst-ase synhronizationoverhead of O(n2) reads and writes per oper-ation. Examples of objets that an be imple-mented in this way inlude ounters, logialloks [15℄, and ertain kinds of set abstra-tions.1



2 Summary of ResultsDetails of the formal model [11, 13℄ are omit-ted here for brevity. Informally, however, aonurrent system onsists of a olletion ofn sequential proesses that ommuniate byapplying operations to shared typed objets.Proesses are sequential | eah proess ap-plies a sequene of operations to objets, al-ternately issuing an invoation and then re-eiving the assoiated response. We make nofairness assumptions about proesses. A pro-ess an halt, or display arbitrary variations inspeed. In partiular, one proess annot tellwhether another has halted or is just runningvery slowly.Objets are data strutures in shared mem-ory. Eah objet has a type, whih de�nes a setof possible values and a set of primitive opera-tions that provide the only means to manipu-late that objet. Eah objet has a sequentialspei�ation that de�nes how the objet be-haves when its operations are invoked one ata time by a single proess. For example, thebehavior of a queue objet an be spei�ed byrequiring that enq insert an item in the queue,and that deq remove the oldest item present inthe queue. In a onurrent system, however,an objet's operations an be invoked by on-urrent proesses, and it is neessary to give ameaning to interleaved operation exeutions.An objet is linearizable [12, 13℄ if eah oper-ation appears to take e�et instantaneously atsome point between the operation's invoationand response. Linearizability implies that pro-esses appear to be interleaved at the granular-ity of omplete operations, and that the orderof non-overlapping operations is preserved. Asdisussed in more detail elsewhere [13℄, the no-tion of linearizability generalizes and uni�es anumber of ad-ho orretness onditions in theliterature, and it is related to (but not identi-al with) orretness riteria suh as sequen-tial onsisteny [16℄ and strit serializability

[19℄. We use linearizability as the basi or-retness ondition for the onurrent objetsonstruted in this paper.An invoation onsists of an operationname, argument values, and proess name,and a response onsists of a termination on-dition, result values, and proess name. A his-tory is a sequene of invoations and responses,subjet to simple well-formedness onstraintsomitted here. An invoation and responsemath if their proess names agree. An op-eration in a history is a pair onsisting of aninvoation and the next mathing response. Ahistory is sequential if it is a sequene of opera-tions (i.e., mathing invoations and responsesare not interleaved). It is onvenient to treatan objet's sequential spei�ation as a pre�x-losed set of legal sequential histories. In thefollowing, we use \�" to denote onatenationof sequenes.De�nition 1 Two sequential histories h andh0 are equivalent if, for all sequential historiesg, h � g is legal if and only if h0 � g is legal.De�nition 2 Operations p and q ommute if,for all sequential histories h, if h � p and h � qare legal then h � p � q and h � q � p are legal andequivalent.De�nition 3 Operation q overwrites p if, forall sequential histories h, if h � p and h � q arelegal then h �p �q is legal and equivalent to h �q.This partiular notion of ommutativity is dueto Weihl [24℄. Both properties are arefullyformulated to enompass objets with partialand non-deterministi operations.In this paper, we show how to onstruta wait-free asynhronous PRAM implementa-tion for any objet whose sequential spei�a-tion satis�es the following property:Property 1 For all operations p and q, eitherp and q ommute, or one overwrites the other.2



For example, one data type that satis�es theseonditions is the following ounter data type,providing the following operations:in(: ounter, amount: integer)de(: ounter, amount: integer)respetively inrement and derement theounter by a given amount,reset(: ounter, amount: integer)reinitializes the ounter to amount, andread(: ounter) returns(integer)returns the urrent ounter value. Note thatin and de operations ommute, every oper-ation overwrites read, and reset overwrites ev-ery operation. Suh a shared ounter mightbe used, for example, in randomized shared-memory algorithms [3℄, and for logial loks[15℄.3 The Basi Constrution3.1 Preliminary De�nitionsThe \real-time" ordering of events indues anirreexive partial order on operations: p pre-edes q if the response for p preedes the invo-ation for q. If p and q are unrelated by pree-dene, they are onurrent. It is onvenient tothink of the preedene order as de�ning a di-reted ayli preedene graph on ompletedoperations: there is an edge from p to q if andonly if p preedes q.To reonstrut the objet state, we on-strut a linearization graph by augmentingthe preedene graph with additional edges.These edges reet onstraints on the order-ing of onurrent operations imposed by thealgebrai properties of the operations them-selves. First, a de�nition: an operation p ofproess P interferes with operation q of Q if

either (1) p overwrites q but not vie-versa, or(2) p overwrites q and P > Q.The linearization graph L assoiated with apreedene graph G is de�ned by indution onthe number of operations in G.� The linearization graph of the emptypreedene graph is empty.� Let G be a non-empty preedene graph,let p be an operation of proess P hav-ing no outgoing edges, and let G0 be thepreedene graph onstruted by remov-ing p and its inoming edges from G.Sine G0 has fewer operations, it has awell-de�ned linearization graph L0. Thelinearization graph L of G is onstrutingas follows. Construt L00 by adding to L0the preedene edges for p. Let Q be themaximal subgraph of L00 whose vertiesonsist of all operations q suh that thereis no path in L00 from q to p. We add thefollowing edges to L00. For eah q in Q,{ If p interferes with q, add an edgefrom p to q.{ If q interferes with p and p does notinterfere with any operation preed-ing q in Q, add an edge from p toq.The linearization graph L is the transitive lo-sure of the result.Lemma 1 The linearization graph for G iswell-de�ned; it does not depend on the hoieof p.Lemma 2 The linearization graph is ayli.De�nition 4 A linearization of L is the se-quential history onstruted by a topologialsort of L.Lemma 3 If L has a legal linearization, thenall linearizations of L are legal and equivalent.3



Informally, the purpose of the linearizationgraph is to ensure that no operation's result isa�eted by onurrent operations. Lineariza-tion graphs owe something to the serializationgraphs [4℄ used in database theory, althoughthe tehnial details are di�erent.3.2 The AlgorithmThe objet is represented by a graph whosetransitive losure is its preedene graph.Eah operation is represented by an entry, adata struture with �elds for the invoation,the response, and n pointers to eah proess'spreeding entry. The graph is rooted in an an-hor array whose P -th entry holds a pointerto the entry for proess P 's most reent oper-ation.A proess exeutes an operation in threesteps:1. The proess takes an instantaneous snap-shot of the anhor array using the atomisan proedure desribed in Setion 4.2. The proess reonstruts the linearizationgraph from the preedene graph rootedat the snapshot of the anhor array. Ithooses a linearization, alled its view,and then hooses a response to the in-voation onsistent with its view using asequential implementation of the objet.3. The proess reates an entry for the op-eration, �lling in the response omputedin Step 2 and the preedene edges fromthe anhor array opied in Step 1. It thenupdates the preedene graph by settingits slot in the anhor array to point to thenew entry.In the full paper, we give an indutive proofthat any topologial sort of the preedenegraph's linearization graph is a legal sequen-tial history, hene the objet implementa-tion is linearizable. Informally, this algorithm

exploits the ommutativity and overwritingproperties of operations to ensure that eahproess sees \enough" of the objet state tohoose a orret response independently of anyoperations that may be taking plae onur-rently.As desribed in detail in the full paper, thisalgorithm an be made onsiderably more eÆ-ient by observing that most of the preedenegraph an be disarded, and that it is not ne-essary to reonstrut the entire linearizationgraph for eah operation. An example of suha onstrution is given below in Setion 5.4 Atomi SanIt is onvenient to ast the atomi san prob-lem in a more general form. We an think ofa region of memory as representing a pool ofinformation provided by the proesses. Whenthe state of the memory does not depend onthe order in whih values are written, it is nat-ural to treat it as the join in a _-semilattieof the input values. The atomi san objetsimulates a olletion of single-writer registersfor whih it is possible to atomially read thejoin of the register values.Fix a _-semilattie L; for onveniene wewill assume that L ontains a bottom ele-ment ? suh that ? _x = x for all x inL. The atomi san objet has an operationWriteL(P; v) for eah proess P and element vof L, and an operation ReadMax(P;) for eahproess P . The serial semantis of the objetare quite straightforward: given any historyHthe value returned by a ReadMax(P;) opera-tion in H is equal to the join of all values vsuh that WriteL(P; v) appears in H for someproessor P .To implement the atomi san objet,we assume that the proesses share be-tween them an array san[1 : : : n℄[0 : : : n + 1℄of multi-reader/single-writer atomi registers,4



where eah register san[P ℄[i℄ an be writ-ten to by proess P . The two operationsWriteL(P; v) and ReadMax(P;) are both im-plemented in terms of a stronger primitive op-eration San(P; v), whih is arried out as fol-lows:1. Read san[P ℄[0℄2. Write v _ san[P ℄[0℄ to san[P ℄[0℄.3. For i from 1 to n+ 1:(a) Read san[Q℄[i� 1℄ for all proessesQ in arbitrary order.(b) Write the WQ san[Q℄[i � 1℄ tosan[P ℄[i℄.4. Return san[P ℄[i+ 1℄Given the San operation, the WriteL op-eration is implemented by simply ignoring itsreturn value, while the ReadMax operation isjust a San operation whih always writes thevalue ?. In e�et, the San operation ats likea WriteL operation followed by a ReadMax op-eration; we demonstrate this fat formally inthe following setion.4.1 Proof of CorretnessWe demonstrate the orretness of the atomisan algorithm in two steps. First, we willshow that any two values returned by Sanoperations are omparable within the lattieL. Seond, we will use the lattie orderingof the set of returned values to order the im-plemented WriteL and ReadMax operationsin any onurrent history H ; this orderingwill produe an equivalent serial history of theatomi san objet, thus proving linearizabil-ity.Some notation will be useful. The usual or-der symbols <;>;�;� will be used for thesemilattie order in L. We will assume that

we are working from a �xed history H . Sinewe will be working primarily with the Writeevents in H , we will abbreviate any eventhA;Write(k); vi in H to simply A[k℄, and willoften abuse this notation by using oAk to referto the value written in addition to the Writeevent itself. We say that A[k℄ diretly-seesB[k� 1℄ if A's Read of san[proess(B)℄[k� 1℄follows B[k � 1℄ in H . We will say thatA[k℄ sees B[l℄ if (A[k℄; B[l℄) is in the reex-ive, transitive losure of diretly-sees. Notethat for A[k℄ to see B[l℄ it is not enough thatA[k℄ � B[l℄; it must also our later in time af-ter a sequene of intermediate reads and writesthat would allow the value B[l℄ to be inorpo-rated in the value A[k℄.Certain fats about the sees relation are im-portant enough to state as lemmas. The proofsare straightforward and are omitted to savespae.Lemma 4 Let A be an invoation, and let i �j be suh that A[i℄ and A[j℄ both our. ThenA[j℄ sees A[i℄.Lemma 5 Let A and B be invoations whereA <H B. Let k be suh that A[k℄ and B[k℄both exist. Then oBk � oAk.It is also not diÆult to see that any valuewritten by a proess is the join of the valuesseen by that proess; more formally, we state:Lemma 6 Let A[k℄ our and let l < k, l � 0.Then A[k℄ = W fB[l℄jA[k℄seesB[l℄g.The following lemma desribes the prinipleon whih the atomi san algorithm depends:Lemma 7 Let A[k℄, B[k℄ both appear in thehistory for some k > 0. Then either A[k℄ seesB[k � 1℄ or B[k℄ sees A[k � 1℄.Proof: Suppose A[k � 1℄ preedes B[k � 1℄.Then sine B's read of san[proess(B)℄[k� 1℄5



follows B[k � 1℄ it follows A[k � 1℄ and B[k℄sees A[k�1℄. Alternatively if B[k�1℄ preedesA[k � 1℄, A[k℄ sees B[k � 1℄.We may now prove the onsisteny of theatomi san operation.Lemma 8 Let A, B be invoations suh thatA[n+ 1℄ and B[n+ 1℄ both exist. Then eitherA[n+ 1℄ � B[n+ 1℄ or B[n+ 1℄ � A[n+ 1℄Proof: Let A0, B0 be invoations suh thatA[n+ 1℄ sees A0[℄ and B[n+ 1℄ sees B0[℄. Welaim that either A[n + 1℄ � B0[℄ or B[n +1℄ � A0[℄. Let fAkg0�k�n+1 be an indexed setof invoations (not neessarily distint) suhthat A0 = A0, An+1 = A, and for eah k,0 < k < n+1, Ak[k℄ diretly-sees Ak�1[k� 1℄.De�ne fBkg similarly; the existene of the setsfollows from the de�nition of sees.For eah Ak, Bk, where k > 0, Lemma7 implies that either Ak[k℄ sees Bk[k � 1℄ orBk[k � 1℄, and thus one of Ak or Bk has theproperty that its (k � 1)-th write is seen byboth Ak[k℄ and Bk[k℄. Let Xk stand for thisinvoation.Now onsider the indexed set fXkg0<k�n+1.Then there exist distint i, j suh that Xi =Xj or proess(Xi) = proess(Xj), by the pi-geonhole priniple.In the former ase Xi = Xj , Lemma 4 im-mediately implies Xj [j � 1℄ sees Xi[i℄. In thelatter ase, assume that i < j; then that Ximust preede Xj , beause Xj [j℄ sees eitherAi[i℄ or Bi[i℄, both of whih see Xi[i�1℄. Thusby Lemma 5, Xj [j � 1℄ � Xi[j � 1℄, but asj � 1 � i Lemma 4 gives us Xi[j � 1℄ seesXi[i℄. Thus in either ase Xj [j � 1℄ � Xi[i℄.But both A[n+1℄ and B[n+ 1℄ see Xj [j � 1℄,and Xi[i℄ sees one of A0[0℄, B0[0℄. Thus thelaim holds.Now suppose that A[n+1℄ and B[n+1℄ areinomparable; by Lemma 6 there must thenexist a A0[0℄ whih A[n + 1℄ alone sees anda B0[0℄ whih B[n + 1℄ alone sees| but that

would ontradit the laim. Thus the lemmaholds.Theorem 5 The atomi san objet imple-mentation is linearizable.Proof: For eah invoation A in H , we on-sider both operations that it may implement,a WriteL operation whih we will refer to asAWriteL and a ReadMax operation whih wewill refer to as AReadMax (we will delete theextra operation later.) Now onsider any twosuh operations x and y, implemented by in-voations X and Y , respetively. Let x <S yif either X [n + 1℄ < Y [n + 1℄ or X [n + 1℄ =Y [n + 1℄, x is a WriteL operation, and y is aReadMax operation. By Lemma 8 <S an beextended into a total order; furthermore thistotal order is a superset of <H by Lemma 5.Thus we an use <S to linearize H| the a-tual implemented history is obtained by delet-ing the extra operations, whih have no e�eton the objet's state.4.2 Running TimeEah San operation requires 1 Read and 1Write operation to set san[P ℄[0℄, plus n Readand 1 Write operations for eah of n+1 passesthrough the loop. Thus a single San opera-tion requires a total of n2 + n + 1 Read andn+2 Write operations, where as usual n is thenumber of proesses.Some of these operations an be eliminated;for example, the very last write (to san[P ℄[n+1℄) is superuous, as that register is never read.It does, however, make proving the orretnessof the implementation muh easier. Depend-ing on the relative ost of storing values loallyto a proess, it may also make sense to elim-inate all reads that a proess does of its ownregisters. If both hanges are made, the algo-rithm require only n2�1 Read and n+1Writeoperations.6



read(: ounter)a := atomi san of result := 0for all proesses P doif P's timestamp is maximal in athen result := result + a[P℄.ontributionendreturn resultend readin(: ounter, amount: integer)a := atomi san of max := entry with maximal timestamp in aif my timestamp is maximalthen a[me℄.ontribution := a[me℄.ontribution + amountelse a[me℄.reset_ount := max.reset_ounta[me℄.reset_signature := max.reset_signaturea[me℄.ontribution := amountend if[me℄ := a[me℄end intreset(: ounter, amount: integer)a := atomi san of max := entry with maximal timestamp in aa[me℄.ontribution := amounta[me℄.reset_ount := 1 + max.reset_ounta[me℄.reset_signature := me[me℄ := a[me℄end int Figure 1: A Wait-Free Counter Implementation
7



5 An ExampleAs an example of how simple optimizationsan transform our general algorithm into amore eÆient algorithm, we revisit the sharedounter example. Here, the preedene graphis represented in extremely ompat form. Theproesses share an n-element array of entries,where eah entry has the following �elds:� The reset ount is an integer, initiallyzero, used to order reset operations.� The reset signature is the name of the lastproess observed to reset the ounter. Itis used to break ties among onurrent re-sets.� The ontribution is an integer represent-ing the sum of the amounts inrementedand deremented exeuted by that pro-ess sine the last reset.An entry's timestamp is onstruted by on-atenating the reset ount (high-order bits) tothe reset signature (low-order bits).Implementations of the ounter operationsare shown shematially in Figure 1.6 Other Related WorkAlthough the work on atomi registers has along history, it is only reently that researhershave attempted to formalize the omputa-tional power of the resulting model. Coleand Zajiek [7℄ propose omplexity measuresand basi algorithms for an \asynhronousPRAM" model in whih asynhronous pro-esses ommuniate through shared atomiregisters. Gibbons [9℄ proposes an asyn-hronous model in whih shared atomi reg-isters are augmented by a form of barrier syn-hronization. Our work extends these ap-proahes in two ways: we onsider data stru-tures rather than the usual numeri or graph

algorithms, and we fous on wait-free om-putation, sine we feel that algorithms thatrequire proesses to wait for one another arepoorly suited to asynhronous models.We reently learned of two other atomisan algorithms, developed independently byAttiya et al. [1℄ and by Anderson [2℄. The for-mer has time omplexity omparable to ours,while the latter uses time exponential in thenumber of proesses. We will inlude a moreomplete disussion of these algorithms in thefull paper, but for now we simply remark thateither ould be used in our onstrution.An objet implementation is randomizedwait-free if eah operation ompletes in a �xedexpeted number of steps. Elsewhere [3℄, wehave shown that the asynhronous PRAMmodel is universal for randomized wait-free ob-jets.7 RemarksThis paper has shown there there is a non-trivial lass of objets that have wait-freeimplementations in the asynhronous PRAMmodel. This result suggests several interestingopen questions. Does every objet with on-sensus number 1 have a wait-free asynhronousPRAM implementation? If so, is there a �xedbound to the number of primitive reads andwrites needed to omplete an operation, per-haps as a funtion of n? Or, do there existobjets whose implementations must be �nitebut unbounded? Do the answers to these ques-tions depend on the number of proesses?Referenes[1℄ Y. Afek, H. Attiya, D. Dolev, E. Gafni,M. Merritt, and N. Shavit. Atomi snap-shots. Private Communiation, 1990.8



[2℄ Anderson. Composite registers. TehnialReport TR-89-25, University of Texas atAustin, September 1989.[3℄ J. Aspnes and M.P. Herlihy. Randomizedalgorithms for wait-free synhronization.Submitted for publiation.[4℄ P.A. Bernstein and N. Goodman. Con-urreny ontrol in distributed databasesystems. ACM Computing Surveys,13(2):185{222, June 1981.[5℄ B. Bloom. Construting two-writeratomi registers. In Proeedings of theSixth ACM Symposium on Priniples ofDistributed Computing, pages 249{259,1987.[6℄ J.E. Burns and G.L. Peterson. Construt-ing multi-reader atomi values from non-atomi values. In Proeedings of the SixthACM Symposium on Priniples of Dis-tributed Computing, pages 222{231, 1987.[7℄ R. Cole and O. Zajie. The apram:inorporating asynhrony into the prammodel. In Proeedings of the 1989 Sym-posium on Parallel Algorithms and Arhi-tetures, pages 169{178, Santa Fe, NM,June 1989.[8℄ M. Fisher, N.A. Lynh, and M.S. Pater-son. Impossibility of distributed ommitwith one faulty proess. Journal of theACM, 32(2), April 1985.[9℄ P.B. Gibbons. A more pratial prammodel. In Proeedings of the 1989 Sym-posium on Parallel Algorithms and Arhi-tetures, pages 158{168, Santa Fe, NM,June 1989.[10℄ M.P. Herlihy. Wait-free synhroniza-tion. Aepted for publiation, ACMTOPLAS.

[11℄ M.P. Herlihy. Impossibility and universal-ity results for wait-free synhronization.In Seventh ACM SIGACT-SIGOPS Sym-posium on Priniples of Distributed Com-puting, August 1988.[12℄ M.P. Herlihy and J.M. Wing. Lineariz-abilty: a orretness ondition for on-urrent objets. Aepted for publiation,ACM TOPLAS.[13℄ M.P. Herlihy and J.M. Wing. Axioms foronurrent objets. In 14th ACM Sympo-sium on Priniples of Programming Lan-guages, pages 13{26, January 1987.[14℄ L. Lamport. Conurrent reading andwriting. Communiations of the ACM,20(11):806{811, November 1977.[15℄ L. Lamport. Time, loks, and the or-dering of events in a distributed system.Communiations of the ACM, 21(7):558{565, July 1978.[16℄ L. Lamport. How to make a multiproes-sor omputer that orretly exeutes mul-tiproess programs. IEEE Transationson Computers, C-28(9):690, September1979.[17℄ L. Lamport. On interproess ommunia-tion, parts i and ii. Distributed Comput-ing, 1:77{101, 1986.[18℄ R. Newman-Wolfe. A protool for wait-free, atomi, multi-reader shared vari-ables. In Proeedings of the Sixth ACMSymposium on Priniples of DistributedComputing, pages 232{249, 1987.[19℄ C.H. Papadimitriou. The serializability ofonurrent database updates. Journal ofthe ACM, 26(4):631{653, Otober 1979.9



[20℄ G.L. Peterson. Conurrent reading whilewriting. ACM Transations on Program-ming Languages and Systems, 5(1):46{55,January 1983.[21℄ G.L. Peterson and J.E. Burns. Conur-rent reading while writing ii: the multi-writer ase. Tehnial Report GIT-ICS-86/26, Georgia Institute of Tehnology,Deember 1986.[22℄ A.K. Singh, J.H. Anderson, and M.G.Gouda. The elusive atomi register re-visited. In Proeedings of the Sixth ACMSymposium on Priniples of DistributedComputing, pages 206{221, August 1987.[23℄ P. Vitanyi and B. Awerbuh. Atomishared register aess by asynhronoushardware. In Proeedings of of the27th IEEE Symposium on Foundations ofComputer Siene, pages 223{243, 1986.See also errata in SIGACT News 18(4),Summer, 1987.[24℄ W.E. Weihl. Spei�ation and implemen-tation of atomi data types. Tehnial Re-port TR-314, MIT Laboratory for Com-puter Siene, Marh 1984.

10


