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Abstract

We consider the problem of minimizing contention in static (read-only) dic-
tionary data structures, where contention is measured with respect to a fixed
query distribution by the maximum expected number of probes to any given
cell. The query distribution is known by the algorithm that constructs the
data structure but not by the algorithm that queries it. Assume that the
dictionary has n items. When all queries in the dictionary are equiproba-
ble, and all queries not in the dictionary are equiprobable, we show how to
construct a data structure in O(n) space where queries require O(1) probes
and the contention is O(1/n). Asymptotically, all of these quantities are
optimal. For arbitrary query distributions, we construct a data structure
in O(n) space where each query requires O(log n/ log logn) probes and the
contention is O(log n/(n log logn)). The lack of knowledge of the query
distribution by the query algorithm prevents perfect load leveling in this
case: for a large class of algorithms, we present a lower bound, based on
VC-dimension, that shows that for a wide range of data structure prob-
lems, achieving contention even within a polylogarithmic factor of optimal
requires a cell-probe complexity of Ω(log log n).
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1. Introduction

On shared-memory parallel computers, avoiding simultaneous accesses
by multiple processors to the same memory locations—contention—is one of
the keys to achieving high performance [1, 2]. Dwork, Herlihy, and Waarts [3]
introduced the first formal measure of contention, though models of paral-
lel computation that restrict contention had been proposed prior to that
work. The original Parallel Random-Access Machine (PRAM) model of
Fortune and Wyllie [4] simply disallows concurrent writes (CREW PRAM),
while the LogP model of Culler et al. [5] is intended to capture the physical
limits that make contention a practical concern.

In this paper, we study the trade-offs in designing static (read-only)
data structures for which the memory contention caused by parallel queries
is a consideration. With respect to a particular data structure, query dis-
tribution, and query algorithm, we introduce a notion of contention to the
cell-probe model of Yao [6], where accesses to cells of the data structure
have unit cost and all other computation is free. We assume that processors
cannot communicate and thus that the expected rate at which a cell c is
probed is proportional to the probability that a single random query ac-
cesses c, which we define to be the contention of c. This simple model is not
intended to capture all details of real memory systems, where the caching
and scheduling of accesses can have a large effect on contention, but we be-
lieve that it is a reasonable first step towards including contention effects in
previous theoretical models.

As an illustration, consider using binary search to look for a random key
k ← {1, 2, . . . , 2` − 1} in a sorted table 2, 4, . . . , 2` − 2. Though each query
requires at most ` probes, the cell containing 2`−1 is accessed with proba-
bility 1, and the cells containing 2`−1 ± 2`−2 are accessed with probability
1/2− 1/(2`− 1). This handful of cells with constant contention is typical of
algorithms not specifically designed for our model. By comparing k, how-
ever, with a random element in the interval of possibilities rather than the
middle one, we reduce the maximum contention to O(`/2`), at the cost of
increasing the expected number of probes by a constant factor.

Observe that the modified search algorithm has low contention only for
certain distributions of k: given that k < 4, for example, the cell containing 2
is probed with probability 1. We assume that the algorithm constructing the
data structure knows the query distribution, as otherwise, each individual
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query must have low contention, which seems difficult to achieve in a space-
efficient manner.

We consider how to avoid this problem require static data structures,
where the data structure is built in advance by a construction algorithm
that may know the query distribution, but queries are performed by a fixed
algorithm that does not (although it may use randomization itself to spread
the query load more evenly).

The assumption that the query algorithm does not know the query distri-
bution is natural. Often the query distribution will be highly correlated with
the contents of the data structure, as in our simplest case where we consider
a uniform distribution on successful queries to a static dictionary. Providing
the query distribution to the query algorithm in such a case would, in effect,
give it significant information about the contents of the data structure.

Nonetheless, the query algorithm can exploit information about the
query distribution that is encoded in the data structure itself. This is in
fact necessary for highly lopsided query distributions, as otherwise, popular
elements of the data structures would have high contention. We show how
to transform an arbitrary data structure and an arbitrary query distribu-
tion into a new structure with asymptotically optimal load balance on that
distribution, at the cost of increasing the time and space complexity by a
factor of O(log n/ log log n).

This overhead apparently arises from a tension between the query algo-
rithm’s need to spread its probes evenly and its need to obtain useful in-
formation. For general properties of the data structure that do not depend
much on the query distribution (e.g., hash function parameters), we can
achieve low contention by randomly distributing probes over many replicas
of the desired data. As we zoom in on the answer to a specific query, how-
ever, the location of each probe becomes correlated with a query drawn from
a distribution that may be badly skewed. We can ameliorate this problem
to some extent by replicating data for more popular queries, but the infor-
mation about which queries are more popular (and thus more replicated)
itself must be obtained from the table and will itself provide a source of high
contention if we are not careful. We show that this problem is unavoidable
without incurring some overhead in time; specifically, to achieve maximum
contention O(logc n/s), where n is the number of elements in a table and s
is the space, we must perform Ω(log log n) probes per query. The problem
of closing the gap between this result and our algorithms remains open.
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1.1. Model
Formally, a data structure problem is a function f : Q×D → {0, 1}, such

that for every query x ∈ Q and every data set S ∈ D, f(x, S) specifies the
answer to the query x to data set S. A classic problem is the membership
problem, where Q = [N ] and D =

(
[N ]
n

)
for some N � n, and f(x, S) = 1

if and only if x ∈ S.
We assume that the query x ∈ Q follows some probability distribution q

over Q.
For any data set S ∈ D and any query distribution q over Q, a table

TS,q : [s]→ {0, 1}b of s cells, each of which contains b bits, is prepared. Given
a query x, a probabilistic cell-probing algorithm A computes the value of
f(x, S) by making t randomized adaptive cell-probes I(1)

x , I
(2)
x , . . . , I

(t)
x ∈ [s].

The algorithm A may depend on f , but not on S or q (except to the extent
that later probes may depend on the outcome of earlier probes, whose results
might encode information about S and q).

The contention of a cell is the expected number of probes to the cell
during one execution of A. This will be equal to the probability that the
cell is probed at all, provided A is sensible enough not to probe the same
cell twice, but it is easier to work with expectations. In more detail:

Definition 1. For a fixed table TS,q, for a query X chosen randomly from
Q with distribution q, the sequence of cell-probes is I(1)

X , I
(2)
X , . . . , I

(t)
X . Let

Y (t)(X, j) be the 0-1 valued random variable indicating whether I
(t)
X = j.

The contention of cell j at step t is defined by

Φt(j) := E
[
Y (t)(X, j)

]
,

where the expectation is taken over both X and the random I
(t)
X . The total

contention of cell j is Φ(j) :=
∑

t Φt(j).

It is obvious that
∑

j Φt(j) = 1, therefore 1
s ≤ maxj Φt(j) ≤ 1. Ideally, we

want maxj Φt(j) to approach 1
s .

A balanced cell-probing scheme is defined as follows:

Definition 2. An (s, b, t, φ)-balanced-cell-probing scheme for problem f :
Q × D → {0, 1} is a cell-probing scheme such that for any S ∈ D and any
probability distribution q over Q, a table TS,q : [s] → {0, 1}b is constructed,
such that for any query x ∈ Q, the algorithm returns f(x, S) by probing at
most t cells, and for a query x ∈ Q generated according to the distribution
q, the contention Φk(j) is bounded by φ for any 1 ≤ k ≤ t and any j ∈ [s].
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Such schemes have the very strong property that not only is contention
bounded across an execution of the query algorithm, but each individual
step gives low contention.

Given a fixed table TS,q, we can summarize the contention succinctly
using linear algebra. Let Pt be a |Q| × s matrix with Pt(x, j) := Pr[I(t)

X =
j] = E[Y (t)(X, j)]. The contention on all cells can be computed by Φt = qPt,
specifically,

Φt(j) = E
[
Y (t)(X, j)

]
=
∑
x∈Q

Pr
[
X = x

]
E
[
Y (t)(x, j)

]
=
∑
x∈Q

qxPt(x, j).

Finally, for our lower bound, it will be helpful to consider data structure
problems from the perspective of communication complexity. In this view, a
data structure is a communication protocol between an adaptive player Alice
for the cell-probing algorithm and an oblivious player Bob for the table. The
input to Bob is a pair (S, q), and the input to Alice is a query x ∈ Q, which
is generated according to the distribution q. Together they compute f(x, S)
via communication. The contention then counts the probability of each type
of message sent by Alice.

1.2. Our contributions
This paper makes the following contributions:

• We formalize a natural and interesting problem: memory contention
caused by concurrent data structure queries. We introduce contention
to the classic cell-probe model. In our model, contention is measured
by the chance that a memory cell is probed during the execution of the
cell-probe algorithm. This level of abstraction allows us to study the
trade-off between the contention and the complexity of data structures
without regard to specific contention resolution schemes.

• We note an especially interesting class of query distributions: distri-
butions that are uniform over both the set of positive queries and the
set of negative queries (but not necessarily uniform over all queries).

We introduce a linear-size, constant-time cell-probing scheme for the
membership problem, with maximum contention O(1/n). It is easy
to see that this data structure is asymptotically optimal in all three
parameters.

• For data structures with arbitrary query distribution, we introduce a
general transform from cell-probing schemes with arbitrary contention
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to cell-probing schemes with bounded contention. The cost of this
transform is a factor of O(log n/ log logn) in both time and space. As
a corollary, there exists an (O( n logn

log logn), O(logN), O( logn
log logn), O( 1

n))-
balanced cell-probing scheme for the membership problem with arbi-
trary query distributions.

• Again for arbitrary query distributions, we prove a lower bound on any
balanced cell-probing scheme satisfying a certain technical restriction.
The lower bound is a time-contention trade-off: for any problem with
a non-degenerate subproblem of size n, and the membership problem
on n elements in particular, if the contention is at most Polylog(n)
times optimal, then the time complexity is Ω(log log n).

1.3. Related work
Our first upper bound is based on the perfect hashing scheme of Fredman

et al. [7] (FKS) and a subsequent extension by Dietzfelbinger and Meyer
auf der Heyde to the dynamic case [8, 9, 10]. We refer to the latter (and [8]
in particular) as DM.

FKS, which is based on a two-level tree of hash tables, yields a static
data structure for the membership problem with linear space and constant
lookup time.

For DM, the pairwise independent family of hash functions used in FKS
is replaced with a new family that gives a more even distribution of load
across the second layer of the tree and thus bounded worst-case update costs.
Dietzfelbinger and Meyer auf der Heyde have considered implementations
of DM in the PRAM model [9] and in the model of a complete synchro-
nized network of processors [10]. While both implementations optimize the
contention on individual processors, neither considers the contention on in-
dividual memory locations.

The membership problem can also be solved with optimal time and space
complexity using cuckoo hashing [11]; as with FKS and DM, the contention
of the standard implementation is high, mostly because all queries read the
hash function parameters from the same locations.

For FKS, DM, and cuckoo hashing, contention can be decreased by stor-
ing the hash function redundantly. Under the assumption that the query
is distributed uniformly within both the positive set and the negative set,
this gives a maximum contention of Θ(

√
n) times optimal for FKS, and

Θ(lnn/ ln lnn) times optimal for DM and cuckoo hashing. For arbitrary
query distributions, the contentions can be arbitrarily bad. Given that none
of these data structures were designed with memory contention in mind,
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this is perhaps unsurprising, but it is possible nonetheless to do substan-
tially better.

2. Low-contention uniform membership queries

Recall that for the membership problem, we have a universe U of size
N , and a data set S of size n that is a subset of U . Assume that N ≥ n2

and that each cell in the table contains a b-bit word, where b = log2N .

Theorem 3. Consider the membership problem. For all data sets S ∈
(
U
n

)
and all query distributions where all elements in S are equally likely and all
elements in U \ S are equally likely, there exists an (O(n), b, O(1), O(1/n))-
balanced-cell-probing scheme.

Given S, the data structure can be constructed by a unit-cost machine in
expected time O(n).

To understand our data structure, consider the query procedure for FKS
hashing. FKS resolves collisions in an O(n)-bucket primary hash table by
constructing for each primary bucket i an O(n2

i )-bucket secondary hash ta-
ble, where ni is the number of items in primary bucket i. The secondary
hash table for primary bucket i is large enough that for all sets of ni items, a
random hash function, with constant probability, places the items in distinct
secondary buckets. On the other hand, it can be shown that in expectation,∑

i n
2
i = O(n).

FKS queries make exactly three probes. The first probe reads the pa-
rameters of the hash function; the second reads a pointer to the “bucket” in
which the target item will be found, as well as information about the size
of the bucket and the perfect hash function used within the bucket; and the
third reads the actual element. With respect to contention, however, FKS
does not achieve our goal of O(1/n), as the first probe produces contention
1, and the second produces contention Θ(ni/n).

By replicating the hash function parameters Ω(n) times, we reduce the
contention of the first probe to O(1/n). The second probe requires more
sophistication, as while we would like higher replication counts for buckets
that are larger and thus more heavily contended, the query algorithm does
not know a priori which buckets those are. It is too costly to replicate all
of them.

We organize the buckets into Θ(n/ log n) groups of Θ(log n) buckets each.
While individual buckets may vary significantly in size, we show that when
using the hash functions of DM [8], the total size of each group is O(log n)
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with reasonably high probability. We standardize on a set of replication
counts fine enough to be space-efficient but coarse enough to allow the sizes
of all buckets in a single group to be encoded in a single b-bit cell, which
is replicated O(log n) times to achieve contention O(1/n). Knowing the
size of each bucket in the group, the query algorithm deduces the storage
range for the replicated headers of the target bucket, reads the relevant
header information (including both a pointer to the actual location of the
bucket and the parameters of its secondary hash function) from a randomly-
distributed probe, and uses the bucket’s perfect hash function to find the
target element. This four-phase procedure requires a constant number of
probes and uses only O(n) space with O(1/n) contention, for both uniform
positive queries and uniform negative queries.

2.1. Hash families
The concept of universal hash classes is due to Carter and Weg-

man [12]. For d ≥ 2, a family of functions from U to [m] is d-wise inde-
pendent (or d-universal) if for any d distinct elements x1, x2, . . . , xd from
U , the hash values h(x1), h(x2), . . . , h(xd) are uniformly and independently
distributed over [m].

Let Hdm denote a d-wise independent family of hash functions from U to
[m]. It is well known that if d ≥ 2 and m ≥ n2, then for all S ∈

(
U
n

)
, with

probability at least 1
2 , a uniform random hash function h ∈ Hdm maps each

element in S to a distinct value, that is, h is a perfect hash function.
We use the following hash family, which was introduced by Dietzfel-

binger and Meyer auf der Heide [8].

Definition 4 (DM[8]). For all f ∈ Hdm and g ∈ Hdr and z ∈ [m]r, the
hash function hf,g,z : U → [m] is defined by

hf,g,z(x) := (f(x) + zg(x)) mod m.

The hash family Rdr,m is

Rdr,m := {hf,g,z | f ∈ Hdm, g ∈ Hdr , z ∈ [m]r}.

Given a hash function and a set of elements, we define the buckets and
loads as follows.

Definition 5. For all h : U → [m] and S ⊆ U and i ∈ [m], the i-th bucket
is

B(S, h, i) := {x ∈ S | h(x) = i},
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and the load of the i-th bucket is

`(S, h, i) := |B(S, h, i)|.

The following tail bound on the sum of a 0-1 valued d-wise independent
sequence is due to Kruskal, Rudolph, and Snir.

Theorem 6 (Corollary 4.20, [13]). Let X1, . . . , Xn be 0-1 valued, d-wise
independent, identically distributed random variables, and let X =

∑n
i Xi.

If d ≤ 2E[X], then

Pr [X − E[X] > t] ≤ O

(
(E[X])d/2

td

)
.

The following is a special case of Hoeffding’s theorem.

Theorem 7 (Hoeffding, [14]). Let Y1, . . . , Yr ∈ [0, d] and Y =
∑r

i Yi and
let c > e be a constant, where e denotes the base of the natural logarithm. If
cE[Y ] ≤ rd, then

Pr [Y ≥ cE [Y ]] ≤
(e
c

) c
d
E[Y ]

.

The following theorem about d-universal hash families is due to Dietzfel-
binger and Meyer auf der Heide.

Theorem 8 (Fact 2.2, [8]). Let S be a fixed set of n elements. Let f
be chosen from Hdm uniformly at random, where d > 2 is a constant and
m ≤ 2n/d. Then

Pr [∀i ∈ [m], `(S, f, i) ≤ d] ≥ 1− n · (2n/m)d.

The following lemmas extend previous characterizations of the load dis-
tribution achieved by hash functions drawn a specified family.

Lemma 9 (extending [13]). Let c, d, δ be constants, where c > e ≈ 2.718
and d > 2 and 2

d+2 < δ < 1− 1
d . Let r = n1−δ. For all data sets S ∈

(
U
n

)
,

Pr
[
g ← Hdr : ∀i ∈ [r], `(S, g, i) ≤ cn/r

]
≥ 1− o (1) .

Proof. Let S = {x1, x2, . . . , xn}. Fixing j ∈ [r], let Xi be a 0-1 valued
random variable that indicates whether g(xi) = j. Letting X =

∑n
i Xi,
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the fact that g is drawn from a d-wise independent hash family implies that
E[X] = n

r = nδ. By Theorem 6,

Pr
[
X − nδ ≥ (c− 1)nδ

]
≤ O

(
nδd/2/nδd

)
= O

(
n−δd/2

)
.

Therefore,

Pr
[
∃j ∈ [r], `(S, g, j) >

cn

r

]
≤ r · Pr

[
`(S, g, j) > cnδ

]
≤ n1−δ · Pr

[
X − nδ > (c− 1)nδ

]
≤ O

(
n1−δ−δd/2

)
= o(1).

Lemma 10 (extending [8]). Let c, d, δ, α be constants, where c > e =
2.718 · · · and d > 2 and 2

d+2 < δ < 1 − 1
d and α > d

c(ln c−1) . Let r = n1−δ

and m = n
α lnn . For all data sets S ∈

(
U
n

)
,

Pr
[
h′ ← Rdr,m : ∀i ∈ [r], `(S, h′, i) ≤ cn/r

]
≥ 1− o (1) .

Proof. Let S = {x1, x2, . . . , xn}. We assume that h′ is defined by (f, g, z)
where f ← Hdm and g ← Hdr and z ← [m]r. We denote by E1 the event that
∀i ∈ [r], `(S, g, i) ≤ cn/r, and denote by E2 the event that ∀i ∈ [r], ∀j ∈
[m], `(B(S, g, i), f, j) ≤ d.

By Lemma 9, the event E1 holds with probability 1− o(1). Conditioning
on E1, by Theorem 8, with probability 1 − O(nδ(d+1)/md), it holds that
∀j ∈ [m], `(B(S, g, i), f, j) ≤ d. By union bound, with probability 1 −
O(n1−δ · nδ(d+1)/md) = 1 − O(n1−d(1−δ) lnd n) = 1 − o(1), it holds that
∀i ∈ [r], ∀j ∈ [m], `(B(S, g, i), f, j) ≤ d, that is, E2. Therefore, Pr[E1∧E2] =
Pr[E1] · Pr[E2 | E1] = (1− o(1))(1− o(1)) = 1− o(1).

Conditioning on E1 ∧ E2 and fixing j ∈ [m], define for i = 1, 2, . . . , r a
random variable Yi, where

Yi := |{x ∈ S | g(x) = i and f(x) + zg(x) ≡ j (mod m)}|.

Let Y =
∑r

i Yi. Note that Yi = `(B(S, g, i), h′, j) = `(B(S, g, i), f, (j − zi +
m) mod m) and Y = `(S, h′, j).

The variables Yi are conditionally independent given f, g because the
corresponding variables zi are unconditionally independent. Given E2, it
holds for all i ∈ [r] that Yi ≤ d.
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E[Yi | f, g] =
∑
ω∈[m]

Pr[zi = ω] · `(B(S, g, i), f, (j − zi +m) mod m)

=
1
m

∑
k∈[m]

`(B(S, g, i), f, k)

=
1
m
`(S, g, i).

Therefore

E[Y ] = E [E [Y | f, g]] =
1
m
E

∑
i∈[r]

`(S, g, i)

 =
|S|
m

=
n

m
.

By Theorem 7, it holds that Pr[Y ≥ cn/m] ≤ (e/c)cα lnn/d = o(n−1). By a
union bound, Pr[∀j ∈ [m], `(S, h′, j) ≤ cn/m] = 1 −m · Pr[Y ≤ cn/m] =
1− o(1).

Recall that the above holds when conditioning on E1 ∧ E2, and since
Pr[E1∧E2] = 1−o(1), that ∀j ∈ [m], `(S, h′, j) ≤ cn/m holds unconditionally
with probability at least (1− o(1))(1− o(1)) = 1− o(1).

Lemma 11 (FKS condition; extending [7]). Let c, d, δ, β be constants,
where c > e = 2.718 · · · and d > 2 and 2

d+2 < δ < 1 − 1
d and β ≥ 2. Let

s = βn. For all data sets S ∈
(
U
n

)
,

Pr

h← Rdr,s :
∑
i∈[s]

(`(S, h, i))2 ≤ s

 ≥ 1
2
.

Proof. Let S = {x1, x2, . . . , xn}. For all i, j ∈ [n] with i 6= j, let Xij be a 0-
1 random variable that indicates whether h(xi) = h(xj). Let X =

∑
i 6=j Xij

be the number of ordered pairs that collide. Since h is drawn from a 2-wise
independent family of hash functions,

X = 2
∑
i∈[s]

(
`(S, h, i)

2

)
=
∑
i∈[s]

(`(S, h, i))2 − n.

For all i 6= j, moreover, E[Xij ] = Pr[h(xi) = h(xj)] = 1/s, so E[X] =
n(n− 1)/s. By Markov’s inequality,

Pr

∑
i∈[s]

(`(S, h, i))2 > s

 = Pr[X > s− n] ≤ E[X]
(s− n)

≤ 1
β(β − 1)

≤ 1/2.
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2.2. Data structure construction
Let c = 2e. For d > 2, choose constants α and β large enough to satisfy

the hypotheses of Lemmas 10 and 11, and let r = n1−δ and m = n
α lnn and

s = βn. Without loss of generality, assume that m divides s.
Given an arbitrary data set S ∈

(
U
n

)
, choose uniform random f ← Hds

and g ← Hdr and z ← [s]r, so that the function h where h(x) := (f(x) +
zg(x)) mod s effectively is chosen uniform from Rdr,s. Define a hash function
h′ : U → [m] by h′(x) = h(x) mod m. Note that h′ is a uniformly random
function from the family Rdr,m because m divides s. Formally,

h′(x) =
(
f(x) + zg(x)

)
mod s mod m

=
(
f(x) mod m+ zg(x) mod m

)
mod m.

For uniform f ← Hds and uniform z ← [s]r, the function (f mod m) is
uniform over Hdm, and the vector (z mod m) is uniform over [m]r. Therefore,
h′ is uniform over Rdr,m.

We would like our triple of hash functions to belong to the set

P(S) :=
{(
g, h′, h

)
∈ Hdr ×Rdr,m ×Rdr,s

∣∣∣∣
max
i∈[r]

`(S, g, i) ≤ cn

r
,max
i∈[m]

`(S, h′, i) ≤ cn

m
, and

∑
i∈[s]

`2(S, h, i) ≤ s

}

By Lemmas 10 and 11 and a union bound over all unwanted events,
it holds with probability at least 1/2 − o(1) that (g, h′, h) ∈ P(S). In ex-
pectation, O(1) independent trials suffice to generate (g, h′, h) ∈ P(S). A
unit-cost machine can verify membership in P(S) in time O(n), so the same
machine can find good triples in expected time O(n).

Algorithm 1 gives the pseudocode for the construction process. The
data structure is organized into rows containing s cells each. Let T (i, j)
be the contents of the j-th cell in the i-th row of the data structure. T is
constructed as follows.

• Let the two d-universal hash functions f and g be represented by 2d
words a0, a1, . . . , a2d−1. For all i ∈ [2d] and all j ∈ [s], let T (i, j) = ai.
For all j ∈ [s], let T (2d, j) = z[j mod r].

• The hash function h assigns each of the n elements of S to one of
s buckets, and the hash function h′ assigns each bucket to one of
m groups corresponding to congruence classes modulo m. For group

12



Algorithm 1: Construction of a low-contention dictionary T .

Input: a set S ∈
(
U
n

)
;

Output: T , a 7-row array, each row of 2
(⌈

n
lnn

⌉
dlnne

)
cells;

begin
set c = 2e, d = 3, r = d

√
ne, m =

⌈
n

lnn

⌉
, s = 2mdlnne;

repeat
f = u-hash(d, s);
g = u-hash(d, r);
pick a z ∈ [s]r uniformly at random;
denote h(·) = (f(·) + z[g(·)]) mod s,

h′(·) = (f(·) + z[g(·)]) mod m;
compute `(S, g, j), `(S, h, j), `(S, h′, j) for all j;

until maxj∈[r] `(S, g, j) ≤ cn
r and

∑
j∈[s] `

2(S, h, j) ≤ s and
maxj∈[m] `(S, h′, j) ≤ cn

m ;
GBA[0] = 0;
for i = 1 to m do

GBA[i] = GBA[i− 1] +
∑

k∈[s/m] `
2(S, h, km+ i− 1);

foreach i ∈ [m] do
for k ∈ [s/m] do uk = unary representation of `(S, h, km+ i);
hist[i] = concatenation of u0u1 · · ·us/m−1;

foreach j ∈ [s] do
T [0, j] = f ;
T [1, j] = g;
T [2, j] = z[j mod r];
T [3, j] = GBA[j mod m];
T [4, j] = hist[j mod m];

foreach k ∈ [s/m], l ∈ [m] do
let i = km+ l, Si = {x ∈ S | h(x) = i}, and si = `2(S, h, i);
BBA[i] = GBA[i] +

∑
k′<k `

2(S, h, k′m+ l);
if si > 0 then

repeat h∗i = u-hash(d, si) until maxj∈[si] `(Si, h
∗
i , j) ≤ 1;

foreach j ∈ [si] do T [5, BBA[i] + j] = h∗i ;
foreach x ∈ Si do T [6, BBA[i] + h∗i (x)] = x;

end

Figure 1: Pseudocode for the construction of a low-contention dictionary with the settings
that c = 2e, d = 3, α = 1, β = 2, δ = 1

2
, and each cell contains b ≥ max(6 logn, log |U |)

bits. Each calling of u-hash(d,m) returns a uniform and independent function from Hd
m.
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i ∈ [m], we define the group-base-address of i, or GBAS(i), inductively
by GBAS(0) = 0 and

GBAS(i) = GBAS(i− 1) +
∑

k∈[s/m]

`2(S, h, km+ i− 1).

These group-base-addresses are valid because by property P(S), it
holds for all i ∈ [m] that GBAS(i) ≤ s. Moreover, the vector GBAS
can be computed in O(n) time by a unit-cost machine. Let T (2d +
1, j) = GBAS(j mod m), so that each bucket stores the group-base-
address of the group to which that bucket belongs.

• Each group contains s/m = αβ lnn buckets. The group-histogram of
a group whose buckets have loads l1, l2, . . . , ls/m is the binary string

1l101l20 · · · 1ls/m0.

By property P(S), each group contains at most cn/m = cα lnn el-
ements of S, so the length of this string is at most α(β + c) lnn.
Let ρ := dα(β+c) lnn

b e. Observe that because b = Θ(log n), we have
ρ = O(1). For all j ∈ [s], let a′0j , a

′
1j . . . , a

′
ρ−1,j be ρ words that store

the group-histogram of group j. For all i = 0, 1, . . . , ρ − 1 and all
j ∈ [s], define T (2d+ 2 + i, j) = a′i,(j mod m).

• The last two rows store perfect hashes of each bucket. Each bucket
i ∈ [s] is assigned `2(S, h, i) cells in each row. By property P(S), in
each row, at most s cells are assigned.

In the (2d+ ρ+ 2)th row, for each individual bucket i, the parameters
of perfect hash function h∗i are replicated across the space allotted to
the bucket. In the (2d+ρ+3)th row, the members of S in each bucket
i are stored according to the hash function h∗i . A unit-cost machine
can initialize this storage in time O(n).

In all, the table T has (2d + ρ + 3) = O(1) rows each containing s = O(n)
words, for a total of O(n) words. A unit-cost machine can construct T in
time O(n).

2.3. Queries and contention
We query whether x is in S with the following algorithm. Each random

choice is assumed to be independent and uniform within its range.
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1. For all i ∈ [2d], choose random j ← [s] and read T (i, j). This yields
f and g. Next choose random k ← [s/r] and read T (2d, kr + g(x))
to obtain zg(x). We can now compute h = (f + zg(x)) mod s and
h′ = h mod m.

2. Choose random k ← [s/m] and read T (2d + 1, km + h′(x)), which
stores GBAS(h′(x)). For all i ∈ [ρ] where ρ = dα(β+c) lnn

b e, choose
random j ← [s/m] and read T (2d + 2 + i, jm + h′(x)) to obtain the
group-histogram group h′(x). The bucket-base-address of bucket h(x),
denoted BBAS(h(x)) is

BBAS(h(x)) := GBAS(h′(x)) +
dh(x)/me−1∑

k=0

`2
(
S, h, km+ h′(x)

)
.

For all k ∈ [s/m], the group-histogram of group h′(x) stores the
value of `2(S, h, km + h′(x)), thus BBAS(h(x)) is retrieved, so is
` (S, h, h(x)). The range of addresses allotted to bucket h(x) is from
BBAS(h(x)) to BBAS(h(x)) + `2 (S, h, h(x))− 1.

3. If ` (S, h, h(x)) = 0, then the bucket h(x) is empty, so return 0.
Otherwise, choose random j ← [` (S, h, h(x))] and read T (2d + ρ +
2, BBAS(h(x)) + j) to obtain the perfect hash function h∗. If T (2d+
ρ+ 3, BBAS(h(x)) + h∗(x)) = x, then return 1; otherwise, return 0.

The pseudocode for the query algorithm is given in Algorithm 2. The process
of answering a membership query x is illustrated in Figure 2.3

This query algorithm probes each row of T at most once, so its cell-probe
complexity is O(1).

For contention, we first consider the contribution of the positive queries.
All events below are conditioned the target element being in S. At each step
before the last probe, an expected 1, 1

n`(S, g, i1), 1
n`(S, h

′, i2), or 1
n`(S, h, i3)

probes are balanced over a range of size s, s/r, s/m, or `2(S, h, i3) respec-
tively, so by property P(S), the maximum contention is O(1/n). For the last
probe, the perfect hash function sends each query to a distinct cell so the
contention is obviously O(1/n). Therefore, the total contention contributed
by positive queries is at most O(1/n).

Lemma 12. Let S̄ denote U \ S, and N = |U | = ω(n). For any hash
function h : U → [k] which is uniform over the domain, for sufficiently large
n, ∀i ∈ [k], `(S̄, h, i) ≤ 2(N − n)/k.

Proof. Because h is uniform over the domain, `(U, h, i) = N/k for any
i ∈ [k]. For N = ω(n), it holds that `(S̄, h, i) = `(U, h, i) − `(S, h, i) ≤
N/k ≤ 2(N − n)/k.
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Algorithm 2: Query algorithm for answering membership queries.

Input: x ∈ U ; array T constructed by Algorithm 1 from set S ∈
(
U
n

)
;

Output: Yes if x ∈ S, No if otherwise;
begin

set r = d
√
ne, m =

⌈
n

lnn

⌉
, s = 2mdlnne;

pick j0, j1, j2 ∈ [s], j2 ∈ [bs/rc], j3, j4 ∈ [s/m]
uniformly and independently at random;

read f = T [0, j0], g = T [1, j1], z = T [2, j2 · r + g(x)];
ibucket = (f(x) + z) mod s;
igroup = ibucket mod m;
read GBA = T [3, j3 ·m+ igroup], hist = T [4, j4 ·m+ igroup];
represent hist as 1`001`10 · · · 1`s/m−10;
BBA = GBA +

∑
k:km<ibucket

`2k;
if `k = 0 then return No;
k = (ibucket − igroup)/m;
pick j5 ∈ [`2k] uniformly and independently at random;
read h∗ = T [5,BBA + j5], key = T [6,BBA + h∗(x)];
if key = x then return Yes;
else return No;

end

Figure 2: Pseudocode for the query algorithm for answering membership queries. We
assume that the data structure T is constructed by Algorithm 1.

Figure 3: The process of answering a membership query.
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Note that g, h′, and h are all uniform over the domain. This is because
any d-universal function must be 1-universal. Due to Lemma 12, the loads
of negative queries to all types of buckets are asymptotically even. The
same argument as above can be applied to bound the contention caused by
negative queries to O(1/n).

3. Upper bounds for arbitrary query distribution

In this section, we show that there exists a general way to transform an
arbitrary cell-probing scheme to a low-contention cell-probing scheme with
some cost of time and space overhead.

3.1. The prefix-sum problem
Given any cell-probing scheme, the contention of each cell can be amelio-

rated by making each cell a number of replicas proportional to its contention
and uniform probing all replicas when probing a cell. This approach asks
that the addresses of these replicas must be inferred by a limited number
of probes with low contention. We reduce the problem of addressing with
presence of replicas to the following specialized version of the prefix-sum
problem.

Definition 13. The prefix-sum problem f : Q × D → [n] is defined as
follows: Q = {1, 2, . . . , n} and D = {y ∈ [n + 1]n |

∑
j yj = n}, and for

every x ∈ Q and every y ∈ D, f(x, y) returns the pair such that f(x, y) =
(
∑

j<x yj , yx).

The data y is a tuple of n numbers whose sum is n and the query x is one
of the indices 1, 2, . . . , n. The result of the query is the sum of first x − 1
entries of y together with the x−th entry yx itself. This problem is trivial
to solve if contention is not a concern. We construct a low-contention data
structure solving this problem.

Theorem 14. An (O( n logn
log logn), O(log n), O( logn

log logn), O(1/n))-balanced cell-
probing scheme exists for the prefix-sum problem with n elements and query
distribution q where q(x) = yx

n .

Proof. Abstractly, the data structure for the prefix-sum problem is a
(log n)-ary tree. Each node u corresponds to an ordered set S(u) of consec-
utive integers.

• For the root u, S(u) = (1, 2, . . . , n).
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• For any node u, S(u) is partitioned into k = min(|S(u)|, log n) con-
secutive sub-tuples S1, S2, . . . , Sk in ascending order, such that the
difference between the lengths of any Si and Sj is at most 1. Each Sj
is associated to a child uj of u.

The recursion terminates when every node in the same level of the tree has
that |S(u)| = 1. The depth of the tree is O( logn

log logn).
Define the weight of a node u as w(u) :=

∑
j∈S(u) yj . For each level of

the tree, by enumerating all the nodes u1, u2, . . . in that level in ascending
order of S(ui), we can define the prefix-sum p(ui) of a node ui by p(ui) =∑

j<iw(uj). It is easy to see that for any node u and its first child, say u1,
it holds that p(u) = p(u1). Let every leaf node u store (p(u), w(u)). The
prefix-sum problem with query x ∈ {1, 2, . . . , n} can be answered with the
pair (p(u), w(u)) by accessing the leaf node u with S(u) = (x).

We then show how to route from the root to any leaf by cell-probes with
low contention.

Each level of the tree is represented by two rows of n cells, each of
O(log n) bits. Respectively, we call these rows the primary row and the
secondary row of each node in that level. Each node u owns the cells
across the range from p(u) + 1 to p(u) + w(u) in both rows. In total, this
uses exactly n cells, because for any level of the tree, the sum of the weights
of all nodes in any level is

∑n
j=1 yj = n. To move from a node u to any one

of its children u1, u2, . . . , uk, it is sufficient to know the base address of u1,
which is p(u1) + 1 = p(u) + 1, and the weights w(u1), w(u2), . . . , w(uk) of
all k children of u. The value of p(u) can be stored in one cell. Although
it is impossible to represent all k weights precisely with one cell, we show
that there is an efficient way to approximately represent and retrieve these
values by one cell of O(log n) bits.

Lemma 15. Let 2 ≤ k ≤ log n. There exists two efficiently computable
procedures Enc and Dec such that for any k ≤ w ≤ n, for any z ∈ [w + 1]k

that
∑k

j=1 zj = w it holds that Enc(w, z) is a binary string with length at
most 2 log n and Dec(w, Enc(w, z)) = z′ where z′ ∈ [w+ 1]k and it holds that∑k

j=1 z
′
j ≤ w and z′j ≥ 1

2zj for any 1 ≤ j ≤ k.

Proof. Given any z ∈ [w + 1]k, let Enc(w, z) be the concatenation of the
binary strings 1bkzj/wc0 for all 1 ≤ j ≤ k, where 1` denotes a string of `
consecutive ones. The length of Enc(w, z) is

k∑
j=1

(
1 +

⌊
kzj
w

⌋)
≤ k +

k

w

k∑
j=1

zj = 2k ≤ 2 log n.

18



Given a value Enc(w, z), one can reconstruct a k-tuple 〈bkzj/wc〉j=1,2,...,k.
Let Dec(w, Enc(w, z)) be the k-vector z′ that z′j := (1+bkzj/wc) w2k . It holds
that

k∑
j=1

z′j =
k∑
j=1

(
1 +

⌊kzj
w

⌋) w
2k
≤ 1

2

k∑
j=1

(
1 +

kzj
w

)w
k

=
1
2

(
w +

k∑
j=1

zj

)
= w.

In addition, for any 1 ≤ j ≤ k, it holds that

z′j =
(

1 +
⌊
kzj
w

⌋)
w

2k
≥
(
kzj
w

)
w

2k
=

1
2
zj .

With this encoding scheme, routing from a node to its child can be
implemented by two cell-probes, one in the primary row and the other in
the secondary row.

For any u and its children u1, u2, . . . , uk, let vector z defined as that
zj := w(uj) for 1 ≤ j ≤ k. Store Enc(w(u), z) in every cell of the primary
row of node u. Provided that (p(u), w(u)) is known, which will be justified
later, by probing one of the replicas, z′ = Dec(w(u), Enc(w(u), z)) can be
decoded. For every child uj of u, denote by w′(uj) := z′j the approximate
weight of uj .

For every node u, in its secondary row, starting from the address p(u)+1,
in the order of u1, u2, . . . , uk, for every child uj of u, represent the pair
(p(uj), w(uj)) in one cell and make w′(uj) consecutive copies of the cell.
This uses totally at most w(u) cells, because by Lemma 15,

∑
j w
′(uj) =∑

j z
′
j ≤ w(u). Node u, therefore, uses only space it owns.

Figure 5 illustrates the way to store node u and its children.
By induction, for the root u, p(u) = 0 and w(u) = n are both known.

For any node u, provided that p(u) and w(u) are both known, with one
uniform probe to the range from p(u) + 1 to p(u) + w(u), we can retrieve
the approximate weights of all children of u; with one uniform probe to the
range from p(u) +

∑
i<j w

′(ui) + 1 to p(u) +
∑

i≤j w
′(ui), we can retrieve

(p(uj), w(uj)) for the child uj such that x ∈ S(uj). The procedure termi-
nates when S(uj) = (x) and the prefix-sum for the query x is answered,
which takes O( logn

log logn) probes.
By the linearity of expectation, the probability that a node u is accessed

is exactly w(u)
n . For the two probes to the cells corresponding to u, the

probe is balanced across either w(u) cells or w′(u) cells. By Lemma 15,
the approximate weight of a node has that w′(u) ≥ 1

2w(u). Therefore, the
maximum contention is 2

n .
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Figure 4: One node and its children in the tree

3.2. A general reduction
With the solution to the prefix-sum problem provided by Theorem 14, a

general transformation from an arbitrary cell-probing scheme to a balanced
cell-probing scheme can be built as follows.

Theorem 16. For any data structure f , if there exists an (n, b, t)-cell-
probing scheme for f , where b ≥ 2 log n, then there exists an (s1, b, t′, φ1)-
balanced-cell-probing scheme for f , where s1 = O( tn logn

log logn), t′ = O( t logn
log logn),

and φ1 = O(1/n); and an (s2, b, t′, φ2)-balanced-cell-probing scheme for f ,
where s2 = O( n logn

log logn), and φ2 = O(t/n).

Proof. For any data set S ∈ D, let TS be the corresponding table defined
by the original cell-probing scheme. For any query distribution q over Q, let
Φt(j) be the expected number of probes to cell j at time t for the original
cell-probing scheme.

Let yj := bnΦt(j)c for 1 ≤ j ≤ n. It holds that
∑n

j=1 yj ≤ n+ 1 because∑
j Φt(j) = 1. Let yn+1 = n + 1 −

∑n
j=1 yj . Construct an instance of the

data structure provided in Theorem 14 with data set (y1, y2, . . . , yn+1), and
append an additional row of at most 2n cells, such that the original cell TS(j)
is stored in every cell in the range from

∑
i<j(yi + 1) + 1 to

∑
i≤j(yi + 1)

in this row. In this way the t-th probe to the original table is simulated
by O( logn

log logn) probes in the new table, with max contention O(1/n) and
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table size O( n logn
log logn). Create such an instance for every t, which gives the

(s1, b, t′, φ1)-balanced cell-probing scheme.
The second cell-probing scheme can be constructed in a similar way. This

time yj := bnt Φ(j)c where Φ(j) =
∑

t Φt(j) is the total contention of cell j,
and all original probes are simulated by the same instance of prefix-sum.

The following corollary holds directly for the membership problem.

Corollary 17. There exists an (O( n logn
log logn), O(log n), O( logn

log logn), O(1/n))-
balanced-cell-probing scheme for the membership problem with n elements.

4. A lower bound for arbitrary query distributions

In this section, we prove a cell-probe lower bound for low-contention
data structures with arbitrary query distribution. The lower bound is on
the cost of queries by an algorithm that knows nothing about the distribution
except for what it can learn by probing the table, which was constructed by
an algorithm with full knowledge of the query distribution.

The lower bound holds generally for a class of data structure problems
with fixed VC-dimension [15], a measure of complexity of classification prob-
lems. By treating a data structure problem f : Q × D → {0, 1} as a class
consisting of |D| classifications of Q, we can define the VC-dimension of a
data structure problem.

Definition 18. The VC-dimension of a data structure problem f : Q ×
D → {0, 1}, denoted by VC-dim(f), is the maximum n such that there exists
a set {x1, x2, . . . , xn} ∈

(
Q
n

)
such that for any assignment y ∈ {0, 1}n, there

exists some S ∈ D, with f(xi, S) = yi for all i.

It is easy to see that the VC-dimension of the membership problem is
n, where n is the cardinality of the data set. This allows us to translate
our results for problems of arbitrary VC-dimension into specific results for
membership.

We consider a special class of cell-probing schemes (T,A) whose cell-
probing algorithm A satisfies a natural restriction described as follows.

Definition 19. A table structure is a mapping T : D × [0, 1]Q × [s] →
{0, 1}b that for any fixed S ∈ D and any fixed query distribution q over Q,
a table TS,q : [s]→ {0, 1}b of s cells is constructed, where each cell contains
b bits.
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Given any query x ∈ Q, a cell-probing algorithm A returns f(x, S)
by making at most t∗ randomized adaptive probes I(1)

x , I
(2)
x , . . . , I

(t∗)
x ∈ [s] to

the table TS,q, such that the maximum contention Φt ≤ φ∗ for any t ≤ t∗,
and for any fixed query x and any fixed table TS,q, the random variables I(t)

x

for all t ≤ t∗ are jointly independent.

The independence of cell-probes of A does not make A non-adaptive,
because the independence holds only when the query and the table are both
fixed. Note that in this sense all deterministic cell-probing algorithms (both
adaptive or non-adaptive) satisfy this property, because once the table and
the query are both fixed, the sequence of the cell-probes of a determin-
istic cell-probing algorithm are fixed, hence they are jointly independent.
Informally speaking, for A, the randomness is used only for balancing the
cell-probes, but is not involved in the process of decision making. The upper
bound presented in the previous section and any upper bounds constructed
by the technique of distributing probes across multiple copies of critical cells
are all included in this definition.

We prove the following lower bound theorem.

Theorem 20. For any data structure problem f with VC-dim(f) = n, if
there exists a cell-probing scheme (T,A) as defined in Definition 19, and if
b ≤ Polylog(n) and φ∗ ≤ Polylog(n)

s , then t∗ = Ω(log log n).

The lower bound itself is proved based on the following intuition: the
more uniform a random probe is, the less specific information it retrieves;
but non-uniform probes will only result in low contention if the query al-
gorithm already has some knowledge about the query distribution. So to
obtain information about a specific query, the query algorithm must steadily
increase its knowledge of the query distribution through increasingly non-
uniform probes. By tracking how much information the query algorithm
has about the query distribution (and thus how evenly spread out it must
keep its probes), we can bound the query time subject to bounds on the
contention.

A difficulty in the above argument is formally justifying the intuition:
“more uniform cell-probes are less informative,” since no matter how uniform
a random cell-probe is, it returns the same amount (one cell) of information.

We overcome this difficulty by first running n instances of queries in
parallel, and then coupling the parallel random cell-probes to minimize the
total number of cells probed in each step. In this way, we show that indeed
the more uniform the random cell-probes are, the fewer cells are probed
after coupling.
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4.1. Parallelism and coupling
We prove the following lemma.

Lemma 21. If there exists a cell-probing scheme (T,A) for the data struc-
ture problem f where (T,A) and f are as in Theorem 20, then there exists
a communication protocol between an algorithm A′′ and a black-box B which
is specified as follows. The input to B is an arbitrary stochastic vector
q ∈ [0, 1]n that

∑n
i=1 qi ≤ 1, which is initially unknown to A′′. The commu-

nication between A′′ and B occurs in rounds.

1. At round t, A′′ specifies an n × s matrix Pt, called a probe speci-
fication, and sends it to B, where Pt is adaptive to the information
received previously by A′′, and for any 1 ≤ i ≤ n, it holds that

s∑
j=1

Pt(i, j) ≤ 1 ; (1)

max
1≤j≤s

Pt(i, j) ≤
φ∗

qi
. (2)

2. Upon receiving a Pt, B sends Ct bits to A′′, where Ct is a random
variable satisfying

E [Ct] ≤ b ·
s∑
j=1

max
1≤i≤n

Pt(i, j) , (3)

where the expectation is conditioned on Pt, thus conditioned on all
previous communication between A′′ and B.

3. After t∗ rounds, the expected number of bits received by A′′ is at least
n · 2−2t∗ bits from B.

This lemma is proved in three steps as follows:

1. Each cell-probe of the original algorithm A is simulated by indepen-
dently probing all cells, resulting a new algorithm A′.

2. Run n instances of the algorithm A′ in parallel.
3. Minimize the total number of cells probed by the n instances in each

step by coupling the randomized parallel cell-probes.

For the rest of the proof, we assume the assumption of Theorem 20.

Assumption 22. Let f be a data structure problem with VC-dim(f) = n.
There exists a cell-probing scheme (T,A) as described in Definition 19, such
that (T,A) solves f with performance parameters (s, b, t∗, φ∗), where the size
of cell b ≤ Polylog(n) and the maximum contention φ∗ ≤ Polylog(n)

s .
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First, any original cell-probe is simulated (with bounded error) by a
product-space cell-probe, so that in each step, every cell is probed indepen-
dently with some fixed probability.

Definition 23. A product-space cell-probe to a table of s cells is a ran-
dom set J ∈ 2[s] such that the probability space of J is a product probability
space.

Lemma 24 (product-space lemma). If Assumption 22 holds, then there
exists a product-space cell-probing algorithm A′, such that on any valid table
TS,q, for any query x ∈ Q, the following properties hold for the sequence of
product-space cell-probes J (1)

x , J
(2)
x , . . . , J

(t∗)
x .

1. At any step t ≤ t∗, A′ fails (returns a special symbol ⊥) independently
with probability at most 3

4 . Conditioned on that there is no failure
after t∗ steps, which is an event with probability at least 2−2t∗, it holds
that J (1)

x , J
(2)
x , . . . , J

(t∗)
x are jointly independent and A′ returns what A

returns.
2. For any t ≤ t∗, the total probability of each product-space cell-probe of
A′ ∑

j∈[s]

Pr
[
j ∈ J (t)

x

]
≤ 1; (4)

3. For any t ≤ t∗, the contention of any cell j ∈ [s]

q(xi) · Pr
[
j ∈ J (t)

x

]
≤ φ∗. (5)

Proof. A cell-probe of A can be represented as a random variable I ∈ [s],
where I denotes the probed cell. Let pi := Pr[I = i]. Let J ∈ 2[s] represent
a product-space cell-probe. Given a probability vector p, a cell-probe I is
simulated by a product-space cell-probe as follows: Independently probe
each cell i ∈ [s] with probability p′i := min{pi, 1

2}. The resulting set is
J . If |J | 6= 1, then fails; if J = {i}, then fails with a probability εi :=
min{pi, 1− pi}. Let I = i if not fail.

Case 1: pi ≤ 1
2 for all i ∈ [s]. Then for all i ∈ [s], p′i = pi and εi = pi.

Let ρ =
∏
j∈[s](1− pj). Since pi ≤ 1

2 for all i ∈ [s], it holds that ρ ≥ 1
4 .

The probability

Pr[I = i] = (1− εi) · Pr[J = {i}] = (1− pi) · pi
∏
j 6=i

(1− pj) = piρ,
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which is proportional to pi. The procedure succeeds with probability
ρ ≥ 1

4 .

Case 2: Let p0 > 1
2 and all other pi < 1

2 . Then p′0 = 1
2 and ε′0 =

1 − p0, and for all i > 0, it holds that p′i = pi and ε′i = pi. Let
ρ′ =

∏
j>0(1− pj). It holds that ρ′ > 1

2 since
∑

j>0 pj = 1− p0 <
1
2 .

For i 6= 0, the probability Pr[I = i] = (1 − pi) · Pr[J = {i}] = 1
2ρ
′pi;

and for cell 0, Pr[I = 0] = p0 · Pr[J = {i}] = 1
2ρ
′p0.

The procedure succeeds with probability 1
2ρ
′ > 1

4 .

In both cases, a cell-probe of A is simulated by a product-space cell-probe
with probability at least 1

4 . The event of a failure occurs independently with
probability at most 3

4 . With probability at least 2−2t∗ , no failure occurs at
all, in which case it happens that A′ can simulate A, and the product-space
cell-probes are jointly independent since the cell-probes of A are jointly
independent.

The total probability of a product-space cell-probe is
∑

i Pr[i ∈ J ] =∑
i p
′
i ≤ 1. The probability of a probe to each cell is no greater than before,

therefore the maximum contention φ∗ is not increased.

Next, we run n instances of the product-space cell-probing algorithm
in parallel. The behavior of each individual instance depends only on the
marginal distribution of cell-probes of the instance, but so we can choose
the joint distribution of cell-probes arbitrarily as long as the marginal dis-
tributions are correct.

Lemma 25 (parallel lemma). Let A′′ be an algorithm that on a valid ta-
ble TS,q, for a set of n queries {x1, x2, . . . , xn} ∈

(
Q
n

)
, at step t, A′′ randomly

probes n sets of cells (L(t)
x1 , L

(t)
x2 , . . . , L

(t)
xn). If for every xi where 1 ≤ i ≤ n

and every t ≤ t∗, the marginal distribution of L(t)
xi is identical to the distri-

bution of J (t)
xi , where J (t)

xi is the t’s product-space cell-probe of the algorithm
A′ on the same table TS,q, then A′′ returns f(xi, S) for expected n · 2−2t∗

number of xi.

Proof. Let A′′ run an instance of A′ with input xi in parallel for every xi,
denoted as A′xi

. Let the set of cells probed by each individual A′xi
at time

t be L(t)
xi . On a fixed table TS,q and for a fixed xi, since L(t)

xi is identically
distributed as J (t)

xi , every individual instance of A′xi
simulates a running

instance of A′ with input query xi. By Lemma 24, each A′xi
terminates in t∗
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steps without failure with probability at least 2−2t∗ , thus by the linearity of
expectation, after t∗ time, the expected total number of terminated instances
is at least n · 2−2t∗ .

Then, we minimize the expected total number of probed cells by coupling
the randomness of parallel cell-probes.

Lemma 26 (coupling lemma). For any probability distribution of Ji ⊆
[s] where 1 ≤ i ≤ n and each Ji is chosen from a product probability space,
there exists a joint distribution (L1, L2, . . . , Ln), such that for every 1 ≤ i ≤
n, Li is identically distributed as Ji, and it holds that

E

∣∣∣∣∣∣
⋃

1≤i≤n
Li

∣∣∣∣∣∣
 ≤∑

j∈[s]

max
1≤i≤n

Pr [j ∈ Ji] .

Proof. We construct the joint distribution of (Li)i ∈ (2[s])n as follow.

• Let p̃j = max1≤i≤n Pr[j ∈ Ji]. Choose each j ∈ [s] independently with
probability p̃j . Let B denote the set of chosen elements of [s].

• For every 1 ≤ i ≤ n, let each j ∈ B join Li independently with
probability Pr[j∈Ji]

p̃j
. Note that p̃j ≥ Pr[j ∈ Ji], so the probability is

well-defined.

For each 1 ≤ i ≤ n, and for every j ∈ [s], j joins Li independently with
probability p̃j · Pr[j is chosen to Li | j ∈ B] = Pr[j ∈ Ji], thus each Li is
identically distributed as Ji.

Note that for every Li, all of its elements are chosen from set B. It holds
that

E

∣∣∣∣∣∣
⋃

1≤i≤n
Li

∣∣∣∣∣∣
 ≤ E [|B|] =

∑
j∈[s]

p̃j =
∑
j∈[s]

max
1≤i≤n

Pr[j ∈ Ji].

Combining the above three lemmas, Lemma 21 can be proved.

Proof of Lemma 21. Let {x1, x2, . . . , xn} ∈
(
Q
n

)
be a set of queries which

achieves the VC-dimension VC-dim(f) = n, i.e. any Boolean assignment
of f(xi, S) is possible. Let such {x1, x2, . . . , xn} be the input query set to
A′′, where A′′ is as described in Lemma 25. By an information theoretical
argument, in the worst case, A′′ has to collect expected n · 2−2t∗ bits infor-
mation after t∗ steps. Let the joint distribution of (L(t)

x1 , L
(t)
x2 , . . . , L

(t)
xn) of A′′
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be constructed as in Lemma 26, the total number of cells probed by A′′ in
step t with (L(t)

x1 , L
(t)
x2 , . . . , L

(t)
xn) is bounded. Let the n× s matrix Pt defined

as Pt(i, j) := Pr[j ∈ L(t)
xi ], and let qi := q(xi). Since each L

(t)
xi is identically

distributed as J (t)
xi of A′ which is described in Lemma 24, due to (2) and

(3), it holds for the Pt that
∑

j∈[s] Pt(i, j) ≤ 1 and maxj∈[s] Pt(i, j) ≤ φ∗

qi
.

By Lemma 26, the expected number of bits collected by A′′ in step t is
bounded by b ·

∑
j∈[s] max1≤i≤n Pt(i, j). By seeing the running instance of

the algorithm A′′ with the input {x1, x2, . . . , xn} as the player A′′ of the
communication game, and the table TS,q as the black-box B with private
input q, Lemma 21 is proved.

4.2. Two technical lemmas
The following two combinatorial lemmas are needed for the proof of

Theorem 20. The first lemma is for the strategy space of an algorithm, and
the second lemma is for the probability distributions of n parallel cell-probes
in each step.

Lemma 27. Let M be an N×n nonnegative matrix. Let r =
√

5ε−1δn lnN .
Assume that for every row 1 ≤ u ≤ N , there exists a set Ru ∈

({1,2,...,n}
r

)
of r entries such that

∑
i∈Ru

M(u, i) ≤ δ. Then there exists q ∈ [0, 1]n that∑
i qi = ε, such that for all 1 ≤ u ≤ N , there exists 1 ≤ i ≤ n, such that

M(u, i) < qi.

Proof. For each 1 ≤ u ≤ N , sort {M(u, i) | i ∈ Ru} by non-decreasing
order and let R′u ⊆ {1, 2, . . . , n} be the indices of the smallest r

2 entries. It
holds that ∀i ∈ R′u, M(u, i) ≤ 2δ

r , as otherwise it contradicts the assumption
that

∑
i∈Ru

M(u, i) ≤ δ.
It holds that for any choice of such {R′u}1≤u≤N , there exists a T ⊆

{1, 2, . . . , n}, such that |T | = 2n lnN
r and T intersects all R′u. We prove

this by the probabilistic method: let T be a uniformly random subset of
{1, 2, . . . , n} of size 2n lnN

r , thus each R′u is missed by T with probability less
than (1−r/2n)2n lnN/r < 1/N , thus by the union bound, T intersects all R′u
with positive probability.

Fix such a T , define q ∈ [0, 1]n as qi = ε|T |−1 = rε
2n lnN if i ∈ T , and

qi = 0 if otherwise. Therefore,
∑

i qi = ε, and for any 1 ≤ u ≤ N , for such
i ∈ R′u ∩ T , it holds that M(u, i) ≤ 2δ

r < rε
2n lnN = qi.

Lemma 28. For any nonnegative n×s matrix P that
∑

j P (i, j) ≤ 1 for ev-
ery i, let R be the largest subset of {1, 2, . . . , n} such that

∑
i∈R

1
maxj P (i,j) ≤
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s. Then it holds that

|R| ≥
s∑
j=1

max
1≤i≤n

P (i, j).

Proof. The sum
∑

j maxi P (i, j) chooses exactly s entries to sum up. Let
Ai be the set of chosen columns in row i. Let xi :=

∑
j∈Ai

P (i, j). Note
that xi ≤

∑
j P (i, j) ≤ 1. By the pigeonhole principle, for any 1 ≤ i ≤ n,

|Ai| ≥
∑

j∈Ai
P (i, j)

maxj P (i, j)
=

xi
maxj P (i, j)

.

Note that
∑

i |Ai| = s, thus
∑

i
xi

maxj P (i,j) ≤
∑

i |Ai| = s.
Therefore the sum

∑
j maxi P (i, j) can be written as

∑
j maxi P (i, j) =∑

i

∑
j∈Ai

P (i, j) =
∑

i xi, subject to the constraints that
∑

i
xi

maxj P (i,j) ≤ s
and xi ≤ 1. It is easy to see that the value of

∑
i xi is maximized when

letting xi = 1 for i ∈ R and xi = 0 for i 6∈ R, therefore
∑

j maxi P (i, j) =∑
i xi ≤ |R|.

4.3. The adversarial argument
We now prove the lower bound (Theorem 20) by applying an adversarial

argument.
In Section 4.1, we show that in each step, the algorithm chooses an n×s

matrix P which specifies the distribution of n parallel cell-probes, caus-
ing maximum contention max1≤i≤n,1≤j≤s qi ·Pt(i, j), and returning expected∑s

j=1 max1≤i≤n Pt(i, j) cells after coupling.
The adversary always chooses the potential query distribution q so that

all random cell-probes with low contention (i.e. P with qi·max1≤j≤s Pt(i, j) ≤
φ∗ for all i) return limited amount of information after coupling (i.e. having
small

∑s
j=1 max1≤i≤n Pt(i, j)). However, by the assumption, after t∗ steps,

the algorithm must have acquired an adequate amount of information to
determine the queries. This gives us the lower bound on t∗.

Proof of Theorem 20. Given the algorithm A′′ described in Lemma 21,
we will bound the speed at whichA′′ gathers information. Due to Lemma 21,
A′′ is a decision tree in which the current node of depth (t − 1) has Nt :=
2Ct−1 children, each of which corresponds to a next probe specification Pt.
We number these Pt by u ∈ [Nt] and denote each as P (u)

t , where u can
be interpreted as the bit string received by A′′ at round t − 1. We then
inductively bound the next Ct.
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Define an Nt × n matrix M (t) as that M (t)(u, i) := φ∗

maxj P
(u)
t (i,j)

. Each

row of the matrix M (t) corresponds to a possible next probe specification.
We say that the stochastic vector q violates row u of M (t) if there exists
1 ≤ i ≤ n, such that M (t)(u, i) < qi. Note that if row u of M (t) is violated
by q, then according to (2), the next probe specification cannot be P (u)

t .
Let rt :=

√
5t∗φ∗sn lnNt . We say that a row u of M (t) is good if there

exists R ⊆ {1, 2, . . . , n} such that |R| = rt and
∑

i∈RM
(t)(u, i) ≤ φ∗s.

We claim that if a row u is not good, then for the corresponding P (u),
it holds that

s∑
j=1

max
1≤i≤n

P
(u)
t (i, j) ≤ rt. (6)

The proof is as follows: If a row u of M (t) is not good, then by defini-
tion, for any R of size rt,

∑
i∈RM

(t)(u, i) > φ∗s, thus for any R′ that∑
i∈R′

1

maxj P
(u)
t (i,j)

≤ s, it must hold that |R′| < rt, therefore by Lemma 28,

it holds that
∑s

j=1 max1≤i≤n P
(u)
t (xi, j) ≤ rt.

By (6) and (3), the amount of information brought by a set of probes
P

(u)
t where u is a bad row in M (t), is bounded by brt bits. We show by an

adversary argument that there exists q for which A′′ always chooses probes
corresponding to bad rows. At each round t, the adversary always chooses
some q that violates all of the good rows in M (t). According to Lemma 27,
the adversary can do so as long as t ≤ t∗. Setting ε = 1

t∗ and δ = φ∗s in
Lemma 27, in each round, the adversary can increase the value of some qi so
that

∑n
i=1 qi is increased by at most 1

t∗ , thereby violating all good rows in the
current M (t). Thus before round t∗, the vector q is always stochastic. Note
that increasing the value of qi will never make a violated row non-violated,
so it will not make the adversary inconsistent.

Against such an adversary, at each round t, A′′ can only choose a probe
specification P

(u)
t where u is a bad row in M (t), according to Claim (6),

which implies that

s∑
j=1

max
1≤i≤n

Pt(i, j) ≤ rt =
√

5t∗φ∗sn lnNt =
√

5t∗φ∗snCt−1 ln 2 .

Due to (3), E[Ct | . . .] ≤ b ·
∑

j maxi Pt(i, j) ≤
√

(5 ln 2)b2t∗φ∗snCt−1,
where the expectation is conditioned on all previous rounds of communica-
tion. Therefore the following recursion holds for the sequence of random
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variables C1, C2, . . . , Ct:

E[Ct | Ct−1] ≤
√

(5 ln 2)b2t∗φ∗snCt−1 .

The square root function is concave, thus by Jensen’s inequality, it holds for
the unconditional expectation that

E[Ct] = E[E[Ct | Ct−1]]

≤ E
[√

(5 ln 2)b2t∗φ∗snCt−1

]
≤

√
(5 ln 2)b2t∗φ∗sn · E[Ct−1] .

Before the first probe, q is unknown to A′′, thus due to (2), for any i, j,
P1(xi, j) ≤ φ∗, therefore E[C1] ≤ b·

∑
j maxi P1(xi, j) ≤ bφ∗s. Let a1 := bφ∗s

and a := (5 ln 2)b2t∗φ∗sn. The following recursion holds for E[Ct] that

E[C1] ≤ a1;

E[Ct] ≤ (a · E[Ct−1])
1
2 .

By induction, E[Ct] ≤ a21−t

1 a1−21−t
.

After t∗ rounds, the expected total number of bits received by A′′ is at
least n · 2−2t∗ , therefore

n · 2−2t∗ ≤
∑
t≤t∗

E[Ct] ≤
∑
t≤t∗

a21−t

1 a1−21−t ≤ a1a
1−2−t∗

.

With the assumption that b ≤ Polylog(n) and φ∗ ≤ Polylog (n)
s , it holds that

a1 ≤ Polylog(n) and a ≤ n · Polylog(n). Solving the above inequality, we
have that t∗ ≥ log logn− o(log log n) = Ω(log log n). Theorem 20 is proved.

5. Conclusion

In this paper, we propose to study the memory contention caused by
concurrent data structure queries. To study the problem, we introduce a
measure of contention to the classic cell-probe model of static data struc-
tures. We show that if all positive queries are equally probable and sim-
ilarly all negatively are equally probable, then there exists a static dictio-
nary which answers membership queries with asymptotically optimal per-
formance of time, space and contention. For the general case that the query
distribution is arbitrary, we show that for all data structure problems with
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non-degenerating VC-dimensions, if the randomness is used only for balanc-
ing the probes, then even with unbounded space, the time and contention
cannot be both optimal.

A possible future direction is to remove the assumption of independent
cell-probes in the lower bound. Note that we only rely on this assumption
to make sure that the contention constraint of (2) holds conditioning on
any particular sequence of previous cell-probes, which is required by the
adversary argument. We suspect that with a more careful analysis, this
assumption can be removed, which would imply that the lower bound holds
not only for the randomized data structures that use the randomness only
for balancing probes, but also for the true randomized data structures where
the randomness is also involved in the computation of queries.

Another interesting and perhaps more realistic future direction is to
study the contention caused by the updates in dynamic data structures.
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