
Low-Contention Data Structures

[Extended Abstract]

James Aspnes
∗

Department of Computer
Science

Yale University
New Haven, CT 06511

aspnes@cs.yale.edu

David Eisenstat
†

eisenstatdavid@gmail.com
Yitong Yin

‡

State Key Laboratory for Novel
Software Technology

Nanjing University
Nanjing, China

yinyt@nju.edu.cn

ABSTRACT
We consider the problem of minimizing contention in static
dictionary data structures, where the contention on each cell
is measured by the expected number of probes to that cell
given an input that is chosen from a distribution that is
not known to the query algorithm (but that may be known
when the data structure is built). When all positive queries
are equally probable, and similarly all negative queries are
equally probable, we show that it is possible to construct
a data structure using linear space s, a constant number
of queries, and with contention O(1/s) on each cell, cor-
responding to a nearly-flat load distribution. All of these
quantities are asymptotically optimal. For arbitrary query
distributions, the lack of knowledge of the query distribu-
tion by the query algorithm prevents perfect load leveling in
this case: we present a lower bound, based on VC-dimension,
that shows that for a wide range of data structure problems,
achieving contention even within a polylogarithmic factor of
optimal requires a cell-probe complexity of Ω(log logn).

Categories and Subject Descriptors
E.1 [Data Sstructures]; F.1.2 [Computation by Ab-
stract Devices]: Modes of Computation—Parallelism and
concurrency

General Terms
Algorithms, Performance, Theory

∗Supported in part by NSF grant CNS-0435201.
†Part of the work was done while David Eisenstat was a
graduate student at Brown University.
‡Supported by the National Science Foundation of China
under Grant No. 60721002. Part of the work was done while
Yitong Yin was a graduate student at Yale University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

Keywords
Memory contention, data structure, cell-probe model

1. INTRODUCTION
For shared-memory multiprocessors, memory contention

measures the extent to which processors might access the
same memory location at the same time, and is one of the
main issues for realistic systems [9,13] and theoretical mod-
els [2,7]. In [6], a theoretical model is introduced by Dwork
et al. to formally address the contention costs of algorithmic
problems. In this paper, we propose to study the contention
cost of a data structure, which measures how many queries
to the data structure might simultaneously access the same
memory cell. To avoid the question of how many queries to
the data structure are running at the same time, we mea-
sure contention indirectly, by counting the expected number
of probes to a given cell for each individual query. The ex-
pected number of probes to the cell for some fixed number m
of simultaneous queries can then be bounded using linearity
of expectation.

With binary search, for example, the entry in the middle
of the table is accessed on every query, as is the cell storing
the hash function or root-level index with perfect hashing
and similar index-based data structures. Depending on the
query distribution, the remaining load may be balanced al-
most as badly over the other cells.

We consider how to avoid this problem in case of static
data structures, where the data structure is built in advance
by a construction algorithm that may know the query dis-
tribution, but queries are performed by a uniform algorithm
that does not (although it may use randomization itself to
spread the query load more evenly).

The assumption that the query algorithm does not know
the query distribution is natural. Often the query distribu-
tion will be highly correlated with the contents of the data
structure, as in our simplest case where we consider a uni-
form distribution on successful queries to a static dictionary.
Providing the query distribution to the query algorithm in
such a case would, in effect, give it significant information
about the contents of the data structure.

1.1 Model
Formally, a data structure problem is a function f : Q ×
D → {0, 1}, such that for every query x ∈ Q and every
data set S ∈ D, f(x, S) specifies the answer to the query
x to data set S. A classic problem is the membership

problem, where Q = [N] and D =
`
[N]
n

´
for some N � n,

and f(x, S) = 1 if and only if x ∈ S.
We assume that the query x ∈ Q follows some probability

distribution q over Q.
For any data set S ∈ D and any query distribution q over

Q, a table TS,q : [s] → {0, 1}b of s cells, each of which con-
tains b bits, is prepared. Given a query x, a probabilistic cell-
probing algorithm A computes the value of f(x, S) by mak-

ing t randomized adaptive cell-probes I
(1)
x , I

(2)
x , . . . , I

(t)
x ∈

[s]. The algorithm A may depend on f , but not on S or
q (except to the extent that later probes may depend on
the outcome of earlier probes, whose results might encode
information about S and q).

The contention of a cell is the expected number of probes
to the cell during one execution of A. This will be equal to
the probability that the cell is probed at all, provided A is
sensible enough not to probe the same cell twice, but it is
easier to work with expectations. In more detail:

Definition 1. For a fixed table TS,q, for a query X cho-
sen randomly from Q according to the distribution q, the

sequence of cell-probes is I
(1)
X , I

(2)
X , . . . , I

(t)
X . Let Y (t)(x, j) be

the 0-1 valued random variable indicating whether I
(t)
x = j.

The contention of cell j at step t is defined by

Φt(j) := E
h
Y (t)(X, j)

i
,

where the expectation is taken over both X and the random

I
(t)
x . The total contention of cell j is Φ(j) :=

P
t Φt(j).

It is obvious that
P
j Φt(j) = 1, therefore 1

s
≤ maxj Φt(j) ≤

1. Ideally, we want maxj Φt(j) to approach 1
s
.

A balanced cell-probing scheme is defined as follows:

Definition 2. An (s, b, t, φ)-balanced-cell-probing scheme
for problem f : Q×D → {0, 1} is a cell-probing scheme such
that for any S ∈ D and any probability distribution q over
Q, a table TS,q : [s] → {0, 1}b is constructed, such that for
any query x ∈ Q, the algorithm returns f(x, S) by probing
at most t cells, and for a query x ∈ Q generated according
to the distribution q, the contention Φk(j) is bounded by φ
for any 1 ≤ k ≤ t and any j ∈ [s].

Such schemes have the very strong property that not only
is contention bounded across an execution of the query al-
gorithm, but each individual step gives low contention.

Given a fixed table TS,q, we can summarize the contention
succinctly using linear algebra. Let Pt be a |Q| × s matrix

with Pt(x, j) := Pr[I
(t)
X = j] = E[Y (t)(X, j)]. The con-

tention on all cells can be computed by Φt = qPt, specifi-
cally,

Φt(j) = E
h
Y (t)(X, j)

i
=
X
x∈Q

Pr [X = x] · E
h
Y (t)(x, j)

i
=
X
x∈Q

qx · Pt(x, j).

Finally, for our lower bound, it will be helpful to consider
data structure problems from the perspective of communi-
cation complexity. In this view, a data structure is a com-
munication protocol between an adaptive player Alice for
the cell-probing algorithm and an oblivious player Bob for

the table. The input to Bob is a pair (S, q), and the input
to Alice is a query x ∈ Q, which is generated according to
the distribution q. Together they compute f(x, S) via com-
munication. The contention then counts the probability of
each type of message sent by Alice.

1.2 Our contributions
This paper makes following contributions:

• We formalize a natural and interesting problem: mem-
ory contention caused by concurrent data structure
queries. We introduce contention to the classic cell-
probe model. In our model, contention is measured
by the chance that a memory cell is probed during the
execution of the cell-probe algorithm. This level of ab-
straction allows us to study the trade-off between the
contention and the complexity of data structures with-
out regard to specific contention resolution schemes.

• We note an especially interesting class of query distri-
butions: distributions that are uniform over both the
set of positive queries and the set of negative queries
(but not necessarily uniform over all queries). We in-
troduce a linear-size, constant-time cell-probing scheme
for the membership problem, with maximum contention
O(1/n). It is easy to see that this data structure is
asymptotically optimal in all three parameters.

• We study data structures with arbitrary query distri-
bution. For this general case, we prove a lower bound
on any balanced cell-probing scheme satisfying a cer-
tain natural technical restriction. The lower bound is a
time-contention trade-off: for any problem which has a
non-degenerate subproblem of size n, if the contention
is within a Polylog(n) factor of optimal, the time com-
plexity is Ω(log logn). This directly implies the same
lower bound for the membership problem.

1.3 Related work
Our first upper bound is based on the well-known FKS

construction of Fredman et al. [8] and subsequent work by
Dietzfelbinger and Meyer auf der Heyde extending these re-
sults to the dynamic case [3–5]; we will refer to this latter
construction, as described in [4], by DM.

The FKS construction is a static data structure for the
membership problem, based on a two-level tree of hash ta-
bles, with linear space and constant lookup time.

In DM, the hash functions used in FKS are replaced with a
new family that gives a more even distribution of load across
the second layer of the tree, which is used to get bounded
worst-case update costs for the dynamic case. In [3] and [5],
DM is implemented in the PRAM model and the model of
a complete synchronized network of processors respectively.
Both implementations optimize the contention on individual
processors, but do not consider the contention on individual
memory locations.

Membership can also be solved with optimal time and
space complexity using cuckoo hashing [12]; as with FKS and
DM, the contention of the standard implementation is high,
mostly because all queries read the hash function parameters
from the same locations.

For FKS, DM, and cuckoo hashing, contention can be
decreased by storing the hash function redundantly. Un-
der the assumption that the query is distributed uniformly

within both the positive set and the negative set, this gives a
maximum contention of Θ(

√
n) times optimal for FKS, and

Θ(lnn/ ln lnn) times optimal for DM and cuckoo hashing;
while for arbitrary query distributions, the contentions can
be arbitrarily bad. This is not surprising, given that none of
these data structures are designed with memory contention
in mind; nonetheless, we show that it is possible to do sub-
stantially better.

2. LOW-CONTENTION UNIFORM
MEMBERSHIP QUERIES

Let N = |U | be the size of the universe. We assume that
N ≥ n2, and each cell in the table contains a b-bit word,
where b = log2N .

Theorem 3. For the membership problem of n elements,
with the assumption that the query is uniformly distributed
within both positive queries and negative queries, there exists
an (O(n), b, O(1), O(1/n))-balanced-cell-probing scheme.

Given a data set S ∈
`
U
n

´
, the data structure can be con-

structed in expected O(n) time on a unit-cost RAM.

To see how our data structure works, it may help to start
by considering the query procedure for FKS hashing. FKS
hashing works by taking a standard hash table and using
a secondary perfect hashing scheme within each of O(n)
“buckets” to resolve collisions between elements hashed to
the same bucket. Even though the largest bucket may con-
tain O(

√
n) elements, and the size of the i-th bucket is pro-

portional to the square n2
i of the number of items ni in that

bucket, because most buckets are small, the sum of these
squares is likely to be linear in n.

FKS guarantees that all queries finish in exactly three
probes: the first probe reads the parameters of the hash
function; the second reads a pointer to the “bucket” in which
the target item will be found, as well as information about
the size of the bucket and the perfect hash function used
within the bucket; and the third reads the actual element.
This produces contention 1 on the cell for the first probe and
contention Θ(ni/n) on the cell for the second probe; both
are much worse than our goal of O(1/n).

We can reduce the contention for the first probe by repli-
cation; instead of probing a single cell, we probe one of n
identical copies. The second probe is trickier; we would like
to replicate the information for large buckets, but the query
algorithm does not know which buckets are large.

Our approach is to organize the buckets into Θ(n/ logn)
groups of Θ(log n) buckets each. While individual buckets
may vary significantly in size, we can show that when using
the hash functions of DM [4], the total size of each group
will be O(logn) with reasonably high probability. A bit-
vector encoding allows us to indicate the size of all buckets
in a group in a single O(logn)-bit cell, which is replicated
O(logn) times to reduce contention to O(1/n). Knowing
the size of each bucket in the group, the query algorithm
can deduce the storage range for the replicated headers of
the target bucket, read the relevant header information (in-
cluding both a pointer to the actual location of the bucket
and the parameters of its secondary hash function) from
a randomly-distributed probe, and finally use the bucket’s
perfect hash function to find the target element. This four-
phase procedure requires a constant number of probes and
still uses only O(n) space with O(1/n) contention, for either
uniform positive or uniform negative queries.

2.1 Hash families
In [1], universal hash classes were introduced. For d ≥

2, a family of functions from U to [m] is d-wise independent
(or d-universal) if for any d distinct elements x1, x2, . . . , xd
from U , the hash values h(x1), h(x2), . . . , h(xd) are uniformly
and independently distributed over [m].

Let Hdm denote a d-wise independent hash family of hash
functions from U to [m]. It is well known that if d ≥ 2
and m ≥ n2, for any S ∈

`
U
n

´
, with at least 1

2
probability

a uniformly random h ∈ Hdm maps each element in S to a
distinct value; i.e., it is a perfect hash function.

We use the following hash family, first introduced in [4].

Definition 4 (DM [4]). For f ∈ Hdm, g ∈ Hdr , and
z ∈ [m]r the hash function hf,g,z : U → [m] is defined by

hf,g,z(x) := (f(x) + zg(x)) mod m.

The hash family Rdr,m is

Rdr,m := {hf,g,z | f ∈ Hdm, g ∈ Hdr , z ∈ [m]r}.

Given a hash function and a set of elements, we define the
buckets and loads as follows.

Definition 5. For h : U → [m], S ⊆ U , and i ∈ [m], the
i-th bucket B(S, h, i) := {x ∈ S | h(x) = i}, and the load of
the i-th bucket is `(S, h, i) := |B(S, h, i)|.

The following theorem is from [11]. It bounds the devia-
tion of the sum of a 0-1 valued d-wise independent sequence.

Theorem 6 (Corollary 4.20, [11]). Let X1, . . . , Xn
be 0-1 valued, d-wise independent, equidistributed random
variables. Let X =

Pn
i Xi. If d ≤ 2E[X], then

Pr [X − E[X] > t] ≤ O
„

(E[X])d/2

td

«
.

The following is a special case of the Hoeffding’s theorem
[10].

Theorem 7 (Hoeffding). Let Y1, . . . , Yr be indepen-
dent random variables with range of values in [0, d]. Let
Y =

Pr
i Yi, and c > e be some constant. If cE[Y] ≤ rd,

then

Pr [Y ≥ cE [Y]] ≤
“e
c

” c
d
E[Y]

.

For d-universal hash families, the following theorem holds.

Theorem 8 (Fact 2.2, [4]). Let S be a fixed set of n
elements. Let f be chosen from Hdm uniformly at random,
where d > 2 is a constant and m ≤ 2n/d. Then

Pr [∀i ∈ [m], `(S, f, i) ≤ d] ≥ 1− n · (2n/m)d.

The following lemma characterizes the load distribution
of functions from various families.

Lemma 9 (extended from [4,8,11]). Fix an S ∈
`
U
n

´
.

Let c > e and d > 2 be constants. The following holds:

1. For r = n1−δ where 2
d+2

< δ < 1− 1
d

, and g from Hdr ,

Pr [∀i ∈ [r], `(S, g, i) ≤ cn/r] ≥ 1− o (1).

2. For m = n
α lnn

where α > d
c(ln c−1)

, and h′ from Rdr,m,

Pr [∀i ∈ [m], `(S, h′, i) ≤ cn/m] ≥ 1− o(1)

3. (FKS condition) For s = βn where β ≥ 2, and h from

Rdr,s, Pr
hP

i∈[s](`(S, h, i))
2 ≤ s

i
≥ 1

2
.

Proof. Let S = {x1, x2, . . . , xn}.

1. For a fixed j ∈ [r], let Xi be a 0-1 valued random
variable that indicates whether g(xi) = j, and let X =Pn
i Xi. It is obvious that E[X] = n

r
= nδ. Due to

Theorem 6,

Pr
h
X − nδ ≥ (c− 1)nδ

i
≤ O

“
nδd/2/nδd

”
= O

“
n−δd/2

”
.

Therefore,

Pr
h
∃j ∈ [r], `(S, g, j) >

cn

r

i
≤ r · Pr

h
`(S, g, j) > cnδ

i
≤ n1−δ · Pr

h
X − nδ > (c− 1)nδ

i
≤ O

“
n1−δ−δd/2

”
= o(1).

2. We assume that h′ is defined by (f, g, z) where f and
g are randomly drawn from Hdm and Hdr respectively,
and z is chosen uniformly from [m]r. We define the
following two events

E1 : ∀i ∈ [r], `(S, g, i) ≤ cn/r;
E2 : ∀i ∈ [r], ∀j ∈ [m], `(B(S, g, i), f, j) ≤ d.

Due to the first part, E1 holds with probability 1 −
o(1). Conditioning on E1, according to Theorem 8,

with probability 1−O(nδ(d+1)/md), it holds that

∀j ∈ [m], `(B(S, g, i), f, j) ≤ d.

By union bound, event E2 holds with probability

1−O(n1−δ · nδ(d+1)/md) = 1−O(n1−d(1−δ)(lnn)d)

= 1− o(1).

Therefore,

Pr[E1 ∧ E2] = Pr[E1] · Pr[E2 | E1]

= (1− o(1))(1− o(1))

= 1− o(1).

Conditioning on E1 ∧ E2, for any fixed j ∈ [m], for
i = 1, 2, . . . , r, define random variable Yi as

Yi := |{x ∈ S | g(x) = i and

f(x) + zg(x) ≡ j (mod m)}|.

Let Y =
Pr
i Yi. Note that

Yi = `(B(S, g, i), h′, j)

= `(B(S, g, i), f, (j − zi +m) mod m),

and Y = `(S, h′, j).

Because E2 holds, Yi ≤ d for all i ∈ [r], and Yi are
independent because zi are independent.

E[Yi | f, g]

=
X
zi∈[m]

1

m
`(B(S, g, i), f, (j − zi +m) mod m)

=
1

m

X
k∈[m]

`(B(S, g, i), f, k)

=
1

m
`(S, g, i).

Therefore

E[Y] = E [E [Y | f, g]]

=
1

m
E

24X
i∈[r]

`(S, g, i)

35
=
|S|
m

=
n

m
.

According to Theorem 7, it holds that

Pr[Y ≥ cn/m] ≤ (e/c)cα lnn/d = o(n−1).

By union bound,

Pr[∀j ∈ [m], `(S, h′, j) ≤ cn/m]

= 1−m · Pr[Y ≤ cn/m]

= 1− o(1).

Recall that the above holds when conditioning on E1∧
E2. Since Pr[E1 ∧ E2] = 1− o(1), the event

∀j ∈ [m], `(S, h′, j) ≤ cn/m

holds unconditionally with probability at least (1 −
o(1))(1− o(1)) = 1− o(1).

3. For every i, j ∈ [n] where i 6= j, let Xij be 0-1 valued
random variable that indicates whether h(xi) = h(xj).
Let X =

P
i 6=j Xij be the total number of ordered

collision pairs. It is easy to see that

X = 2
X
i∈[s]

`(S, h, i)

2

!
=
X
i∈[s]

(`(S, h, i))2 − n.

Note that h is at least 2-wise independent, thus for
any i 6= j, E[Xij] = Pr[h(xi) = h(xj)] = 1/s, thus
E[X] = n(n− 1)/s. Due to Markov’s inequality,

Pr

24X
i∈[s]

(`(S, h, i))2 > s

35 = Pr[X > s− n] ≤ E[X]

(s− n)

≤ 1

β(β − 1)

≤ 1/2.

2.2 Data structure construction
Let c = 2e. For d > 2, choose appropriate constants α and

β as stated in Lemma 9, and let r = n1−δ and m = n
α lnn

.
In addition, choose an appropriate constant β ≥ 2 to make
s = βn divisible by m.

Given any data set S ∈
`
U
n

´
, uniformly choose f ∈ Hds ,

g ∈ Hdr , and z ∈ [s]r, and construct a uniformly random
h ∈ Rdr,s by letting h(x) := (f(x) + zg(x)) mod s. Define
a new hash function h′ : U → [m] by h′(x) = h(x) mod m.
Note that h′ is a uniformly random function from the family
Rdr,m because m divides s. Specifically,

h′(x) =
`
f(x) + zg(x)

´
mod s mod m

=
`
f(x) mod m+ zg(x) mod m

´
mod m.

For uniform f ∈ Hds and uniform z ∈ [s]r, (f mod m)
and (z mod m) are uniform over Hdm and [m]r respectively.
Therefore, h′ is uniform over Rdr,m.

We would like our hash function to satisfy the property:

P(S) :=

`
g, h′, h

´
∈ Hdr ×Rdr,m ×Rdr,s

˛̨̨̨
∀i ∈ [r], `(S, g, i) ≤ cn/r,
and ∀i ∈ [m], `(S, h′, i) ≤ cn/m,

and
X
i∈[s]

`2(S, h, i) ≤ s

)

Due to Lemma 9, and by applying the union bound to all
unwanted events, for the above g, h′ and h, it holds that
(g, h′, h) ∈ P(S) with probability at least 1/2−o(1). There-
fore by repeatedly generating (g, h′, h), we satisfy P(S) within
expected O(1) trials. Note that P(S) can be verified in O(n)
time in a unit-cost machine, thus a good hash function can
be found within expected O(n) time.

The data structure is organized in rows of cells where each
row contains s cells. Let T (i, j) represent the j-th cell in the
i-th row in the data structure. T is constructed as follows:

• Let a0, a1, . . . , a2d−1 denote the 2d words that rep-
resent the two d-universal functions f and g. Let
T (i, j) = ai for every i ∈ [2d] and every j ∈ [s]. Let
T (2d, j) = z[j mod r] for every j ∈ [s].

• We say that h assigns the n elements in S into s buck-
ets, and h′ arranges the buckets into m groups accord-
ing to the congruence classes of hmodulom. For group
i ∈ [m], we define the group-base-address GBAS(i) as
GBAS(0) = 0 and

GBAS(i) = GBAS(i−1) +
X

k∈[s/m]

`2(S, h, km+ i−1).

The vector GBAS can be computed in O(n) time in a
unit-cost machine. Due to the property P(S), GBAS(i) ≤
s for any i ∈ [m]. Let T (2d+1, j) = GBAS(j mod m),
i.e. each bucket stores the group-base-address of the
group that the bucket belongs to.

• Let a group-histogram be a binary string where the
load of each bucket in the group is represented consec-
utively in unary code separated by zeros.

Each group contains s/m = αβ lnn buckets, and due
to property P(S), each group contains at most cn/m =
cα lnn elements from S. Therefore the group-histogram

uses at most α(β + c) lnn bits. Let ρ := dα(β+c) lnn
b

e.
Observe that because b = Θ(logn), ρ = O(1). Let
a′0j , a

′
1j . . . , a

′
ρ−1,j denote the ρ words that store the

group-histogram of group j.

Let T (2d+2+i, j) = a′i,(j mod m), for i = 0, 1, . . . , ρ−1,
and for all j ∈ [s].

• The last two rows are used to perfectly hash each
bucket. Each bucket i ∈ [s] owns `2(S, h, i) cells in
each row. Due to P(S), the total space is at most
s. The spaces owned by the buckets are organized
in groups. If bucket i is the k-th bucket in group j,
then the spaces owned by the buckets are sorted lexi-
cographically. This can be done in a total O(n) time
in a unit-cost machine.

In the (2d+ ρ+ 1)th row, for each individual bucket i,
the perfect hash function h∗i is stored repeatedly in the
space owned by the bucket. In the (2d+ ρ+ 2)th row,
the actual data in each bucket i is stored according to
the hash function h∗i .

The table T has (2d + ρ + 2) = O(1) rows, each of which
contains s = O(n) words, for a total of O(n) words. Each
step of the construction costs O(n) time, for a total of O(n)
time.

2.3 Queries and contention
We query whether x is in S with the following algorithm.

Each random choice is assumed to be independent and uni-
form within its range.

1. For each i ∈ [2d], choose j ∈ [s], and read T (i, j);
this gives f and g. Next choose k ∈ [s/r] and read
T (2d, kr+ g(x)), which stores zg(x). We can now com-
pute h = (f + zg) mod s and h′ = h mod m.

2. Choose k in [s/m], and read T (2d, km+ h′(x)), which
stores GBAS(h′(x)). For each i ∈ [ρ] where ρ =

dα(β+c) lnn
b

e, choose some j ∈ [s/m], and read T (2d+
1 + i, jm+h′(x)); we thus obtain the group-histogram
group h′(x). With the group-base-address and the
group-histogram, the exact range of the address owned
by bucket h(x) can be determined: it runs from ih(x)

to i′h(x) inclusively, where

ih(x) := GBAS(h′(x))

+

dh(x)/me−1X
k=0

`2
`
S, h, km+ h′(x)

´
,

i′h(x) := ih(x) + `2 (S, h, h(x))− 1.

All the values `2(S, h, km + h′(x)) for k ∈ [s/m] are
stored in the group-histogram of group h′(x).

3. If i′h(x) < ih(x), the bucket h(x) is empty: return 0.

Otherwise, choose j ∈ [ih(x), i
′
h(x)] and read T (2d+ρ+

1, j) to get the perfect hash function h∗. If T (2d+ ρ+
2, ih(x) + h∗(x)) = x, return 1, else return 0.

The correctness of the algorithm is guaranteed by the exis-
tence of hash functions with property P(S) and the existence
of the perfect hashing scheme for each bucket, which is guar-
anteed. The query algorithm makes at most one probe to
each row of T , thus the cell-probe complexity is O(1).

For contention, we first consider the contribution of the
positive queries. All events below are conditioned on the tar-
get element being in S. At each step before the last probe, an
expected 1, 1

n
`(S, g, i1), 1

n
`(S, h′, i2), or 1

n
`(S, h, i3) probes

are balanced over a range of size s, s/r, s/m, or `2(S, h, i3)
respectively, therefore due to property P(S), the maximum
contention is O(1/n). For the last probe, the perfect hash
function sends each query to a distinct cell so the contention
is obviously O(1/n). Therefore, the total contention con-
tributed by positive queries is at most O(1/n).

Lemma 10. Let S̄ denote U \ S, and N = |U | = ω(n).
For any hash function h : U → [k] which is uniform over
the domain, for sufficiently large n, ∀i ∈ [k], `(S̄, h, i) ≤
2(N − n)/k.

Proof. Because h is uniform over the domain, `(U, h, i) =
N/k for any i ∈ [k]. For N = ω(n), it holds that `(S̄, h, i) =
`(U, h, i)− `(S, h, i) ≤ N/k ≤ 2(N − n)/k.

Note that g, h′, and h are all uniform over the domain.
This is because any d-universal function must be 1-universal.
Due to Lemma 10, the loads of negative queries to all types
of buckets are asymptotically even. The same argument as
above can be applied to bound the contention caused by
negative queries to O(1/n).

3. A LOWER BOUND FOR ARBITRARY
QUERY DISTRIBUTIONS

In this section, we prove a cell-probe lower bound for low-
contention data structures with arbitrary query distribution.
The lower bound is on the cost of queries by an algorithm
that does not know the distribution; however, the algorithm
that constructs the data structure may known the distribu-
tion, and may optimize the data structure to minimize con-
tention by encoding the information of query distribution in
the data structure to guide the query algorithm.

The lower bound itself is proved based on the following
intuition: the more uniform a random probe is, the less spe-
cific information it retrieves; but non-uniform probes will
only result in low contention if the query algorithm already
has some knowledge about the query distribution. So to ob-
tain information about a specific query, the query algorithm
must steadily increase its knowledge of the query distribu-
tion through increasingly non-uniform probes. By tracking
how much information the query algorithm has about the
query distribution (and thus how evenly spread out it must
keep its probes), we can bound the query time subject to
bounds on the contention.

We formalize this argument using VC-dimension [14], a
measure of complexity of classification problems, by treating
a data structure problem f : Q × D → {0, 1} as a class of
|D| many classifications of Q.

Definition 11. The VC-dimension of a data structure
problem f : Q × D → {0, 1}, denoted by VC-dim(f), is the
maximum n such that there exists a set {x1, x2, . . . , xn} ∈`
Q
n

´
such that for any assignment y ∈ {0, 1}n, there exists

some S ∈ D, with f(xi, S) = yi for all i.

It is easy to see that the VC-dimension of the membership
problem is n, where n is the cardinality of the data set. This
allows us to translate our results for problems of arbitrary
VC-dimension into specific results for membership.

We consider a special class of cell-probing schemes (T,A)
whose cell-probing algorithm A satisfies a natural restriction
described as follows.

Definition 12. A table structure is a mapping T which
for any data set S ∈ D and any query distribution q over Q,
specifies a table TS,q : [s]→ {0, 1}b of s cells, each of which
contains b bits.

Given any query x ∈ Q, a cell-probing algorithm A
returns f(x, S) by making at most t∗ randomized adaptive

probes I
(1)
x , I

(2)
x , . . . , I

(t∗)
x ∈ [s] to the table TS,q, such that the

maximum contention satisfies Φt ≤ φ∗ for any t ≤ t∗, and
for any fixed query x and any fixed table TS,q, the random

variables I
(t)
x for all t ≤ t∗ are jointly independent.

The independence of cell-probes of A does not make A
non-adaptive, because the independence holds only when
the query and the table are both fixed. Note that in this
sense all deterministic cell-probing algorithms (both adap-
tive or non-adaptive) satisfy this property, because once the
table and the query are both fixed, the sequence of the cell-
probes of a deterministic cell-probing algorithm are fixed,
hence they are jointly independent. Informally speaking,
for A, the randomness is used only for balancing the cell-
probes, but is not involved in the process of decision making.
The upper bound presented in the previous section and any
upper bounds constructed by the technique of distributing
probes across multiple copies of critical cells are all included
in this definition.

We prove the following lower bound theorem.

Theorem 13. For any data structure problem f with a
VC-dimension VC-dim(f) = n, if there exists a cell-probing
scheme (T,A) as defined in Definition 12, with size of cell

b ≤ Polylog(n) and contention φ∗ ≤ Polylog(n)
s

, then the cell-
probe complexity t∗ = Ω(log logn).

The theorem is proved by first running n different in-
stances of queries in parallel and then bounding the speed
with which these parallel instances of the cell-probing algo-
rithm gather information.

Lemma 14. If there exists a cell-probing scheme (T,A)
for the data structure problem f where (T,A) and f are as
in Theorem 13, then there exists a communication protocol
between an algorithm A′′ and a black-box B which is specified
as follows. The input to B is an arbitrary stochastic vector
q ∈ [0, 1]n that

Pn
i=1 qi ≤ 1, which is initially unknown

to A′′. The communication between A′′ and B occurs in
rounds.

1. At round t, A′′ specifies an n × s matrix Pt, called a
probe specification, and sends it to B, where Pt is
adaptive to the information received previously by A′′,
and for any 1 ≤ i ≤ n, it holds that

sX
j=1

Pt(i, j) ≤ 1 ; (1)

max
1≤j≤s

Pt(i, j) ≤ φ∗

qi
. (2)

2. Upon receiving a Pt, B sends Ct bits to A′′, where Ct
is a random variable satisfying

E [Ct] ≤ b ·
sX
j=1

max
1≤i≤n

Pt(i, j) , (3)

where the expectation is conditioned on Pt, thus condi-
tioned on all previous communication between A′′ and
B.

3. After t∗ rounds, the expected number of bits received
by A′′ is at least n · 2−2t∗ bits from B.

Proof. The idea of the proof is to run n instances of the
cell-probing algorithm in parallel; together these instances
form A′′. We observe that the cell-probes of each individual
cell-probing algorithm can be specified by a probability dis-
tribution of probes over the table, and the joint distribution
of the cell-probes of all n instances can be arbitrarily chosen
by us as long as the marginal distribution of the cell-probe
of each individual instance is the same as before, therefore
(by our choice of the joint distribution) the total information
obtained by A′′ in each round is bounded.

The details of the proof are given in Appendix A.

The following two combinatorial lemmas are needed for
the proof of Theorem 13.

Lemma 15. Let M be an N × n nonnegative matrix. Let
r =

√
5ε−1δn lnN . Assume that for every row 1 ≤ u ≤

N , there exists a set Ru ∈
`{1,2,...,n}

r

´
of r entries such

that
P
i∈Ru

M(u, i) ≤ δ. Then there exists q ∈ [0, 1]n thatP
i qi = ε, such that for all 1 ≤ u ≤ N , there exists 1 ≤ i ≤

n, such that M(u, i) < qi.

Proof. For each 1 ≤ u ≤ N , sort {M(u, i) | i ∈ Ru}
by non-decreasing order and let R′u ⊆ {1, 2, . . . , n} be the
indices of the smallest r

2
entries. It holds that ∀i ∈ R′u,

M(u, i) ≤ 2δ
r

, as otherwise it contradicts the assumption
that

P
i∈Ru

M(u, i) ≤ δ.
It holds that for any choice of such {R′u}1≤u≤N , there

exists a T ⊆ {1, 2, . . . , n}, such that |T | = 2n lnN
r

and T
intersects all R′u. We prove this by the probabilistic method:
let T be a uniformly random subset of {1, 2, . . . , n} of size
2n lnN

r
, thus each R′u is missed by T with probability less

than (1− r/2n)2n lnN/r < 1/N , thus by the union bound, T
intersects all R′u with positive probability.

Fix such a T , define q ∈ [0, 1]n as qi = ε|T |−1 = rε
2n lnN

if i ∈ T , and qi = 0 if otherwise. Therefore,
P
i qi = ε,

and for any 1 ≤ u ≤ N , for such i ∈ R′u ∩ T , it holds that
M(u, i) ≤ 2δ

r
< rε

2n lnN
= qi.

Lemma 16. For any nonnegative n × s matrix P thatP
j P (i, j) ≤ 1 for every i, let R be the largest subset of

{1, 2, . . . , n} that
P
i∈R

1
maxj P (i,j)

≤ s. Then it holds that

|R| ≥
sX
j=1

max
1≤i≤n

P (i, j).

Proof. The sum
P
j maxi P (i, j) chooses exactly s en-

tries to sum up. Let Ai be the set of chosen columns in row
i. Let xi :=

P
j∈Ai

P (i, j). Note that xi ≤
P
j P (i, j) ≤ 1.

By the pigeonhole principle, for any 1 ≤ i ≤ n,

|Ai| ≥
P
j∈Ai

P (i, j)

maxj P (i, j)
=

xi
maxj P (i, j)

.

Note that
P
i |Ai| = s, thus

P
i

xi
maxj P (i,j)

≤
P
i |Ai| = s.

Therefore the sum
P
j maxi P (i, j) can be written asX

j

max
i
P (i, j) =

X
i

X
j∈Ai

P (i, j) =
X
i

xi,

subject to the constraints that
P
i

xi
maxj P (i,j)

≤ s and xi ≤
1. It is easy to see that the value of

P
i xi is maximized

when letting xi = 1 for i ∈ R and xi = 0 for i 6∈ R, thereforeP
j maxi P (i, j) =

P
i xi ≤ |R|.

Proof of Theorem 13:
Given the algorithm A′′ as described in Lemma 14, we

will bound the speed that A′′ gathers information. Due to
Lemma 14, A′′ is a decision tree in which the current node
of depth (t − 1) has Nt := 2Ct−1 children, each of which
corresponds to a next probe specification Pt. We number

these Pt by u ∈ [Nt] and denote each as P
(u)
t , where u can

be interpreted as the bit string received by A′′ at round t−1.
We then inductively bound the next Ct.

Let M (t) be an Nt × n matrix defined as follows:

M (t)(u, i) :=
φ∗

maxj P
(u)
t (i, j)

.

Each row of the matrix M (t) corresponds to a possible next
probe specification. We say that the stochastic vector q
violates row u of M (t) if there exists 1 ≤ i ≤ n, such that
M (t)(u, i) < qi. Note that if row u of M (t) is violated by q,
then according to (2), the next probe specification cannot

be P
(u)
t .

Let rt :=
√

5t∗φ∗sn lnNt . We say that a row u of M (t)

is good if there exists R ⊆ {1, 2, . . . , n} such that |R| = rt
and

P
i∈RM

(t)(u, i) ≤ φ∗s.
We claim that if a row u is not good, then for the corre-

sponding P (u), it holds that

sX
j=1

max
1≤i≤n

P
(u)
t (i, j) ≤ rt. (4)

The proof is as follows: If a row u of M (t) is not good, then
by definition, for any R of size rt,

P
i∈RM

(t)(u, i) > φ∗s,

thus for any R′ that
P
i∈R′

1

maxj P
(u)
t (i,j)

≤ s, it must hold

that |R′| < rt, therefore due to Lemma 16, it holds thatPs
j=1 max1≤i≤n P

(u)
t (xi, j) ≤ rt.

Due to (4) and (3), the amount of information brought by

a set of probes P
(u)
t where u is a bad row in M (t), is bounded

by brt bits. We show by an adversary argument that there
exists a q that A′′ always choose probes corresponding to
bad rows. At each round t, the adversary always chooses
some q that violates all the good rows in M (t). According
to Lemma 15, the adversary can do so as long as t ≤ t∗.
Setting ε = 1

t∗ and δ = φ∗s in Lemma 15, in each round, the
adversary can increase the value of some qi so that

Pn
i=1 qi

is increased by at most 1
t∗ , thereby violating all good rows

in the current M (t). Thus before round t∗, the vector q is
always stochastic. Note that increasing the value of qi will
never make a violated row non-violated, so it will not make
the adversary inconsistent.

Against such an adversary, at each round t, A′′ can only

choose a probe specification P
(u)
t where u is a bad row in

M (t), according to Claim (4), which implies that

sX
j=1

max
1≤i≤n

Pt(i, j) ≤ rt =
p

5t∗φ∗sn lnNt

=
p

5t∗φ∗snCt−1 ln 2 .

Due to (3), it holds that

E[Ct] ≤ b ·
X
j

max
i
Pt(i, j) ≤

p
(5 ln 2)b2t∗φ∗snCt−1,

where the expectation is conditioned on all previous rounds
of communication. Therefore the following recursion holds

for the sequence of random variables C1, C2, . . . , Ct:

E[Ct | Ct−1] ≤
p

(5 ln 2)b2t∗φ∗snCt−1 .

The square root function is concave, thus by Jensen’s in-
equality, it holds for the unconditional expectation that

E[Ct] = E[E[Ct | Ct−1]]

≤ E
hp

(5 ln 2)b2t∗φ∗snCt−1

i
≤
p

(5 ln 2)b2t∗φ∗sn · E[Ct−1] .

Before the first probe, q is unknown to A′′, thus due to (2),
for any i, j, P1(xi, j) ≤ φ∗, therefore

E[C1] ≤ b ·
X
j

max
i
P1(xi, j) ≤ bφ∗s.

Let a1 := bφ∗s and a := (5 ln 2)b2t∗φ∗sn. The following
recursion holds for E[Ct] that

E[C1] ≤ a1;

E[Ct] ≤ (a · E[Ct−1])
1
2 .

By induction, E[Ct] ≤ a21−t

1 a1−21−t

.
After t∗ rounds, the expected total number of bits received

by A′′ is at least n · 2−2t∗ , therefore

n · 2−2t∗ ≤
X
t≤t∗

E[Ct] ≤
X
t≤t∗

a21−t

1 a1−21−t

≤ a1a
1−2−t∗

.

With the assumption that b ≤ Polylog(n) and φ∗ ≤ Polylog (n)
s

,
it holds that a1 ≤ Polylog(n) and a ≤ n · Polylog(n). Solv-
ing the above inequality, we have that t∗ ≥ log logn −
o(log logn) = Ω(log log n). Theorem 13 is proved.

4. CONCLUSION
In this paper, we propose to study the memory contention

caused by concurrent data structure queries. To study the
problem, we introduce a measure of contention to the classic
cell-probe model of static data structures. We show that if
all positive queries are equally probable and similarly all neg-
atively are equally probable, then there exists a static dictio-
nary which answers membership queries with asymptotically
optimal performance of time, space and contention. For the
general case that the query distribution is arbitrary, we show
that for all data structure problems with non-degenerating
VC-dimensions, if the randomness is used only for balancing
the probes, then even with unbounded space, the time and
contention cannot be both optimal.

A possible future direction is to remove the assumption
of independent cell-probes in the lower bound. Note that
we only rely on this assumption to make sure that the con-
tention constraint of (2) holds conditioning on any particu-
lar sequence of previous cell-probes, which is required by the
adversary argument. We suspect that with a more careful
analysis, this assumption can be removed, which would im-
ply that the lower bound holds not only for the randomized
data structures that use the randomness only for balanc-
ing probes, but also for the true randomized data structures
where the randomness is also involved in the computation
of queries.

Another interesting and perhaps more realistic future di-
rection is to study the contention caused by the updates in
dynamic data structures.

5. REFERENCES
[1] J. Carter and M. Wegman. Universal classes of hash

functions. Journal of Computer and System Sciences
(JCSS), 18(2):143–154, 1979.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. Schauser, E. Santos, R. Subramonian, and
T. Von Eicken. LogP: Towards a realistic model of
parallel computation. ACM SIGPLAN Notices,
28(7):1–12, 1993.

[3] M. Dietzfelbinger and F. Meyer auf der Heide. An
optimal parallel dictionary. In Proceedings of the first
annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 360–368. ACM New
York, NY, USA, 1989.

[4] M. Dietzfelbinger and F. Meyer auf der Heide. A new
universal class of hash functions and dynamic hashing
in real time. In Proceedings of the 17th International
Colloquium on Automata, Languages and
Programming (ICALP), volume 443, pages 6–19.
Springer, 1990.

[5] M. Dietzfelbinger and F. Meyer auf der Heide. How to
distribute a dictionary in a complete network. In
Proceedings of the twenty-second annual ACM
Symposium on Theory of Computing (STOC), pages
117–127. ACM New York, NY, USA, 1990.

[6] C. Dwork, M. Herlihy, and O. Waarts. Contention in
shared memory algorithms. Journal of the ACM
(JACM), 44(6):779–805, 1997.

[7] S. Fortune and J. Wyllie. Parallelism in random access
machines. In Proceedings of the tenth annual ACM
Symposium on Theory of Computing (STOC), pages
114–118. ACM New York, NY, USA, 1978.

[8] M. Fredman, J. Komlós, and E. Szemerédi. Storing a
Sparse Table with O(1) Worst Case Access Time.
Journal of the ACM (JACM), 31(3):538–544, 1984.

[9] M. Herlihy, B. Lim, and N. Shavit. Low contention
load balancing on large-scale multiprocessors. In
Proceedings of the fourth annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages
219–227. ACM New York, NY, USA, 1992.

[10] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[11] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity
theory of efficient parallel algorithms. Theor. Comput.
Sci., 71(1):95–132, 1990.

[12] R. Pagh and F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[13] P. Tzeng and D. Lawrie. Distributing hot-spot
addressing in large-scale multiprocessors. IEEE
Transactions on Computers, 100(36):388–395, 1987.

[14] V. Vapnik and A. Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its
Applications, 16(2):264–280, 1971.

APPENDIX
A. PROOF OF LEMMA 14

The lemma is proved by first simulating the cell-probing
algorithm A by a modified cell-probing algorithm A′ which
independently probes all cells in the table in every step, and

then running n instances of A′ in parallel as a new cell-
probing algorithm A′′.

First, we observe that a randomized cell-probe can be
simulated with bounded error by independently probing all
cells.

Definition 17. A product-space cell-probe to a table of s
cells is a random set J ∈ 2[s] such that the probability space
of J is a product probability space.

For the rest of the proof, we assume the assumption of
Theorem 13.

Assumption 18. Let f be a data structure problem with
VC-dim(f) = n. There exists a cell-probing scheme (T,A)
as described in Definition 12, such that (T,A) solves f with
performance parameters (s, b, t∗, φ∗), where the size of cell

b ≤ Polylog(n) and the maximum contention φ∗ ≤ Polylog(n)
s

.

Lemma 19. If Assumption 18 is true, then there exists
a product-space cell-probing algorithm A′, such that on any
valid table TS,q, for any query x ∈ Q, the following properties
hold for the sequence of product-space cell-probes

J(1)
x , J(2)

x , . . . , J(t∗)
x .

1. At any step t ≤ t∗, A′ fails (returns a special symbol
⊥) independently with probability at most 3

4
. Condi-

tioned on that there is no failure after t∗ steps, which
is an event with probability at least 2−2t∗ , it holds that

J
(1)
x , J

(2)
x , . . . , J

(t∗)
x are jointly independent and A′ re-

turns what A returns.

2. For any t ≤ t∗, the total probability of each product-
space cell-probe of A′X

j∈[s]

Pr
h
j ∈ J(t)

x

i
≤ 1; (5)

3. For any t ≤ t∗, the contention of any cell j ∈ [s]

q(xi) · Pr
h
j ∈ J(t)

x

i
≤ φ∗. (6)

Proof. A cell-probe of A can be represented as a random
variable I ∈ [s], where I denotes the probed cell. Let pi :=

Pr[I = i]. Let J ∈ 2[s] represent a product-space cell-probe.
Given a probability vector p, a cell-probe I is simulated by
a product-space cell-probe as follows: Independently probe
each cell i ∈ [s] with probability p′i := min{pi, 1

2
}. The

resulting set is J . If |J | 6= 1, then fails; if J = {i}, then fails
with a probability εi := min{pi, 1−pi}. Let I = i if not fail.

Case 1: pi ≤ 1
2

for all i ∈ [s]. Then for all i ∈ [s],
p′i = pi and εi = pi. Let ρ =

Q
j∈[s](1 − pj). Since

pi ≤ 1
2

for all i ∈ [s], it holds that ρ ≥ 1
4
.

The probability

Pr[I = i] = (1− εi) · Pr[J = {i}]

= (1− pi) · pi
Y
j 6=i

(1− pj)

= piρ,

which is proportional to pi. The procedure succeeds
with probability ρ ≥ 1

4
.

Case 2: Let p0 >
1
2

and all other pi <
1
2
. Then p′0 = 1

2
and ε′0 = 1− p0, and for all i > 0, it holds that p′i = pi
and ε′i = pi. Let ρ′ =

Q
j>0(1 − pj). It holds that

ρ′ > 1
2

since
P
j>0 pj = 1− p0 <

1
2
.

For i 6= 0,

Pr[I = i] = (1− pi) · Pr[J = {i}] =
1

2
ρ′pi;

and for cell 0,

Pr[I = 0] = p0 · Pr[J = {i}] =
1

2
ρ′p0.

The procedure succeeds with probability 1
2
ρ′ > 1

4
.

For both cases, a cell-probe of A is simulated by a product-
space cell-probe with a probability at least 1

4
. The event of

a failure occurs independently with probability at most 3
4
.

With a probability at least 2−2t∗ , no failure occurs at all,
conditioned on which its is obvious that A′ can simulate A,
and the product-space cell-probes are jointly independent
since the cell-probes of A are jointly independent.

The total probability of a product-space cell-probe isX
i

Pr[i ∈ J] =
X
i

p′i ≤ 1.

The probability of a probe to each cell is no greater than be-
fore, therefore the maximum contention φ∗ not increased.

We observe that by running n instances of the product-
space cell-probing algorithm in parallel, the behavior of each
individual instance depend only on the marginal distribution
of cell-probes of the instance, but does not depend on the
joint distribution of cell-probes of all n instances. Thus, the
joint distribution of cell-probes can be arbitrarily chosen by
us as long as the marginal distribution of cell-probes of each
individual instance is the same as before.

Lemma 20. Let A′′ be an algorithm that on a valid table
TS,q, for a set of n queries {x1, x2, . . . , xn} ∈

`
Q
n

´
, at step t,

A′′ randomly probes n sets of cells (L
(t)
x1 , L

(t)
x2 , . . . , L

(t)
xn). If

for every xi where 1 ≤ i ≤ n and every t ≤ t∗, the marginal

distribution of L
(t)
xi is identical to the distribution of J

(t)
xi ,

where J
(t)
xi is the t’s product-space cell-probe of the algorithm

A′ on the same table TS,q, then A′′ returns f(xi, S) for ex-

pected n · 2−2t∗ number of xi.

Proof. LetA′′ run an instance ofA′ with input xi in par-
allel for every xi, denoted as A′xi

. Let the set of cells probed

by each individual A′xi
at time t be L

(t)
xi . On a fixed table

TS,q and for a fixed xi, since L
(t)
xi is identically distributed

as J
(t)
xi , every individual instance of A′xi

simulates a running
instance of A′ with input query xi. By Lemma 19, each
A′xi

terminates in t∗ steps without failure with probability

at least 2−2t∗ , thus by the linearity of expectation, after t∗

time, the expected total number of terminated instances is
at least n · 2−2t∗ .

In the next lemma, we construct a joint distribution of
cell-probes which minimizes the expected total number of
probed cells.

Lemma 21. For any probability distribution of Ji ⊆ [s]
where 1 ≤ i ≤ n and each Ji is chosen from a product proba-
bility space, there exists a joint distribution (L1, L2, . . . , Ln),

such that for every 1 ≤ i ≤ n, Li is identically distributed
as Ji, and it holds that

E

24˛̨̨̨˛̨ [
1≤i≤n

Li

˛̨̨̨
˛̨
35 ≤X

j∈[s]

max
1≤i≤n

Pr [j ∈ Ji] .

Proof. We construct the joint distribution of (Li)i ∈
(2[s])n as follow.

• Let p̃j = max1≤i≤n Pr[j ∈ Ji]. Choose each j ∈ [s]
independently with probability p̃j . Let B denote the
set of chosen elements of [s].

• For every 1 ≤ i ≤ n, let each j ∈ B join Li indepen-

dently with probability Pr[j∈Ji]
p̃j

. Note that p̃j ≥ Pr[j ∈
Ji], therefore the probability is well-defined.

For each 1 ≤ i ≤ n, and for every j ∈ [s], j joins Li indepen-
dently with probability p̃j · Pr[j is chosen to Li | j ∈ B] =
Pr[j ∈ Ji], thus each Li is identically distributed as Ji.

Note that for every Li, all of its elements are chosen from
set B. It holds that

E

24˛̨̨̨˛̨ [
1≤i≤n

Li

˛̨̨̨
˛̨
35 ≤ E [|B|] =

X
j∈[s]

p̃j =
X
j∈[s]

max
1≤i≤n

Pr[j ∈ Ji].

Proof of Lemma 14: Let {x1, x2, . . . , xn} ∈
`
Q
n

´
be a set

of queries which achieves the VC-dimension VC-dim(f) = n,
i.e. any Boolean assignment of f(xi, S) is possible. Let such
{x1, x2, . . . , xn} be the input query set to A′′, where A′′
is as described in Lemma 20. By an information theoreti-
cal argument, in the worst case, A′′ has to collect expected
n · 2−2t∗ bits information after t∗ steps. Let the joint dis-

tribution of (L
(t)
x1 , L

(t)
x2 , . . . , L

(t)
xn) of A′′ be constructed as in

Lemma 21, the total number of cells probed by A′′ in step t

with (L
(t)
x1 , L

(t)
x2 , . . . , L

(t)
xn) is bounded. Let the n × s matrix

Pt defined as Pt(i, j) := Pr[j ∈ L
(t)
xi], and let qi := q(xi).

Since each L
(t)
xi is identically distributed as J

(t)
xi of A′ which

is described in Lemma 19, due to (2) and (3), it holds for

the Pt that
P
j∈[s] Pt(i, j) ≤ 1 and maxj∈[s] Pt(i, j) ≤ φ∗

qi
.

Due to Lemma 21, the expected number of bits collected by
A′′ in step t is bounded by b ·

P
j∈[s] max1≤i≤n Pt(i, j). By

seeing the running instance of the algorithm A′′ with the in-
put {x1, x2, . . . , xn} as the player A′′ of the communication
game, and the table TS,q as the black-box B with private
input q, Lemma 14 is proved.

