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ABSTRACT
We prove that with high probability a skip graph contains
a 4-regular expander as a subgraph, and estimate the qual-
ity of the expansion via simulations. As a consequence skip
graphs contain a large connected component even after an
adversarial deletion of nodes. We show how the expansion
property could be used to sample a node in the skip graph
in a highly efficient manner. We also show that the expan-
sion property could be used to load balance the skip graph
quickly. Finally it is shown that the skip graph could serve
as an unstructured P2P system, thus it is a good candidate
for a hybrid P2P system.

C.2.4 [Computer Communication Networks]: Distributed
Systems.

General Terms: Algorithms, Reliability, Theory

Keywords: Expansion, P2P.

1. INTRODUCTION
Skip graphs [6] or SkipNets [11] are randomized distributed

data structures designed for use in peer-to-peer (P2P) stor-
age systems. Like Distributed Hash Tables (DHTs), skip
graphs scale gracefully, and offer excellent query complex-
ity [18]. Skip graphs have an advantage over DHTs in the
sense that they directly support range queries, while DHTs
provide exact search only. Much of the usefulness of skip
graphs depends on their properties as random graphs. It was
previously shown [6] that (with high probability) skip graphs
have expansion ratio Ω(1/ log n): every subset of m ≤ n/2
nodes of a skip graph has Ω(m/ log n) neighbors. This bound
is surprisingly low given that skip graphs have average de-
gree O(log n), but experimental examination of small cases
suggested it was the best possible.
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In this paper we prove that with high probability a skip
graph has an expansion ratio of Ω(1): every subset of m ≤
n/2 nodes has Ω(m) neighbors. In fact, we prove a much
stronger result: with high probability, a skip graph contains
a degree-4 regular expander as a subgraph; i.e., it contains
a degree-4 regular subgraph with expansion ratio Ω(1). The
edges of this expander for each node can be computed using
only local information in O(1) expected time and O(log n)
time with high probability. Consequences of the embedded
expander (which are analyzed in Sections 3 and 4) include:

• Fault tolerance: The expansion property is equiva-
lent to the property that a deletion of k nodes may iso-
late from the primary component at most O(k) nodes.
In other words, even if a constant fraction of the nodes
are deleted by an adversary, still a constant fraction
of the nodes would remain connected in a single com-
ponent.

• Efficient sampling: A random walk in an expander
graph quickly converges towards the stationary distri-
bution. This could be used in order to sample uni-
formly a random node. We present several sampling
algorithms and show that they are much faster than
the currently best known algorithms.

• Low hitting times: Random walks on expanders
have the property of hitting a large set of nodes fast
and with high probability. This can be used for a va-
riety of applications such as load balancing, gathering
statistics on the nodes of the skip graph, and for find-
ing highly replicated data items. It is known that un-
structured P2P systems which are expanders permit
more efficient searches than simple flooding [10]. The
skip graph therefore is shown to be competitive with
unstructured P2P systems, thus making it an excellent
candidate for a hybrid P2P system.

1.1 Comparison with previous work

Expanding networks.The advantages of an expanding topol-
ogy are well known, and the literature is abundant with
variations of expanding networks. In the context of dynamic
P2P networks we are aware of only two previous approaches.
Naor and Wieder [20] build an overlay network that emu-
lates the Margulis [19] explicit construction of expanders.
The quality of the expansion property depends upon the



load balancing of the i.d. selection scheme. The expanding
network itself does not support a lookup functionality and
assumes the existence of some external lookup. The main
advantage of the construction in [20] is its guaranteed ex-
pansion. Its main drawback compared to the present work
is that it has a rather large overhead in maintaining the
network and keeping the i.d. selection well balanced, thus
making it an appealing theoretical solution yet somewhat
unpractical.

The second suggestion for an expanding overlay network
was made by Law and Siu [15]. They suggest building d
random Hamiltonian cycles, which have an optimal spectral
gap w.h.p. and are thus expanding [8]. The main advantages
of this scheme are its relative simplicity and its optimality in
the sense that w.h.p. the graph will have the (almost) largest
possible spectral gap with respect to the degree. The con-
struction does not support a lookup operation.1 Their con-
struction also needs a sampling protocol as a primitive, and
assumes that samples are obtained by performing a random
walk. But the uniformity of the distribution produced by the
random walk depends on the expansion, while the expansion
depends on the uniformity. This mutual dependency means
that an error in the early stages of the construction may
accumulate and ruin the expanding property. In contrast,
the expansion in our construction depends upon the ran-
dom bits generated independently by each node separately,
so there is no mutual dependency between the correctness
of the join algorithm and the expansion. Furthermore, it
should be noted that Law and Siu’s construction can easily
be implemented on top of the skip graph using the sam-
pling algorithm of Section 3, obtaining the best properties
of both constructions. Indeed this is implicitly done by Zat-
loukal and Harvey [24] which build a variant of skip graphs
with two random Hamiltonian cycles.

Sampling schemes.In the context of P2P systems, a ran-
dom walk sampling scheme was previously suggested by Law
and Siu [15] (as mentioned above) and by Gkantsidis [10].
Obtaining good samples using such random walks requires
a priori knowledge of the spectral gap of the graph. In Sec-
tion 3.2, we show that the spectral gap of the skip graph is
well concentrated and therefore can be known in advance,
so that random walks work well in a skip graph.

A different sampling scheme for DHTs was suggested by
King and Saia [14]. Their scheme yields an exact uniform
distribution and runs in expected logarithmic time. Recent
work by King, Lewis and Saia [13] shows that the expected
running time is at least 11 log n. Empirical testing shows
that our algorithm runs much faster, albeit at the cost of
slight deviations from uniformity. A running time of 2 log n
produces a sample from a distribution that is close enough to
uniform for most conceivable applications (see Section 3.2).

1.2 A brief review of skip graphs
In a skip graph, each node represents a resource to be

searched. Node x holds two fields: the first is a key, which
is arbitrary and may be the resource name. Nodes are or-
dered according to their keys. We assume for notational
convenience that the keys are the integers 1, 2, . . . , n; as the
keys have no function in the construction other than to pro-

1In order to support lookup their construction would need
logarithmic degree and then a lookup takes Θ(log2 n) hops.

vide an ordering and a target for searches there is no loss
of generality. The second field is a membership vector m(x)
which is for convenience treated as an infinite string of ran-
dom bits chosen independently by each node; in practice,
it is enough to generate an O(log n)-bit prefix of this string
with overwhelming probability.

The nodes are ordered lexicographically by their keys in
a circular doubly-linked list Sǫ so that node i is connected
to i− 1 mod n and i + 1 mod n. For each finite bit-vector
σ, an additional circular doubly-linked list Sσ is constructed
by taking all nodes whose membership vectors have σ as a
prefix, and linking adjacent nodes in the lexicographic key
order. More formally, let m(x) ↾ k be the restriction of m(x)
to its first k bits; then nodes x < y are connected by an edge
if there exists some k such that m(x) ↾ k = m(y) ↾ k, and
either (a) m(z) ↾ k 6= m(x) ↾ k for each z between x and y,
or (b) m(z) ↾ k 6= m(x) ↾ k for all z > x and all z < y.

In analyzing a skip graph as a graph, we treat each pair
of links as a single undirected edge, and take the union of
the resulting edge sets for all lists Sσ.

2. MAIN RESULT
We will show that skip graphs have an edge expansion of

some small ǫ > 0 with high probability. Throughout the
paper let G denote a skip graph of n vertices. For a vertex
set U define δ(U) to be the number of edges with exactly
one endpoint in U .

Theorem 2.1. With high probability2 the following event
occurs: G has a subgraph G′ of degree 4 such that for every
set U ⊂ V of size at most n

2
it holds that |δ(U)| ≥ ǫ|U |

(where ǫ > 0 is independent of n ).

Remark:.We do not state what is the largest ǫ for which
Theorem 2.1 is correct. Indeed, in the proof we are liberal
in making ǫ as small as necessary. A lower bound on the
expansion is obtained via simulations. See Section 3.2. Since
we deal with a bounded degree graph, edge expansion and
node expansion are equivalent.

The subgraph G′ consists of two types of edges. In a skip
graph, all the nodes are connected by the bottom-layer cy-
cle Sǫ. The graph G′ is the union of these cycle edges and
another set of edges, which we call bucket edges, that are
obtained by selectively including higher-level cycles as de-
scribed in Section 2.2. An important property of the bucket
edges is that the event that they expand a set is independent
from the event that the cycle edges expand a set, so the ef-
fect of each class of edges can be analyzed separately. The
idea of the proof is to show that the probability a set U ⊂ V
does not expand by the cycle edges and by the bucket edges
is sufficiently small.

2.1 The cycle edges
We show that for most sets the cycle edges alone suffice

to show expansion. The remaining sets expand due to the
bucket edges. For a set of vertices A denote by δ0(A) the set
of cycle edges which have exactly one end point in A. The
following Lemma is proven in [6]:

2Throughout the paper the term ‘with high probability’
stands for probability 1 − n−δ for some δ > 0



Lemma 2.2. In a n-node skip graph, the number of sets
A where |A| = m < n/2 and |δ0(A)| ≤ s is at most
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Take s to be ǫm for a sufficiently small ǫ. we have:
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(1)

2.2 The bucket edges
The bucket edges are obtained by partitioning the nodes

among a disjoint family of buckets, upper-level cycles Sσ

that are not too small.3 A cycle Sσ is a bucket if σ is a
minimal prefix for which |Sσ| ≥ 10 and either |Sσ0| < 10
or |Sσ1| < 10 (or both). Equivalently, the buckets are the
cycles obtained by repeatedly splitting cycles, starting with
the original cycle Sǫ, by adding one bit at a time to the
common prefix, stopping only when further divisions would
yield cycles that are too small. The minimum bucket size is
set to 10 for convenience in the proof, other values may be
chosen as well. In simulations, we show that a bucket size
of 4 appears to be the best choice.

We call the edges that create the cycles of each bucket
the bucket edges of the graph. The following observation
motivates the division into buckets: Consider a set A of
nodes. Whenever there exists a bucket which contains a
node in A and a node not in A, the bucket contributes at
lease one edge to δ(A). Our aim therefore is to prove that
with high probability there are at least ǫ|A| buckets that are
partially covered by A; i.e. that A hits at least one element
and misses at least one element from each bucket.

Lemma 2.3. With high probability for all 1 ≤ m ≤ n
2

the number of nodes in buckets which contain more than

100n
1
4 m−

1
4 nodes is at most m

10
.

Before proving Lemma 2.3, we show how to deduce Theo-
rem 2.1 given that the event described in the lemma occurs.
Let ǫ be a small constant. We calculate for how many sets
of size m the buckets do not contribute ǫm edges to the
expansion.

Call buckets which contain more than 100n
1
4 m−

1
4 nodes

large buckets. The rest of the buckets will be referred to
as small. We do not count edges caused by large buckets
(thus overcounting the number of bad sets). According to
Lemma 2.3, there are at most m

10
nodes in large buckets,

therefore there are at most 2m/10 ways to place the nodes
in the large buckets. Since each bucket contains at least 10
nodes, there at most n/10 buckets. There are at most

`

n/10
ǫm

´

ways to choose the ǫm small buckets that do expand. Each

small bucket is of size at most 100n
1
4 m−

1
4 . It follows that

there are at most
`

ǫ100n
1
4 m

3
4

m

´

ways to place the vertices in
these ǫm small buckets. The remaining vertices are scattered
in other buckets, with the restriction that each such bucket
is either not hit by the set or is covered completely by it.
Each bucket is of size at least 10, therefore there are at most
`

n/10
m/10

´

ways to choose the location of the rest of the vertices.

We conclude that the total number of bad sets is bounded
by:

3Recall that Sσ is the doubly-linked list of all nodes whose
membership vectors have σ as a prefix.
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[for small enough ǫ]

≤ exp
“

0.8m ln
n

m
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In the first inequality we use the fact that
`

n
m

´

≤
`

ne
m

´m
.

The total number of sets of size m is
`

n
m

´

≥
`

n
m

´m
. Inequal-

ity 1 states that the number of sets which are not expanded

by the cycle edges is at most
`

n
m

´0.1
. Inequality 2 states that

the probability a set of size m is not expanded by the bucket

edges is at most
`

n
m

´

−0.2
. The key observation is that the

large cycle is independent from the division into buckets. In
other words, all bad sets with respect to the large cycle are
equally likely to be expanded by the bucket edges. We con-
clude that the probability there exists a set of size m which

is not expanding is at most
`

n
m

´

−0.1
. The proof of Theo-

rem 2.1 is completed by union bounding these probabilities
for all 2 ≤ m ≤ n

2
and the error probability of Lemma 2.3.

We now proceed with the proof of Lemma 2.3:

Proof of Lemma 2.3. Let M denote all the prefixes of
length ⌊log n − log log n − 3⌋, so that n

16 log n
≤ |M | ≤ n

8 log n
.

For every σ ∈ M , let Bσ denote all the nodes that have σ
as a prefix.

Lemma 2.4. For every σ ∈ M , with high probability log n ≤
|Bσ| ≤ 24 log n.

Proof. This is a simple balls and bins argument. For
each σ ∈ M , |Bσ| has the Binomial distribution and 8 log n ≤
E[|Bσ|] ≤ 16 log n. By Chernoff’s bound:

Pr[|Bσ| ≤ log n] ≤ exp

„

−E[|Bσ|]
4

«

≤ 1

n2

Pr[|Bσ| ≥ 24 log n] ≤ exp

„

−E[|Bσ|]
8

«

≤ 1

n

We conclude that w.h.p. all buckets are of size at most
24 log n, therefore the lemma is correct if m ≤ n

log4 n
. As-

sume to the contrary that m > n
log4 n

. Suppose further

that during the procedure of creating the buckets we have
a bucket of size ℓ which corresponds to the prefix σ. The
bucket does not split into two buckets if there are less than
10 nodes with prefix σ.0 or less than 10 nodes with prefix
σ.1. Conclude that the probability a bucket of size ℓ is not
partitioned into two buckets of size at least 10 is

2
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2−ℓ ≤ 5ℓ102−ℓ.



Let pk denote the probability an element belongs to a bucket
of size at least k. Once a node participates in more than n−k
partitions, it must belong to a bucket of size smaller than k,
so we have:

pk ≤
n
X

ℓ=k

5ℓ102−ℓ ≤ 20k102−k (3)

According to Lemma 2.4, we can divide the nodes into sets
according to the first ⌊log n − log log n − 3⌋ bits of their pre-
fix. Each set is of size at most 24 log n, and there are at most

n
8 log n

such sets. Denote by Zi the random variable counting
the number of nodes in the ith set which will eventually be
in a bucket of size at least k. We know the following:

1. For each i it holds that 0 ≤ Zi ≤ 24 log n.

2. All the Zi are mutually independent.

3. Inequality (3) implies that E[
P

Zi] = npk ≤ 20nk102−k.

We use the following version of the Chernoff/Hoeffding bound:

Theorem 2.5. For mutually independent random vari-
ables Z1, . . . , Zℓ, where Zi ∈ [a, b]

Pr

"˛

˛

˛

˛

˛

ℓ
X

i=1

Zi − E

"

ℓ
X

i=1

Zi

#˛

˛

˛

˛

˛

≥ ℓδ

#

≤ 2e
−

2δ2

(b−a)2
·ℓ

Set k = 100
`

n
m

´ 1
4 and µ = E[

P

Zi] ≤ 20nk102−k and we
have:

Pr
h

X

Zi ≥ m

10

i

≤ Pr
h˛

˛

˛

X

Zi − µ
˛

˛

˛ ≥ µ − m

10

i

We can use Theorem 2.5 by setting (b − a) = 24 log n and
ℓ = n

24 log n
and δ = ( m

10
− µ) log n

n
. We have:

≤ 2 exp

„

− 1

242 log2 n
· 2
“m

10
− µ

”2 log2 n

n2
· n

24 log n

«

≤ 2 exp

„

−
“m

10
− µ

”2

· 1

243n log n

«

(4)

Next we bound µ as a fraction of m. Substitute k = 100
`

n
m

´ 1
4

and µ ≤ 20nk102−k and we have::

m

10
− µ ≥ m

10
− 2000n

“ n

m

” 10
4 · 2−100( n

m )
1/4

≥ m

„

1

10
− 2000 · 24 · 2−100

«

≥ 0.09m

Now we complete the calculation of Equation (4) using
the assumption that m ≥ n

log4 n
.

≤ 2 exp

„

−(0.09m)2 · 1

243n log n

«

≤ 2 exp
“

− n

20 · 105 ln5 n

”

The proof of Lemma 2.3 is completed by union bounding for
all m.

2.3 Identifying the bucket edges:
Each node can identify its bucket edges in O(1) time in

expectation and O(log n) time with high probability via the
following procedure: initially each node sets its maximal
edge as a bucket edge; i.e., assumes that the prefix of its
bucket is the longest prefix for which it has an edge. Next
each node performs a walk along the bucket’s cycle to verify

that the bucket’s size is large enough i.e. that the bucket
contains at least 10 nodes4. While performing this check,
the node updates the other nodes along the cycle about the
bucket edge. Now there are a few cases:

1. If the bucket is of size less than 10 then the prefix of
the bucket is too long. So the node picks the next
longest edge as its bucket edge and again counts the
size of the bucket’s cycle.

2. It may be that even though the bucket’s size is more
than 10 nodes, a node is informed that its current
bucket edge is not valid and that it has to reduce
the length of the bucket edge. This case occurs if the
bucket which corresponds to the same prefix with the
last bit converted is too small; i.e. a different node
performed case number (1).

3. If the bucket size is at least 10 and case (2) does not
occur then the bucket edges are decided upon.

The running time of the algorithm is in the order of the
size of the bucket, therefore the algorithm runs in expected
constant time, and in logarithmic time with high probability.

3. HOW TO SAMPLE A RANDOM NODE
A random walk on a regular expander mixes rapidly, and

may be used to sample a node in the skip graph efficiently
and simply. In the following it is convenient to think of dis-
tributions over the nodes as vectors. We say that ~p is a dis-
tribution vector if pi ≥ 0 for all 0 ≤ i < n, and

P

pi = 1.
Let ~u denote the probability vector of the uniform distri-
bution over the nodes; i.e. ~u = ( 1

n
, . . . , 1

n
). Let ~p be some

arbitrary distribution over the nodes. A useful measure for
the distance between two distribution is the variation dis-
tance5 which is defined to be half of the L1 distance between
their vectors; i.e. ∆(~p, ~u) = 1

2
||~p−~u||1 = 1

2

P

v |pv − 1
n
|. As-

sume a random walk is performed on a d−regular graph,
starting from some arbitrary initial distribution ~p (distribu-
tion ~p may of course put all its weight on a single vertex).
Let A be the adjacency matrix of the d−regular graph and
let Â = 1

d
A. The largest eigenvalue of A is d (and ~u is an

eigenvector), so the largest eigenvalue of Â is 1. Denote by

α the second largest eigenvalue of Â. Now for every integer
t the vector Ât~p is the distribution over the nodes after
performing t steps of a random walk. It holds (see [2]) that
if the graph has a node or edge expansion which is bounded
away from 0 then α will be bounded away from one.6 The
following theorem is well known (see for instance [1]):

Theorem 3.1. For every initial distribution ~p, it holds
that

1. ||Ât~p− ~u||1 ≤ √
nαt · ||~u− ~p||2 where || · ||i stands for

the Li norm.

2. If t > log(1/δ)
log(1/α)

then for every node v it holds that |(Ât~p)v−
1
n
| ≤ δ. In particular, if δ = 1

2n
then the probabil-

ity each node is sampled by the walk is in the range
[ 1
2n

, 3
2n

].
4If we allow buckets of size 2 then this part is not necessary
5There are many ways to define distance between distribu-
tions. Variation distance is the most useful in our context.
6We slightly abuse notation. The statement is meaningful
only when discussing families of graphs with n → ∞ and
not a single graph, which is of course our case.



Theorem 3.1 combined with Theorem 2.1 implies that a
long enough random walk along the subgraph formed by the
cycle edges and the bucket edges yields an approximately
uniform sample. The length of the random walk may de-
pend upon the application. If it is required that each node
be sampled with probability which is within factor 2 of uni-
form then, by the second assertion of the theorem, a walk of
length 1+log n

log(1/α)
suffices. For a variation distance between the

sample and the uniform distribution bounded by ǫ, accord-

ing the the first assertion a walk of length t = log n+2 log(1/ǫ)
2 log(1/α)

is enough (note that if ~p puts all its weight on one node then
||~p − ~u||2 ≈ 1).

The running time to obtain a fixed variation distance de-
pends upon the second eigenvalue and upon log n. Simu-
lations show (see Section 3.2) that the second eigenvalue
is concentrated around 0.85. An estimation of log n could
be easily derived through simple procedures, see for exam-
ple [17,21].

3.1 Speeding up the mixing time
Theorem 2.1 refers to a constant degree subgraph. One

might hope that the logarithmic degree of the skip graph
implies that using more edges would significantly decrease
the mixing time. Unfortunately this is not the case.

Lemma 3.2. With high probability there exists a set A ⊂
V such that n

2
− log n

√
n ≤ |A| ≤ n

2
, and |δ(A)| ≤ |A|.

Proof. For τ ∈ {0, 1} Let Aτ be the set of vertices that
have τ as the first bit of their membership vector. Assume
w.l.o.g that |A0| ≤ |A1|. We have that w.h.p. |A0| ≥ n

2
−

log
√

n and that |δ(A0)| ≤ |A0|.

Lemma 3.2 implies that the edge expansion of the entire
skip graph is O(1), so for every subgraph of the skip graph,
the mixing time is bounded by Ω(log n). Furthermore since
the conductance of the set A0 is O( 1

log n
) the mixing time of

the entire skip graph is Ω(ln n ln ln n). It may be the case
however that adding a small set of edges to the subgraph
would improve the mixing time by a constant.

3.1.1 Sampling inO(log n/ log log n) time:
The unique properties of the skip graph, in particular its

support for the lookup operation, can be used to hot-start a
random walk, and thus reduce the complexity of sampling.
Let ~u denote the uniform probability. In the following we
show a procedure that for a given δ > 0 samples a node with
distribution ~p such that ||u−p||1 ≤ δ. The expected running
time is O(log n/ log log n) where the constant depends upon
δ. The procedure is as follows:

1. Choose a vector m of 3 log n random bits. look up the
node7 with the longest prefix which agrees with m.
Call that node v.

2. Perform a random walk according to the bucket scheme,
starting at v and of length O(log n/ log log n).

Let ~p be the distribution formed by the first phase of the
algorithm. Our goal is to bound ||Ât~p − u||1 when t =
O(log n/ log log n). Let ~ǫ = ~u − ~p. Theorem 3.1 states

that ||Ât~p − u||1 ≤ √
nαt||~ǫ||2. We calculate a bound on

||~ǫ||2. First note that with high probability it holds that

7In case of several such nodes, any one of them suffices.

pv ≤ 2 log n
n

for every node v. This is true since w.h.p. every
vector of length log(n/2 log n) is the prefix of at least one
node. We conclude that:

||~ǫ||2 ≤
s

n ·
„

2 log n

n

«2

≤ 2 log n√
n

and that ||Ât~p−u||1 ≤ 2αt log n so in order for the distance

to be at most δ we need t ≥ log( 2 log n
δ )

log(1/α)
. For example, if we

take δ = 1/100 and α = 0.85 we get that t ≥ 33+4.3 log log n.
As before, it is important to note that these are upper-
bounds only. It may be that the walk mixes much faster.
Indeed in Section 3.2 we show that once a random prefix is
reached, a very short walk yields an almost uniform sample.

The complexity of Step (1) depends upon the algorithm
used for searching a prefix. It takes O(log n) steps w.h.p. to
find a prefix when the node is searched greedily (this is ba-
sically identical to the algorithm for finding the edges when
joining). We show it takes expected O(log n/ log log n) steps
to look up a prefix when the Neighbor of Neighbor algorithm
of Manku, Naor and Wieder [18] is used. Assume that each
node is aware of the prefixes of its neighbor’s neighbors (i.e.
O(log2 n) nodes). Each step of the algorithm (referred to as
a NoN step) the message is passed to the neighbor’s neigh-
bor with the longest prefix which matches the target (ties
broken arbitrarily); i.e. each NoN step is composed of 2
routing steps.

Theorem 3.3. For every binary vector σ, the expected
time it takes the NoN algorithm to find a node with the

longest prefix which agrees with σ is O
“

log n
log log n

”

.

We only sketch the proof of Theorem 3.3; the complete
proof adds much tedious detail but few insights.

Proof Sketch. Let t be the size of the longest prefix
of σ which is the prefix of some node in the graph, so the
algorithm seeks a node with prefix σt. We may assume
that t is Θ(log n), since a shorter vector only helps the al-
gorithm. Assume the current node v has σk as a prefix.
If t − k ≤ c log n

log log n
(for some constant c) then clearly ex-

pected O
“

log n
log log n

”

additional steps suffice to bring us to

the target. Now, if t − k > c log n
log log n

then v has expected

Ω(log n/ log log n) neighbors which correspond to prefixes of
length at least k. Each of which has one neighbor which cor-
responds to a prefix of length k. So v is aware of expected
Ω(log n/ log log n) nodes with σk as a prefix. Now had the
prefixes of all these nodes been independent then typically
one of them should have a prefix of σk+log log n. So typi-
cally each NoN step k increases by log log n and therefore

after O
“

log n
log log n

”

steps the target is reached. Of course, the

neighbors of neighbors of a node are not entirely indepen-
dent; however, with careful analysis it can be shown that
these dependencies are insignificant.

3.2 Empirical evidence
We ran simulations in which the bucket edges and cycle

edges were constructed. We calculated the second eigen-
value of the Laplacian (which is the gap between the first
and second eigenvalue of the adjacency matrix). In Figure 1
we sketch the spectral gap as a function of log n. Each entry
is the average of 5 simulation only. The first observation is



Walk minimum maximum variation
Length weight weight distance

1 log n 0.1 990 0.49
1.5 log n 0.42 162 0.185
2 log n 0.74 35 0.059
2.5 log n 0.9 7.7 0.018
3 log n 0.96 3.21 0.0055
3.5 log n 0.99 1.33 0.0015
4 log n 0.996 1.12 0.0005

Table 1: Quality of mixing when n = 218 and buckets
are of size at least 4.

that the value of the second eigenvalue is extremely concen-
trated (which is why the average of 5 simulations is enough).
When n = 256 the difference between the smallest gap mea-
sured and the largest was under 0.1 for all different bucket
sizes. When n = 65536 the difference between the smallest
and largest measurement was less than 0.03. Simulations
show that the largest gap is achieved when the minimum
bucket size is 4. In this case the spectral gap is roughly
0.495. The value of α from Theorem 3.1 could be calculated
as: 4−0.495

4
≈ 0.87. The second eigenvalue of a Ramanujan

graph, that is, a graph with the largest possible spectral gap
is bounded by 2

√
3 ≈ 3.46. In other words the largest spec-

tral gap we could have hoped for is 4 − 3.46 = 0.54. In this
case the value α is 3.46

4
= 0.866, so the value of α we achieve

is about 0.004 from optimal.
Next we checked the quality of the mixing by calculat-

ing the distribution over the nodes when starting from some
arbitrary vertex. The vector Ât~p was explicitly calculated
when ~p puts weight 1 on the first vertex. The simulations
have n = 218 and bucket size of at least 4. Table 1 sum-
marizes the results. The minimum weight column indicates
the probability weight of the node least likely to be sampled,
as a fraction of 1

n
. The maximum weight is the analog for

the heaviest vertex. When the walk is of length 2.5 log n the
variation distance from uniform is only 0.018 and all ver-
tices are sampled with probability at least 0.9 1

n
. When the

walk is of length 3.5 log n then all vertices are sampled with
probability at most 1.33 1

n
.

It is important to note that even though the bucket edges
achieve an almost optimal spectral bound, in practice they
may not necessarily be the optimal choice as far as mixing
is considered. For instance it may be that a random walk
which uses several bucket sizes together would mix faster.
When designing such heuristics one must bare in mind that
the mixing time is not monotone in the number of edges, in-
deed the entire skip graph mixes slower than the expanding
subgraph.

Random walk with a hot start:.We simulated a random
walk starting from a random prefix. Table 2 summarizes
the results. It could be seen that once a random prefix
is reached, a random walk of length 7 = ⌊0.4 log n⌋ samples
each node with probability at most 1.71 1

n
and at least 0.67 1

n
.

Thus, this is by far the fastest known sampling algorithm.

Estimating the expansion.The simulations above may be
used to give lower bound on the expansion of the graph. The
following theorem is proven in [3]:

Walk minimum maximum variation
Length weight weight distance

2 ≈ 0.1 log n 0.05 4.95 0.14
4 ≈ 0.2 log n 0.41 2.75 0.08
7 ≈ 0.4 log n 0.67 1.72 0.04
11 ≈ 0.6 log n 0.83 1.29 0.017
14 ≈ 0.8 log n 0.9 1.16 0.01
18 = log n 0.95 1.08 0.005

Table 2: Quality of hot-started mixing when n = 218,
buckets are of size at least 4 and the walk starts from
a random prefix.

Theorem 3.4. If λ is the second largest eigenvalue of a
d−regular graph G with n vertices, then the node expansion

of G is at least 2(d−λ)
3d−2λ

.

Plugging in d = 4 and λ = 4−0.495 = 3.505 we get that the
node expansion of the expanding subgraph is at least 0.18.
The bound in Theorem 3.4 is probably not tight in our case,
furthermore, since the expansion is monotone in the number
of edges, we expect the expansion of the skip graph to be a
larger constant.

3.3 The maximal edge heuristic
Another possible subgraph to consider is the one com-

posed of the cycle edges and maximal edges. An edge (u, v)
is said to be maximal if for either u or v it corresponds to the
longest prefix that yields a nonempty cycle. Given Theorem
2.1, it is natural to conjecture that a random walk on these
edges would mix rapidly. The main advantage of this scheme
is that the maximum edge of each node is immediately iden-
tifiable without any overhead. A disadvantage is that the
degrees of nodes in the resulting subgraph are not uniform,
which produces a nonuniform stationary distribution.

However, this nonuniform distribution can be corrected by
applying rejection sampling to the more frequently sampled
high-degree nodes. We give empirical evidence that this
heuristic converges quickly, achieving a distribution within
1% of uniform in just 5 lg n steps.

Figure 2 plots the degree distribution of three different
graph sizes. Each plot is the average of five simulations.
The results of the simulations were very well concentrated.
About 97.5% of the nodes have degrees 3 or 4. Degree 5
nodes are about 2.5% of the nodes. The remaining degrees
could be found in less than 0.1% of the nodes, and in no
simulation have we encountered a node with degree larger
than 7. The average degree in all 15 simulations was between
3.275 and 3.285. Nodes with higher degree have a higher
probability of being sampled by the walk. As mentioned
previously, this can be fixed using rejection sampling based
on the node degrees: when a random walk ends at a node
of degree d, it samples the node with probability 3

d
(which

is 1 most of the time) and initiates a new random walk with
the remaining probability. The expected length of the walk
increases by a factor of approximately 16/15.

The mixing time is estimated by calculating the second
eigenvalue of the Laplacian. Figure 3 charts the spectral
gap of the Laplacian as a function of the graph size. Each
value is the average of 15 simulations. It could be seen that
a spectral gap exists, and stands at about 0.256. The follow-
ing theorem relates the spectral gap of a non-regular graph
to the mixing time (see [7]). Denote by ~π the stationary
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Figure 1: The spectral gap of the Laplacian as a function of log n, using various values for the
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distribution of the random walk. Denote by λ the second
eigenvalue of the Laplacian matrix and by d(x) the degree
of node x.

Theorem 3.5. For every graph with a normalized adja-
cency matrix Â and any initial distribution ~p,

max
x

|(Ât~p)x − ~πx| = ||Ât~p − ~π||∞ ≤ maxx

p

d(x)

miny

p

d(y)
· e−tλ

Plugging in a maximum degree of 6, minimum degree of
2 and λ = 0.256, we get that if we want each node to be
sampled with probability within 1

2n
, the length of the walk

should be at least 4.85 + 5.64 log n. This quantity must
be further multiplied by 16

15
to account for the extra walks

needed for skewing the distribution to the uniform one. We
conclude that the running time is about 5 + 5.75 log n. It
should be noted that Theorem 3.5 is not tight, and a shorter
walk would probably suffice. Indeed, we ran simulations and
checked the variation distance between the random walk
sample and the stationary distribution (which is not uni-
form, but which can be sampled to obtain a uniform distri-
bution as discussed previously). The results are summarized
is Table 3. A walk of length 5 log n yields a variation dis-
tance of less than 1

100
from stationary.
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Figure 3: The spectral gap of the Laplacian as
a function of log n, using the maximum edge
heuristic.

Walk Length variation distance

1 log n 0.72
2 log n 0.29
3 log n 0.095
4 log n 0.025
5 log n 0.007

Table 3: The variation distance between the ran-
dom walk distribution and the stationary distribu-
tion, when n = 218,and the maximum edge is used.

4. APPLICATIONS
Consequences of expansion in skip graphs can be divided

between those that use the expansions directly, like fault tol-
erance, and those that depend on the resulting rapid mixing
of random walks. We discuss both below.

4.1 Fault tolerance
Aspnes and Shah [6] showed via simulations that skip

graphs are highly resilient to random failure of nodes. The
expansion property of skip graphs gives the theoretical sup-
port to these empirical findings.

When adversarial faults are considered we have the fol-
lowing conclusion: If k nodes are deleted in an adversarial



manner, then the largest connected component would have
Ω(n − O(k)) nodes. In other words, even if an adversary
deletes a constant fraction of nodes, still a constant fraction
of the nodes would remain connected.

4.2 Hitting large sets
As seen, a random walk of length O(log n) in an expander

yields a random point. One of the most interesting and ap-
pealing properties of expander graphs is that in some sense a
random walk of length o(log n) yields Θ(log n) random sam-
ples. Clearly the nodes hit by the random walk are highly
correlated, yet for the purpose of hitting a set of nodes,
they behave as if they were independent random samples.
The following theorem was proven by Ajtai, Komlós and
Szemerédi [1]; it can also be found in Alon and Spencer’s
book [4].

Theorem 4.1 (Ajtai, Komlós and Szemerédi). Let
G = (V, E) be a d−regular graph on n vertices, and suppose
that each of its eigenvalues but the first one is at most λ. Let
C be a set of cn vertices of G. Then, for every ℓ, the num-
ber of walks of length ℓ in G that avoid C does not exceed
(1 − c)n((1 − c)d + cλ)ℓ.

There are ndℓ walks of length ℓ, which means that if we pick
a random starting point for the walk, then the probability
of avoiding the set C is at most:

(1 − c)n((1 − c)d + cλ)ℓ

ndℓ

= (1 − c) ·
„

(1 − c)d + cλ

d

«ℓ

≤
„

(1 − c)d + cλ

d

«ℓ

We know that a random walk of length O(log n) reaches
a random point, therefore for any initial point, a random
walk of length ℓ + O(log n) avoids C with probability at

most
“

(1−c)d+cλ
d

”ℓ

=
`

1 − (1 − λ
d
)c
´ℓ

. Note that the prob-

ability the set C is avoided by log n independent samples is
(1− c)log n. The theorem states that this probability can be
achieved by a walk of length O(log n).

We use the random-walk property in a somewhat different
setting than the one described by Aspnes and Shah in [5].
We begin by briefly sketching this setting and then continue
with applications of random walks.

4.2.1 The skip graph as a peer-to-peer data storage
system

So far, we have assumed that each node of the graph rep-
resents a data item to be searched for. This allows for a
simple implementation of range queries over the data set.
Unfortunately, it also comes with a price: each data item is
put separately in the system and requires roughly O(log n)
communication links. Distributed Hash Tables which do
not support range queries group elements together such that
the total number of communication links is a function of the
number of servers rather than data items (c.f. [20,22,23,25]).
A natural way to group data items is to let each server hold a
contiguous segment of the key space. Each server puts only
one element of that segment in the skip graph (this data
item effectively serves as the key of the skip graph node),
and holds the rest in some internal data structure (which al-
lows range queries). Now each node corresponds to a server
in the system and not to a data item, and the capability to
range query the data set is preserved.

4.2.2 Load balancing
The problem with the construction above is that it might

be the case that different servers hold different fraction sizes
of the data, thus dividing the load unevenly. A large fraction
of the data set inflicts load not only due to the memory
needed to store the items, but also because a server which
holds many data items would be queried more often. It is
therefore desirable that nodes share the data items as evenly
as possible. Aspnes et al [5] and Karger and Ruhl [12]
suggest various algorithms to deal with this problem. The
algorithms they design apply a re-balancing mechanism that
involves heavily loaded nodes actively seeking lightly loaded
nodes. We take a different approach and suggest a simple
Join algorithm, which preserves load balancing as long as
the distribution from which data items receive their keys
does not change often.

The algorithm we suggest is very simple. A server that
wishes to join the skip graph performs a random walk of
length Ω(log n), recording the number of data items held by
each node it encounters. It then picks a segment in the key
space such that it splits the load of the most heavily loaded
of these nodes. Consider a set H of heavily loaded nodes.
According to Theorem 4.1, the probability H is hit by a
walk of length Ω(log n) is equal to the probability it would
be hit by Ω(log n) independent random samples.

We simulated the second, simpler scenario. In our simula-
tion we put 227 data items in a single node, and then added
218 nodes one by one. The kth node to enter sampled ln k
nodes uniformly and independently and split the load of the
heaviest sample. The resulting division of data items be-
tween the nodes was strikingly balanced. While the average
load is 29, no node had a load larger than 212. Clearly this
simulation oversimplifies the model: in particular, it does
not take into account deletion of nodes and the dynamics of
the data items themselves. Yet if we assume that the distri-
bution of data item names is fixed, then it is reasonable to
assume that the random walk would be a good load balanc-
ing heuristic. Testing the random walk algorithm in more
realistic scenarios is an important future goal.

4.2.3 Locating highly replicated data items
Assume that some data item is immensely popular and

appears at a large fraction of the nodes. Theorem 4.1 implies
that a random walk would hit a node holding the popular
item fast. It is shown in [16] that for popular data items an
exhaustive search (as in Gnutella) is more efficient than an
exact search using a DHT. It is shown in [10] that when the
underlying graph is an expander, a random walk is more
efficient than exhaustive search. We conclude that a skip
graph may serve as an excellent hybrid data structure; i.e.,
may serve as a structured and unstructured P2P system
simultaneously.

4.2.4 Gathering statistics
Assume we want to estimate what fraction of the skip

graph nodes run Linux, or more generally we want to es-
timate the fraction of nodes which have some property. A
natural approach would be to sample Θ(log n) nodes ran-
domly and use the sample to estimate the fraction. Typi-
cally a Chernoff bound is then used to show that the answer
is approximately correct w.h.p. David Gillman [9] proved
a theorem in the spirit of Theorem 4.1 and showed that
one random walk of length O(log n) may serve to produce



Θ(log n) random samples. In the following we let λ denote
the spectral gap of the normalized adjacency matrix (i.e.
1 − α), let C be a set of cn nodes.

Theorem 4.2. Let tk be the number of visits to C in k
steps of a random walk, starting from some arbitrary distri-

bution, then Pr[|tk − ck| ≥ γ] ≤ ne−
γ2λ
20k .

Note that ck is the expected number of visits in the set. It
follows that if c is a constant and k is O(log n) then w.h.p.
the estimation of c could be arbitrarily close to c itself.
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Deterministic simulation in LOGSPACE. In
Proceedings of the nineteenth annual ACM Symposium
on Theory of Computing (STOC), pages 132–140,
1987.

[2] Noga Alon. Eigenvalues and expanders.
Combinatorica, 6:83–96, 1986.

[3] Noga Alon and Vitali Milman. λ1, isoperimetric
inequalities for graphs and superconcentrators.
Journal of Combinatorial Theory, 38:73–88, 1985.

[4] Noga Alon and Joel H. Spencer. The Probabilistic
Method. John Wiley & Sons, 2000.

[5] James Aspnes, Jonathan Kirsch, and Arvind
Krishnamurthy. Load balancing and locality in
range-queriable data. In Twenty-Third ACM
Symposium on Principles of Distributed Computing
(PODC), pages 115–124, 2004.

[6] James Aspnes and Gauri Shah. Skip graphs. In
fourteenth ACM SIAM Symposium on Discrete
Algorithms (SODA), pages 384–393, 2003.

[7] Fan R. K. Chung. Spectral graph theory. Regional
Conference Series in Mathematics, American
Mathematical Society, 92:1–212, 1997.

[8] Joel Friedman. A proof of Alon’s second eigenvalue
conjecture. In Proceedings of the Thirty-Fifth ACM
Symposium on Theory of Computing (STOC), pages
720–724, 2003.

[9] David Gillman. A Chernoff bound for random walks
on expander graphs. Siam Journal on Computing,
27(4):1203–1220, 1998.

[10] Christos Gkantsidis, Milena Mihail, and Amin Saberi.
Random walks in peer-to-peer networks. In
Proceedings of IEEE INFOCOM, 2004.

[11] Nicholas J. A. Harvey, Michael B. Jones, Stefan
Saroiu, Marvin Theimer, and Alec Wolman. Skipnet:
A scalable overlay network with practical locality
properties. In Proceedings of USITS, USENIX., 2003.

[12] David Karger and Matthias Ruhl. Simple efficient load
balancing algorithms for peer-to-peer systems. In
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 36–43, 2004.

[13] Valerie King, Scott Lewis, and Jared Saia. On
algorithms for choosing a random peer. Unpublished
manuscript, 2005.

[14] Valerie King and Jared Saia. Choosing a random peer.
In Proceedings of the 23nd ACM Symposium on
Principles of Distributed Computing (PODC), pages
125–130, 2004.

[15] Ching Law and Kai-Yeung Siu. Distributed
construction of random expander graphs. In
Proceedings of IEEE INFOCOM, 2003.

[16] Boon Thau Loo, Ryan Huebsch, Ion Stoica, and
Joseph M. Hellerstein. The case for a hybrid p2p
search infrastructure. In 3rd International Workshop
on Peer-to-Peer Systems (IPTPS), pages 141–150,
2004.

[17] Gurmeet S. Manku. Routing networks for distributed
hash tables. In Proceedings of the 22nd ACM
Symposium on Principles of Distributed Computing
(PODC), pages 133–142, 2003.

[18] Gurmeet Singh Manku, Moni Naor, and Udi Wieder.
Know thy neighbor’s neighbor: the power of
lookahead in randomized p2p networks. In Proceedings
of the 36th ACM Symposium on Theory of Computing
(STOC), pages 54–63, 2004.

[19] G. A. Margulis. Explicit constructions of
concentrators. Problemy Peredachi Informatsii, 9(4),
October - December 1973.

[20] Moni Naor and Udi Wieder. Novel architectures for
p2p applications: the continuous-discrete approach. In
Fifteenth ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 50–59,
2003.

[21] Moni Naor and Udi Wieder. A simple fault tolerant
distributed hash table. In Second International
Workshop on Peer-to-Peer Systems, pages 88–97,
2003.

[22] Anthony Rowstron and Peter Druschel. Pastry:
Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–350, 2001.

[23] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
Peer-To-Peer lookup service for internet applications.
In Proceedings of the 2001 ACM SIGCOMM
Conference, pages 149–160, 2001.

[24] Kevin C. Zatloukal, Nicholas J. A. Harvey. Family
trees: an ordered dictionary with optimal congestion,
locality, degree, and search time. In fifteenth ACM
SIAM Symposium on Discrete Algorithms (SODA),
pages 308–317, 2004.

[25] Ben Y. Zhao and John Kubiatowicz. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB CSD 01-1141,
University of California at Berkeley, Computer Science
Department, 2001.


