
Space-Optimal Majority in Population Protocols

Dan Alistarh∗

IST Austria & ETH Zurich

dan.alistarh@inf.ethz.ch

James Aspnes†

Yale

james.aspnes@yale.edu

Rati Gelashvili‡

University of Toronto

gelash@cs.toronto.edu

Abstract
Population protocols are a popular model of distributed comput-
ing, in which n agents with limited local state interact randomly,
and cooperate to collectively compute global predicates. Inspired
by recent developments in DNA programming, an extensive series
of papers, across different communities, has examined the com-
putability and complexity characteristics of this model. Majority,
or consensus, is a central task in this model, in which agents need
to collectively reach a decision as to which one of two states A
or B had a higher initial count. Two metrics are important: the
time that a protocol requires to stabilize to an output decision, and
the state space size that each agent requires to do so. It is known
that majority requires Ω(log logn) states per agent to allow for fast
(poly-logarithmic time) stabilization, and that O(log2 n) states are
sufficient. Thus, there is an exponential gap between the space up-
per and lower bounds for this problem. This paper addresses this
question.

On the negative side, we provide a new lower bound of
Ω(logn) states for any protocol which stabilizes in O(n1−c) ex-
pected time, for any constant c > 0. This result is conditional on
monotonicity and output assumptions, satisfied by all known pro-
tocols. Technically, it represents a departure from previous lower
bounds, in that it does not rely on the existence of dense configura-
tions. Instead, we introduce a new generalized surgery technique to
prove the existence of incorrect executions for any algorithm which
would contradict the lower bound. Subsequently, our lower bound
also applies to general initial configurations, including ones with a
leader. On the positive side, we give a new algorithm for majority
which uses O(logn) states, and stabilizes in O(log2 n) expected
time. Central to the algorithm is a new leaderless phase clock tech-
nique, which allows agents to synchronize in phases of Θ(n logn)

consecutive interactions using O(logn) states per agent, exploiting
a new connection between population protocols and power-of-two-
choices load balancing mechanisms. We also employ our phase

∗Dan Alistarh is supported by a Swiss National Science Foundation
Ambizione Fellowship.
†James Aspnes is supported in part by NSF grants CCF-1637385 and

CCF-1650596.
‡Rati Gelashvili is supported by the Faculty of Arts & Science Post-

doctoral Fellowship at University of Toronto. Part of this work was done
while Rati Gelashvili was a PhD Student at MIT, supported by the National
Science Foundation under grants CCF-1217921, CCF-1301926, and IIS-
1447786, the Department of Energy under grant ER26116/DE-SC0008923,
and Oracle and Intel corporations.

clock to build a leader election algorithm with a state space of size
O(logn), which stabilizes in O(log2 n) expected time.

1 Introduction
Population protocols [AAD+06] are a model of distributed
computing in which agents with very little computational
power and interacting randomly cooperate to collectively
perform computational tasks. Introduced to model ani-
mal populations equipped with sensors [AAD+06], they
have proved a useful abstraction for settings from wireless
sensor networks [PVV09, DV12], to gene regulatory net-
works [BB04], and chemical reaction networks [CCDS15].
In this last context, there is an intriguing line of applied
research showing that population protocols can be imple-
mented at the level of DNA molecules, e.g. [CDS+13].

A population protocol consists of a set of n finite-state
agents, interacting in randomly chosen pairs, where each
interaction may update the local state of both participants. A
configuration captures the “global state” of the system at any
given time: since agents are anonymous, the configuration
can be entirely described by the number of agents in each
state. The protocol starts in some valid initial configuration,
and defines the outcomes of pairwise interactions. The
goal is to have all agents stabilize to some configuration,
representing the output of the computation, such that all
future configurations satisfy some predicate over the initial
configuration of the system.

In the majority task [AAE08b, PVV09, DV12], agents
start in one of two input states A and B, and must stabilize
on a decision as to which state has a higher initial count.
Another important task is leader election [AAE08a, AG15,
DS15], which requires the system to stabilize to final config-
urations in which a single agent is in a special leader state.
One key complexity measure for algorithms is expected par-
allel time, defined as the number of pairwise interactions un-
til stabilization, divided by n, the number of agents. The
other is state complexity, the number of distinct states that
an agent can internally represent.

This model leads to non-trivial connections between
standard computational models and natural computation.
There is strong evidence to suggest that the cell cycle
switch in eukaryotic cells solves an approximate version

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

of majority [CCN12], and a three-state population proto-
col for approximate majority was empirically studied as a
model of epigenetic cell memory by nucleosome modifi-
cation [DMST07]. The majority task is a key component
when simulating register machines via population proto-
cols [AAD+06,AAE08a,AAE08b]. Thus, it is not surprising
that there has been considerable interest in the complexity
of majority computation [AAE08b, PVV09, DV12, CCN12,
BFK+16, AAE+17].
Complexity Thresholds: On the lower bound side, a pro-
gression of deep technical results [Dot14, CCDS15] culmi-
nated in Doty and Soloveichik [DS15] showing that leader
election is impossible in sub-linear expected time for pro-
tocols which are restricted to a constant number of states
per agent. This result can be extended to majority; in
fact, [AAE+17] generalized it to show that any protocol
for exact majority using ≤ 0.5 · log logn states must take
Ω(n/polylog n) expected time, even if the initial discrep-
ancy between the two input states A and B is polylogarith-
mic in n. The only prior known lower bound was proved
in [AGV15], showing that sublinear expected time is impos-
sible using at most four states per agent.

The first protocol for exact majority was given by Draief
and Vojnovic [DV12] and by Mertzios et al. [MNRS14]. The
protocol uses only four states, but needs linear expected time
to stabilize if the initial discrepancy εn between the two in-
put states is constant with respect to n. Later work [AGV15]
gave the first poly-logarithmic expected time protocol for ex-
act majority for any value of the discrepancy εn. Unfortu-
nately, this algorithm requires a linear in n states per agent,
which is overwhelmingly impractical, as chemical systems
can have billions of molecules. Reference [AAE+17] re-
duced the state space to O(log2 n), by introducing a state
quantization technique. A simpler protocol with O(log2 n)
states, but better stabilization time was recently presented
in [BCER17].
Summary: The results described above highlight trade-offs
between the stabilization time of a population protocol, and
the number of states available at each agent. In particular,
there is currently still an exponential gap between the best
known lower bound, of Ω(log logn) states per agent, and the
O(log2 n) space used by the best known majority algorithm
of [AAE+17].
Contribution: In this paper, we address this gap, by pro-
viding tight logarithmic upper and lower bounds for ma-
jority computation in population protocols. For instance,
when the discrepancy between the initial counts of major-
ity and minority states is not too high, we show that any
algorithm which stabilizes in expected time O(n1−c) for
c > 0 requires Ω(log n) states. We also give a new algo-
rithm usingO(log n) states which stabilizes in expected time
O(log n · log 1

ε), where εn is the discrepancy between input
states. Notice that ε may depend on n and can range from

1/n to 1, corresponding to the majority state having an εn
advantage of anywhere from 1 to n more agents in the initial
configuration. Further, we give a new algorithm for leader
election using O(log n) states and O(log2 n) expected stabi-
lization time.

The fact that the optimal state threshold for this problem
is logarithmic may not be entirely surprising. However,
the techniques we develop to achieve this result are non-
trivial, and appear to have implications beyond the majority
problem. We provide an overview of these techniques below.

To understand the lower bound, it is useful to contrast it
with previous techniques. The results of [DS15, AAE+17]
employ three technical steps. The first step proves that,
from an initial configuration, every algorithm must reach
a dense configuration, where all states that are expressible
by the algorithm are present in large (near-linear) count.
The second step consists of applying a transition order-
ing lemma [CCDS15], which, roughly, establishes properties
that the state transitions must have in order to reduce certain
state counts in sub-linear time starting from dense configu-
rations. Finally, these properties are used to perform careful
ad-hoc surgery arguments to show that any algorithm that
stabilizes to a correct output faster than allowed using few
states must necessarily have executions in which it stabilizes
to the wrong output.

A fundamental barrier to better lower bounds is that the
first step does not hold for algorithms using, e.g. O(

√
log n)

states: with such a state space, it is possible to build
algorithms that never go through a configuration where all
states are expressed in high counts. The main contribution of
our lower bound is circumventing this challenge. We develop
generalized transition ordering lemma, and a new general
surgery technique, neither of which require the existence of
dense configurations.

Our lower bound is contingent on basic monotonicity
assumptions, but requires an additional assumption that we
call output dominance, which is satisfied by all known
majority algorithms. Yet, it leaves open the possibility that
some non-standard algorithm might be able to circumvent it.
We conjecture that this is not the case. We discuss output
dominance in detail in Section 2. Since we eliminate the
density requirement, our lower bound technique applies to a
significantly more general set of initial configurations than in
previous arguments. It can also be generalized to other types
of predicates, such as equality.

On the upper bound side, we introduce a new syn-
chronization construct, called a leaderless phase clock. A
phase clock is an object which allows agents to have an (ap-
proximate) common notion of time, by which they collec-
tively count time in phases of Θ(n log n) interactions, with
bounded skew. The phase clock ensures that all agents will
be in the same phase during at least Θ(log n) interactions of
each agent.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Phase clocks are critical for generic register simulations
for population protocols, e.g. [AAER07]. However, they are
rarely used in algorithm design, since all known construc-
tions require the existence of a unique leader, which is ex-
pensive to generate. One key innovation behind our phase
clock algorithm is that it is leaderless, as agents maintain the
shared clock collectively, without relying on a special leader
agent. At the implementation level, the phase clock is based
on a simple but powerful connection to load balancing by
power of two choices, e.g. [ABKU99, BCSV06, PTW15].

We build on the phase clock to obtain a new logarithmic-
space algorithm for majority, called Phased-Majority. In a
nutshell, the algorithm splits agents into workers, whose job
is to compute the majority value, and clocks, which imple-
ment a leaderless phase clock. Workers alternate carefully-
designed cancellation and doubling phases. In the former,
agents of disagreeing opinions as to the initial majority can-
cel each other out, while the latter agents attempt to spread
their current opinion. These dynamics ensure stabilization
in O(log n · log 1

ε) time, both in expectation and with high
probability. Splitting a state space in different types is com-
mon, i.e. in “Leader-Minion” algorithm of [AG15] where
each state is either a leader or a minion. However, doing
so explicitly at the beginning of the protocol and maintain-
ing a proportion of counts of agents in certain types of states
is due to Ghaffari and Parter [GP16]. Our cancellation and
doubling phases are inspired by [AAE08a].

We further exploit the phase clock to obtain a simple al-
gorithm for leader election using O(log n) states, which sta-
bilizes in O(log2 n) expected time. Prior to this, the best
constructions used O(log2 n) states [AAE+17, BCER17].
However, based on a different phase clock construction, par-
allel work by Gąsieniec and Stachowiak [GS17] has de-
signed a polylogarithmic-time leader election protocol using
O(log logn) states. This is optimal due to the unified lower
bound of [AAE+17] for majority and leader election. Com-
bined, our results and [GS17] demonstrate an exponential
separation between the space complexity of leader election
and majority in this model.
Stabilization vs Convergence: A protocol is said to con-
verge to the correct output when its execution first reaches a
point after which all configurations satisfy the correct output
requirement, despite possibly non-zero probability of later
divergence. However, a protocol is said to stabilize only
when the probability of reaching a configuration with an in-
correct decision actually becomes 0. In this paper we exclu-
sively deal with the stabilization requirement. We should
note that [AAE08a] provides a protocol using a constant
number of states and with a polylogarithmic expected par-
allel convergence time if the initial configuration is equipped
with a leader. Our lower bound applies to such initial con-
figurations and demonstrates an interesting separation, as for
similarly fast stabilization, Ω(log n) states would be neces-

sary.

2 Model and Problem Statement
A task in the population protocol model is specified by a
finite set of input states I , and a finite set of output symbols,
O. The predicate corresponding to the task maps any input
configuration onto an allowable set of output symbols. We
instantiate this definition for majority and leader election
below.

A population protocol Pk with k states is defined by a
triple Pk = (Λk, δk, γk). Λk is the set of states available
to the protocol, satisfying I ⊆ Λk and |Λk| = k. The
protocol consists of a set of state transitions of the type
A + B → C + D, defined by the protocol’s state transition
function δk : Λk × Λk → Λk × Λk. Finally, γk : Λk → O
is the protocol’s output function. This definition extends
to protocols which work for variable number of states: in
that case, the population protocol P will be a sequence
of protocols Pi,Pi+1, . . ., where Pi is the protocol with i
states. Later in this section, we will explain in detail how the
number of states used by the protocol relates to the number
of agents in the system.

In the following, we will assume a set of n ≥ 2 agents,
interacting pairwise. Each agent executes a deterministic
state machine, with states in the set Λk. The legal initial
configurations of the protocol are exactly configurations
where each agent starts in a state from I . Once started, each
agent keeps updating its state following interactions with
other agents, according to a transition function δk. Each
execution step is one interaction between a pair of agents,
selected to interact uniformly at random from the set of all
pairs. The agents in states S1 and S2 transition to states given
by δk(S1, S2) after the interaction.
Configurations: Agents are anonymous, so any two agents
in the same state are identical and interchangeable. Thus, we
can represent any set of agents simply by the counts of agents
in every state. We call this a configuration. More formally,
a configuration c is a function c : Λk → N, where c(S)
represents the number of agents in state S in configuration
c. We let |c| stand for the sum, over all states S ∈ Λk, of
c(S), which is the same as the total number of agents in
configuration c. For instance, if c is a configuration of all
agents in the system, then c describes the global state of the
system, and |c| = n.

We say that a configuration c′ is reachable from a
configuration c, denoted c =⇒ c′, if there exists a sequence
of consecutive steps (interactions from δk between pairs of
agents) leading from c to c′. If the transition sequence is p,
we will also write c =⇒p c

′. We call a configuration c the
sum of configurations c1 and c2 and write c = c1 + c2, when
c(S) = c1(S) + c2(S) for all states S ∈ Λk.
The Majority Problem: In the majority problem, agents

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

start in one of two initial states A,B ∈ I . The set of
outputs isO = {WinA,WinB}, where, intuitively, an initial
state wins if its initial count is larger than the other state’s.
Formally, given an initial configuration in, it is standard to
define ε as |in(A)−in(B)|

n . Thus, ε depends on n and may
take values from 1/n to 1. We will be interested in the value
εn = |in(A) − in(B)|, called the discrepancy, i.e. initial
relative advantage of the majority state.

We say that a configuration c correctly outputs the
majority decision for in, when for any state S ∈ Λk with
c(S) > 0, if in(A) > in(B) then γk(S) = WinA, and if
in(B) > in(A) then γk(S) = WinB . (The output in case of
an initial tie can be arbitrary.) A configuration c has a stable
correct majority decision for in, if for all configurations c′

with c =⇒ c′, c′ correctly outputs the majority decision for
in.

In this paper we consider the exact majority task, as
opposed to approximate majority [AAE08b], which allows
agents to produce the wrong output with some probability.
The number of steps until the system reaches a configuration
with a stable correct majority decision clearly depends on the
randomness in selecting interaction partners at each step. We
say that a population protocol Pk stably computes majority
decision from in within ` steps with probability 1 − φ, if,
with probability 1−φ, any configuration c reachable from in
by the protocol with ≥ ` steps has a stable correct majority
decision (with the remaining probability φ, more steps are
required in order for the system to stabilize to the correct
decision).
Leader Election: In the leader election problem, I = {A}
and in the initial configuration in all agents start in the
same initial state A. The output set is O = {Win,Lose}.
Intuitively, a single agent should output Win , while the
others should output Lose.

We say that a configuration c has a single leader if there
exists some state S ∈ Λn with γn(S) = Win and c(S) = 1,
such that for any other state S′ 6= S, c(S′) > 0 implies
γn(S′) = Lose . A configuration c of n agents has a stable
leader, if for all c′ reachable from c, it holds that c′ has a
single leader.1

A population protocol Pk stably elects a leader within
r steps with probability 1−φ, if, with probability 1−φ, any
configuration c reachable from in by the protocol within≥ r
steps has a stable leader.
Complexity Measures: The above setup considers sequen-
tial interactions; however, interactions between pairs of dis-
tinct agents are independent, and are usually considered as
occurring in parallel. It is customary to define one unit of

1Thi standard definition allows different agents to assume the identity
of the single leader after stabilization. We could additionally require that
the leader agent remains the same. This is satisfied by our leader election
protocol.

parallel time as n consecutive steps of the protocol.
A population protocol P stably elects a leader using

s(n) states in time t(n) if, for all sufficiently large n, the ex-
pected number of steps for protocol Ps(n) (with s(n) states)
to stably elect a leader from the initial configuration, divided
by n, is t(n). We call s(n) the state complexity and t(n) the
time complexity (or stabilization time) of the protocol. For
the majority problem, the complexity measures might also
depend on ε. Thus, P having state complexity s(n, ε) and
time complexity t(n, ε) means that for sufficiently large n,
Ps(n,ε) stabilizes to the correct majority decision in expected
time t(n, ε) for all ε. If the expected time is finite, then we
say that population protocol stably elects a leader (or stably
computes majority decision).
Monotonicity: The above definition of population protocols
only requires that for any n, there is just one protocol Ps(n)

that stabilizes fast for n agents. In particular, notice that,
so far, we did not constrain how protocols Pk with different
number of states k are related to each other.

Additionally, we would like our protocols to be mono-
tonic, meaning that a population protocol with a certain num-
ber of states that solves a task for n agents should not be
slower when running with n′ < n agents. Formally, a mono-
tonic population protocol P stably elects a leader with s(n)
states in time t(n), if there exists a sufficiently large con-
stant d, such that for all n ≥ d, protocol Ps(n) stably elects a
leader from the initial configuration in′ of n′ agents, for any
n′ with d ≤ n′ ≤ n, in expected parallel time t(n).

A monotonic population protocol P stably computes
majority decision with s(n, ε) states in time t(n, ε), if there
exists a sufficiently large constant d, such that for all n ≥ d,
Ps(n,ε) stably computes majority decision from the initial
configuration in′ of n′ agents with discrepancy ε′n′, for any
n′ with d ≤ n′ ≤ n and ε′ ≥ ε, in expected parallel time
t(n, ε).
Output Dominance: Our lower bound will make the follow-
ing additional assumption on the output properties of popu-
lation protocols for majority:

DEFINITION 2.1. (OUTPUT DOMINANCE) For any popu-
lation protocol Pk ∈ P , let c be a configuration with a stable
majority decision. Let let c′ be another configuration, such
that for any state S ∈ Λk, if c′(S) > 0, then c(S) > 0.
Then, for any configuration c′′ such that c′ =⇒ c′′, if c′′ has
a stable majority decision, then this decision is the same as
in c.

Intuitively, output dominance says that, if we change
the counts of states in any configuration c with a stable
output, then the protocol will still stabilize to the same output
decision. In other words, the protocol cannot swap output
decisions from a stable configuration if the count of some
states changes. To our knowledge, all known techniques for

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

achieving exact majority in population protocols satisfy this
condition.

3 Lower Bound on Majority
THEOREM 3.1. Assume any monotonic population protocol
P satisfying output dominance, which stably computes ma-
jority decision using s(n, ε) states. Then, the time complexity

of P must be Ω
(

n−2εn
32s(n,ε)·s(n,ε)7·(εn)2

)
.

Suffix Transition Ordering: In this section we develop
the main technical tool behind the lower bound, called the
suffix transition ordering lemma. This result generalizes the
classic transition ordering lemma of Chen, Cummings, Doty
and Soloveichik [CCDS15], that has been a critical piece of
the lower bounds of [DS15, AAE+17]. Proofs are deferred
to Section A.

Fix a function f : N → R+. Consider a configura-
tion c reached by an execution of a protocol Pk, and states
r1, r2 ∈ Λk. A transition α : (r1, r2) → (z1, z2) is an
f -bottleneck for c, if c(r1) · c(r2) ≤ f(|c|). This bottle-
neck transition implies that the probability of a transition
(r1, r2) → (z1, z2) is bounded. Hence, proving that tran-
sition sequences from initial configuration to final configura-
tions contain a bottleneck implies a lower bound on the sta-
bilization time. Conversely, if a protocol stabilizes fast, then
it must be possible to stabilize using a transition sequence
which does not contain any bottleneck.

LEMMA 3.1. Consider a population protocol Pk for major-
ity, executing in a system of n agents. Fix a function f . As-
sume that Pk stabilizes in expected time o

(
n

f(n)·k2

)
from

an initial configuration in. Then, for all sufficiently large n,
there exists a configuration yn with n agents and a transi-
tion sequence pn, such that (1) in =⇒pn yn, (2) pn has no
f -bottleneck, and (3) yn has a stable majority decision.

Next, we prove that, in monotonic population protocols that
solve majority, the initial state A cannot occur in configura-
tions that have a stable majority decision WINB , and vice-
versa.

LEMMA 3.2. Let P be a monotonic population protocol
satisfying output dominance that stably computes majority
decision for all sufficiently large n using s(n, ε) states. For
all sufficiently large n′ and n > 2n′, consider executing
protocol Ps(n,ε) in a system of n agents, from an initial
configuration in′ with εn′ more agents in state B. Consider
any c with in′ =⇒ c, that has a stable majority decision
WINB . Then c(A) = 0.

We showed that fast stabilization requires a bottleneck-
free transition sequence. The classic transition ordering
lemma [CCDS15] proved that in such a transition sequence,
there exists an ordering of all states whose counts decrease

more than some threshold, such that, for each of these states
dj , the sequence contains at least a certain number of a
specific transition that consumes dj , but does not consume
or produce any states d1, . . . , dj−1 that are earlier in the
ordering.

A critical prerequisite is proving that counts of states
must decrease. Towards this goal, for protocols with con-
stant number of states, Doty showed in [Dot14] that pro-
tocols must pass through configurations where all reach-
able states are in large counts. This result was strengthened
in [AAE+17] to hold for protocols with at most 1/2 log log n
states. For protocols with more than log logn states, such
“dense” intermediate configurations may no longer occur.
Instead, we prove the following suffix transition ordering
lemma, which considers an ordering of certain states start-
ing with state A, whose count decreases due to Lemma A.3.

LEMMA 3.3. (SUFFIX TRANSITION ORDERING LEMMA)
Let Pk be a population protocol executing in a system of n
agents. Fix b ∈ N, and let β = k2b+ kb. Let x, y : Λk → N
be configurations of n agents such that (1) x =⇒q y
via a transition sequence q without a β2-bottleneck. (2)
x(A) ≥ β, and (3) y(A) = 0. Define

∆ = {d ∈ Λk | y(d) ≤ b}
to be the set of states whose count in configuration y is at
most b. Then there is an order {d1, d2, . . . , dm} ⊆ ∆, such
that d1 = A and for all j ∈ {1, . . . ,m} (1) dj ∈ ∆, and
(2) there is a transition αj of the form (dj , sj) → (oj , o

′
j)

that occurs at least b times in q. Moreover, sj , oj , o′j ∈
(Λk −∆) ∪ {dj+1, . . . , dm}.

Notice that we do not require the ordering to contain all
the states in ∆, i.e. we could have |∆| > m and ∆ −
{d1, . . . , dm} 6= ∅. This could happen, for instance, if some
state was always present in a zero count.
Proof of Theorem 3.1: This technical tool established, we
return to the main lower bound proof. We will proceed
by contradiction. Assume a protocol Ps(n,ε) which would
contradict the lower bound.

Then, for all sufficiently large n, Ps(n,ε) stably
computes majority decision in expected parallel time
o
(

n−2εn
32·s(n,ε)·s(n,ε)7·(εn)2

)
. We denote k = s(n, ε), n′ =

n−2εn
k+1 , b(n) = 3k · (2εn) and β(n) = k2 · b(n) + k · b(n).

Let in′ be an initial configuration of n′ agents, with εn′ more
agents in state B.

By monotonicity of the protocol P , Pk should also
stabilize from in′ in expected time o

(
n−2εn

32k·k7·(εn)2

)
, which

is the same as o
(

n′

k2·β(n)2

)
. Thus, by Lemma A.2, there

exists a transition sequence q without a β(n)2 bottleneck,
and configuration yn′ with a stable majority decision, such
that in′ =⇒q yn′ .

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Recall that the discrepancy εn describes how many more
agents were in the initial majority state than in the initial
minority state, and can have a value anywhere from 1 to n.
The bound is only non-trivial in the case when εn ∈ o(

√
n),

and n′ = n−2εn
k+1 ∈ ω(k2 · β(n)2). In this case, we have

in′(A) = n′−εn′
2 ≥ β(n) for all sufficiently large n. Also,

by Lemma A.3, yn′(A) = 0. Therefore, we can apply the
suffix transition ordering Lemma A.4 with Pk, b = b(n) and
β = β(n). This gives an ordering {d1, . . . , dm} on a subset
of ∆ and corresponding transitions αj .

CLAIM 1. Let n′′ = n′ · (m + 1) + 2εn and i be an initial
configuration of n′′ agents consisting of m + 1 copies of
configuration in′ plus 2εn agents in state A. Then, i =⇒ z,
for a configuration z, such that for all s ∈ Λk, if z(s) > 0
then yn′(s) > 0.

Here yn′ comes from the application of Lemma A.2 and
m is the size of the ordering on a subset of ∆.

Proof. In this proof sketch, we consider transition sequences
that might temporarily bring counts of agents in certain states
below zero. This will not be a problem because later we
add more agents in these states, so that the final transition
sequence is well-formed. That is, no count ever falls below
zero.

We proceed by induction, as follows. For every j with
1 ≤ j ≤ m, consider an initial configuration ιj consisting
of j copies of configuration in′ plus 2εn agents in state A.
Then, there exists a transition sequence qj from ιj that leads
to a configuration zj , with the following properties:

1. For any d ∈ ∆ − {dj+1, . . . , dm}, the count of agents
in d remains non-negative throughout qj . Moreover, if
yn′(d) = 0, then zj(d) = 0.

2. For any d 6∈ ∆ − {dj+1, . . . , dm} the minimum count
of agents in d during qj is ≥ −3j · (2εn).

3. For any d ∈ {dj+1, . . . , dm}, if yn′(d) = 0, then
|zj(d)| ≤ 3j · (2εn).

The technical details of this inductive argument are deferred
to Section A. Given this, we take i = in′ + ιm and
z = yn′ + zm. The transition sequence p from i to z starts
by q from in′ to yn′ , followed by qm.

By the first property of qm, and the fact that no count
is ever negative in q from in′ to yn′ , for any d ∈ ∆, the
count of agents in state d never becomes negative during
p. Next, consider any state d ∈ Λk − ∆. By the second
property, when qm is executed from ιm to zm, the minimum
possible count in qm is −3m · (2εn). However, in transition
sequence p, qm from ιm to zm follows q, and after q we have
an extra configuration yn′ in the system. By the definition of
∆, yn′(d) ≥ b(n) ≥ 3k · (2εn) ≥ 3m · (2εn). Therefore, the
count of agents in d also never becomes negative during p,
and thus the final transition sequence p is well-formed.

Now, consider a state s, such that yn′(s) = 0. We only
need to show that z(s) = 0. By definition of ∆, we have

s ∈ ∆, and the first property implies z(s) = zm(s) = 0,
completing the proof of the claim.

Returning to the main thread, we have n′′ ≤ n due to
m ≤ k. Moreover, the initial configuration i of n′′ agents
has at least εn ≥ εn′′ more agents in state A than B (since
(m + 1) · εn′ ≤ εn, which follows from (m + 1)n′ ≤
(k + 1)n′ ≤ n). So, monotonicity of P implies that Pk also
stably computes majority decision from initial configuration
i. We know i =⇒ z, so it must be possible to reach a
configuration y from z that has a stable majority decision
(otherwise Pk would not have a finite time complexity to
stabilize from i). By output dominance property of P for
z and yn′ , y has to have the same majority decision as yn′ .
However, the correct majority decision is WINB in in′ and
WINA in i. This contradiction completes the proof of the
theorem. We now make a few remarks on this proof.

This lower bound implies, for instance, that for ε = 1/n,
a monotonic protocol satisfying output dominance and stably
solves majority using log n/(4 log 3) states, needs to have
time complexity Ω(

√
n/polylogn). But we can get a slightly

weaker bound without monotonicity.
Monotonicity: We use monotonicity of the protocol to
invoke the same protocol with different number of agents.
In particular, in Theorem 3.1, if the protocol uses k states
for n agents, we need to be able to use the same protocol
for n/k agents. Suppose instead that the protocol used for
more agents never has less states2. If the state complexity is
k ≤ log n/(2 log log n), then we can find infinitely many n
with the desired property that the same protocol works for
n/k and n agents. This allows us to apply the same lower
bound argument, but we would only get a lower bound for
state complexities up to log n/(2 log log n).

4 Leaderless Phase Clock
Intuitively, the phase clock works as follows. Each agent
keeps a local counter, intialized at 0. On each interac-
tion, the two agents compare their values, and the one
with the lower counter value increments its local counter.
Since interactions are uniformly random, we can connect
this to the classic power-of-two-choices load balancing pro-
cess [ABKU99, PTW15] to obtain that the agents’ counter
values are concentrated within an additive O(log n) factor
with respect to the mean, with high probability.

The above procedure has the obvious drawback that,
as the counters continue to increment, agents will need
unbounded space to store the values. We overcome this as
follows. We fix a period Ψ ∈ Θ(log n), and a range value
ρ ∈ Θ(log n), with Ψ � ρ. The goal of the algorithm
is to maintain a “phase clock" with values between 0 and

2Formally, we require that s(n, ε) for any fixed ε be monotonically
non-decreasing for all sufficiently large n.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Ψ − 1, with the property that clocks at different agents are
guaranteed to be within some interval of range ρ around the
mean clock value, with high probability.

We let each phase clock state be Vi, where i is from 0 to
Ψ − 1 and represents the counter value of the agent in state
Vi. The update rule upon each interaction is as follows. For
any i ≤ j, if i 6∈ [0, ρ− 1] or j 6∈ [Ψ−ρ,Ψ− 1], then we are
not dealing with a wrap-around and let the agent that has the
lower counter value increment its local counter. Formally, in
this case we have

Vi + Vj → Vi+1 + Vj .(4.1)
In the second case, the lower of agent values, say i, is in
[0, ρ − 1] while the other value, j, is in [Ψ − ρ,Ψ − 1]. In
this case, we simply increment the level of the agent with
the higher counter value. Formally, when i ∈ [0, ρ − 1] and
j ∈ [Ψ− ρ,Ψ− 1], we have that

Vi + Vj → Vi + Vj+1.(4.2)
Finally, if an agent would reach counter value Ψ as the result
of the increment, it simply resets to value V0:

VΨ−1 + VΨ−1 → VΨ−1 + V0 and(4.3)
Vi + VΨ−1 → Vi + V0, ∀i ∈ [0, ρ− 1].(4.4)

Analysis: We will show that counter values stay concen-
trated around the mean, so that the difference between the
largest and the smallest value will be less than ρ ∈ O(log n),
with high probability. The updates in 4.2—4.3 allow the al-
gorithm to reset the counter value to 0 periodically, once the
values reach a range where inconsistent wrap-arounds be-
come extremely unlikely.

For any configuration c, let w`(c) be the weight of agent
`, defined as follows. Assume agent ` is in state Vi. For i ∈
[0, ρ− 1], if in c there exists some agent in state Vj with j ∈
[Ψ−ρ,Ψ−1] (i.e. if

∑
j∈[Ψ−ρ,Ψ−1] c(Vj) > 0), then we have

w`(c) = i+ Ψ. In all other cases, we have w`(c) = i. Given
this definition, let µ(c) =

∑n
`=1 w`(c)

n be the mean weight,
and x`(c) = w`(c) − µ(c). Let us also define G(c), the
gap in configuration c, as max` w`(c) − min` w`(c). From
an initial configuration with a gap sufficiently smaller than ρ,
we consider the number of steps to reach a configuration with
a gap of at least ρ. The goal is to show that a large number
of steps is required with high probability. Our definitions are
chosen to ensure the following invariant as long as the gap is
not ≥ ρ in the execution: The evolution of the values x`(c)
is identical to that of an algorithm where there is no wrap-
around once the value would reach Ψ. In turn, the algorithm
will ensure the gap bound invariant with high probability.

Therefore, in the following, we will simplify the ex-
position by considering the process where values continue
to increase unboundedly. Critically, we notice that this
process is now identical to the classical two-choice load-
balancing process: consider a set of n bins, whose ball
counts are initially 0. At each step t, we pick two bins
uniformly at random, and insert a ball into the less loaded

of the two. Here, let us use x`(t) to represent the num-
ber of balls in `-th bin, minus the average number of balls
per bin after t steps. For a fixed constant α < 1, de-
fine the potential function Γ(t) =

∑n
`=1 2 cosh(αx`(t)) =∑n

`=1 (exp(αx`(t)) + exp(−αx`(t))) . Peres, Talwar, and
Wieder prove the following lemma [PTW15].

LEMMA 4.1. (THEOREM 2.9 IN [PTW15]) Given the
above process, for any t ≥ 0, E[Γ(t + 1)|Γ(t)] ≤(
1− α

n

)
Γ(t) + θ, where α < 1 is a constant from the

definition of Γ and θ � 1 is a fixed constant.

From here, we can prove the following bounded gap property
of the leaderless phase clock.

COROLLARY 4.1. Suppose c is a configuration withG(c) ≤
γ log n, for some constant γ. Then, for any constant param-
eter β, there exists a constant γ′(β), such that with proba-
bility 1−m/nβ , for each configuration c′ reached by the m
interactions following c, it holds that G(c′) < γ′(β) log n.

5 The Phased Majority Algorithm

Overview: At a high level, the state space of the algorithm
is partitioned into into worker, clock, backup and terminator
states. Every state falls into one of these categories, allowing
us to uniquely categorize the agents based on the state they
are in. The purpose of worker agents is to reach a consensus
on the output decision. The purpose of clock agents is
to synchronize worker agents, enabling a logarithmic state
space. The job of backup agents is to ensure correctness via
a slower protocol, which is only used with low probability.
The terminator agents are there to spread a final majority
decision. Every agent starts as worker, but depending
on state transitions, may become a clock, a backup or a
terminator.

The algorithm alternates cancellation phases, during
which workers with different opinions cancel each other out,
and doubling phases, during which workers which still have
a “strong” opinion attempt to spread it to other agents. Clock
agents will keep these phases in sync.
State Space: The state of a worker agent consists of a
triple of: (1) a phase number in {1, 2, . . . , 2 log n + 1};
(2) a value ∈ {1, 1/2, 0}; (3) its current preference WINA

or WINB . The state of a clock agent consists of a pair
(1) position, a number, describing the current value of its
phase clock, initially 0, and (2) its current preference for
WINA or WINB . Backup agents implement a set of four
possible states, which serve as a way to implement the
four-state protocol of [DV12, MNRS14]. We use this as a
slow but dependable backup in the case of a low-probability
error event. There are two terminator states, DA and DB .
Additionally, every state encodes the agent’s original input
state (A or B) and a single clock-creation bit flag.

Agents with input A start in a worker state, with phase

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

number 1, value 1, and preference WINA. Agents with input
B start in a similar initial state, but with preference WINB .
The clock-creation flag is true for all agents, meaning that
all agents could still become clocks. The output of a clock
or a worker state is its preference. The output of an backup
state is the output of the corresponding state of the 4-state
protocol. The output mapping for terminator states is the
obvious γ(DA) = WINA and γ(DB) = WINB .

A worker agent is strong if its current value is 1/2 or 1.
A worker agent with value 0 is weak. We say that a worker
is in phase φ if its phase number is φ. For the phase clock,
we will set the precise value of the parameter ρ = Θ(log n)
in the next section, during the analysis. The size of the clock
will be Ψ = 4ρ. Clock states with position in [ρ, 2ρ) and
[3ρ, 4ρ) will be labelled as buffer states. We will label states
[0, ρ) as ODD states, and [2ρ, 3ρ) as EVEN states.
Backup and Terminator Interactions: When both agents
are backups, they behave as in the 4-state protocol of [DV12,
MNRS14]. Backup agents do not change their type, but
cause non-backup interaction partners to change their type
to a backup. When an agent changes to a backup state, it
uses an input state of the 4-state protocol corresponding to
its original input.

An interaction between a terminator agent in state DX

with X ∈ {A,B} and a clock or a worker with preference
WINX results in both agents in state DX . However, both
agents end up in backup states after an interaction between
DA and DB , or a terminator agent and a worker/clock agent
of the opposite preference.
Clock State Update: When two clock agents interact, they
update positions according to the phase clock algorithm
described in Section 4. They might both change to backup
states (a low probability event), if their positions had a gap
larger than the maximum allowed threshold ρ of the phase
clock. A clock agent that meets a worker agent remains
in a clock state with the same position, but adopts the
preference of the interaction partner if the interaction partner
was strong.
Worker State Update: Suppose two workers in the same
phase interact. When one is weak and the other is strong, the
preference of the agent that was weak always gets updated to
the preference of the strong agent.

Similar to [AAE08a], there are two types of phases. Odd
phases are cancellation phases, and even phases are doubling
phases. In a cancellation phase, if both interacting workers
have value 1 but different preferences, then both values are
updated to 0, preferences are kept, but if clock-creation flag
is true at both agents, then one of the agents (say, with
preference WINA) becomes a clock. Its position is set to
0 and its preference is carried over from the previous worker
state. This is how clocks are created. In a doubling phase,
if one worker has value 1 and another has value 0, then both
values are updated to 1/2.

Worker Phase and State Updates: Suppose a worker in
phase φ meets a clock. The clock does not change its state.
If φ is odd and the label of the clock’s state is EVEN , or if φ
is even and the label is ODD , then the worker enters phase
φ+ 1. Otherwise, the worker does not change its state.

Suppose two workers meet. If their phase numbers are
equal, they interact according to the rules described earlier.
When one is in phase φ and another is in phase φ + 1, the
worker in phase φ enters phase φ + 1 (the second worker
remains unchanged). When phase numbers differ by > 1,
both agents become backups.

Here is what happens when a worker enters phase φ+1.
When φ + 1 is odd and the agent already had value 1, then
it becomes a a terminator in state DX given its preference
was WINX for X ∈ {A,B}. Similarly, if the worker was
already in maximum round φ = 2 log n + 1, it becomes a
terminator with its preference. Otherwise, the agent remains
a worker and sets phase number to φ+ 1. If φ+ 1 is odd and
the agent had value 1/2, it updates the value to 1, otherwise,
the it keeps the value unchanged.
Clock Creation Flag: During a cancellation, clock-creation
flag determines whether one of the agents becomes a clock
instead of becoming a weak worker. Initially, clock-creation
is set to true at every agent. We will set a threshold
Tc < ρ, such that when any clock with clock-creation=true
reaches position Tc, it sets clock-creation to false. Dur-
ing any interaction between two agents, one of which has
clock-creation=false, both agents set clock-creation to false.
An agent can never change clock-creation from false back to
true.
Analysis: We take a sufficiently large3 constant β, ap-
ply Corollary B.1 with γ = 29(β + 1), and take the corre-
sponding ρ = γ′(β) logn > γ log n to be the high probabil-
ity upper bound on the gap that occurs in our phase clock (an
interaction between two clocks with gap≥ ρ leads to an error
and both agents become backups). We set the clock-creation
threshold to Tc = 23(β + 1) log n < ρ.

LEMMA 5.1. (BACKUP) Let c be a configuration of all
agents, containing a backup agent. Then, withinO(n2 log n)
expected intaractions from c, the system will stabilize to the
correct majority decision.

We call an execution backup-free if no agent is ever in a
backup state. Next, we define an invariant and use it to show
that the system may never stabilize to the wrong majority
decision.

INVARIANT 1. (SUM INVARIANT) The potential Q(c) is
defined for configuration c as follows. For each worker in
c in phase φ with value v, if its preference is WINA, we add
v · 2logn−b(φ−1)/2c to Q(c). If its preference is WINB , we

3For the purposes of Lemma C.2, which is given in Section C.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

subtract v · 2logn−b(φ−1)/2c from Q(c). Suppose c is reach-
able from an initial configuration where input X ∈ {A,B}
has the majority with advantage εn, by a backup-free exe-
cution during which no agent is ever in a terminator state
DX . If X = A, we have Q(c) ≥ εn2, and if X = B, then
Q(c) ≤ εn2.

LEMMA 5.2. (CORRECTNESS) If the protocol stabilizes to
WINX , then X ∈ {A,B} was the initial majority.

LEMMA 5.3. (TERMINATOR) Let c be a configuration of
all agents, containing a terminator agent. In backup-free
executions, the system stabilizes to the correct majority
decision within O(n log n) interactions in expectation and
with high probability. Otherwise, the system stabilizes within
O(n2 log n) expected intaractions.

We derive a lemma about each type of phase. A similar
statement is proved for duplication in Section C. Since our
phases are inspired by [AAE08a], here we are able to reuse
some of their analysis techniques.

LEMMA 5.4. (CANCELLATION) Suppose in configuration
c every agent is either a clock or a worker in the same
cancellation phase φ (φ is odd). Consider executing 8(β +
1)n log n interactions from c conditioned on the event that
during this interaction sequence, no clock is ever in a state
with label EVEN , and that the phase clock gap is never
larger than ρ. Let c′ be the resulting configuration. Then,
with probability 1 − n−β , in c′ it holds that: (1) all strong
agents have the same preference, or there are at most n/10
strong agents with each preference; (2) every agent is still a
clock, or a worker in phase φ.

The final theorem is given below and proved in Lemma C.11
and Lemma C.12 in Section C.

THEOREM 5.1. If the initial majority state has an advan-
tage of εn agents over the minority state, our algorithm sta-
bilizes to the correct majority decision in O(log 1/ε · log n)
parallel time, both w.h.p. and in expectation.

6 Conclusions and Future Work
We have given tight logarithmic upper and lower bounds for
the space (state) complexity of fast exact majority in pop-
ulation protocols. Our lower bound is contingent on an
output dominance assumption, satisfied by all known pro-
tocols. Together with the recent O(log logn)-states leader
election by Gąsieniec and Stachowiak [GS17], our results
suggest an exponential gap between the space complexity of
these two fundamental tasks in population protocols. Un-
like [DS15, AAE+17], we do not require fast stabilization
from configurations where all states have large counts. As
a result, our lower bound technique works from more gen-
eral initial configurations, and thus is potentially applica-
ble to broader settings. It also applies to predicates such

as equality. Similarly, the leaderless phase clock we intro-
duce is quite general, and should be applicable broadly. In
particular, recent results [PTW15] suggest that it should be
applicable to settings where the communication graph can
be modelled by an expander. Exploring and characterizing
these generalizations is an interesting direction for future re-
search.

One open question and a technical challenge that we
would love to see settled is getting rid of the “output dom-
inance” assumption in our majority lower bound. We con-
jecture that the same Ω(log n) lower bound must hold un-
conditionally. Moreover, we conjecture that all majority al-
gorithms that stabilize to the correct decision in polyloga-
rithmic time must satisfy “output dominance”, which would
obviously imply the unconditional lower bound. Some of
the technical tools developed in this paper will hopefully be
helpful, but the proof of this conjecture is likely to at least
involve more complex “surgeries” on transition sequences.

Our lower bound of Ω(log n) states follows when the
initial discrepancy between the counts of majority and mi-
nority states is not larger than

√
n. We could ask what hap-

pens for larger discrepancies. We think that in this case, it
might be possible to stabilize in polylogarithmic time using
O(log log n) states. One idea is to use truncated phased ma-
jority algorithm with less levels.

Our lower bound applies to algorithms that stabilize
fast, which is a stronger requirement than convergence. Our
results highlight a separation. While fast stabilization for
majority requires Ω(log n) states, it is possible converge
fast using O(log log n) states. While some of our technical
tools may well turn out to be useful when dealing with the
convergence requirement as opposed to stabilization, solving
this problem might require developing novel and interesting
techniques.

7 Acknowledgments
We would like to thank David Doty, David Soloveichik, Pe-
tra Berenbrink and anonymous reviewers for helpful feed-
back.

References

[AAD+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J
Fischer, and René Peralta. Computation in networks of
passively mobile finite-state sensors. Distributed computing,
18(4):235–253, March 2006.

[AAE08a] Dana Angluin, James Aspnes, and David Eisenstat.
Fast computation by population protocols with a leader. Dis-
tributed Computing, 21(3):183–199, September 2008.

[AAE08b] Dana Angluin, James Aspnes, and David Eisenstat.
A simple population protocol for fast robust approximate
majority. Distributed Computing, 21(2):87–102, July 2008.

[AAE+17] Dan Alistarh, James Aspnes, David Eisenstat, Rati
Gelashvili, and Ronald L Rivest. Time-space trade-offs in

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

population protocols. In Proceedings of the 28th ACM-SIAM
Symposium on Discrete Algorithms, SODA ’17, pages 2560–
2579, 2017.

[AAER07] Dana Angluin, James Aspnes, David Eisenstat, and
Eric Ruppert. The computational power of population pro-
tocols. Distributed Computing, 20(4):279–304, November
2007.

[ABKU99] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli
Upfal. Balanced allocations. SIAM journal on computing,
29(1):180–200, 1999.

[AG15] Dan Alistarh and Rati Gelashvili. Polylogarithmic-time
leader election in population protocols. In Proceedings of the
42nd International Colloquium on Automata, Languages, and
Programming, ICALP ’15, pages 479–491, 2015.

[AGV15] Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast
and exact majority in population protocols. In Proceedings
of the 34th ACM Symposium on Principles of Distributed
Computing, PODC ’15, pages 47–56, 2015.

[BB04] James M Bower and Hamid Bolouri. Computational
modeling of genetic and biochemical networks. MIT press,
2004.

[BCER17] Andreas Bilke, Colin Cooper, Robert Elsaesser, and
Tomasz Radzik. Population protocols for leader election
and exact majority with O(log2 n) states and O(log2 n)
convergence time. arXiv preprint arXiv:1705.01146, 2017.

[BCSV06] Petra Berenbrink, Artur Czumaj, Angelika Steger, and
Berthold Vöcking. Balanced allocations: The heavily loaded
case. SIAM Journal on Computing, 35(6):1350–1385, 2006.

[BFK+16] Petra Berenbrink, Tom Friedetzky, Peter Kling, Fred-
erik Mallmann-Trenn, and Chris Wastell. Plurality consensus
via shuffling: Lessons learned from load balancing. arXiv
preprint arXiv:1602.01342, 2016.

[CCDS15] Ho-Lin Chen, Rachel Cummings, David Doty, and
David Soloveichik. Speed faults in computation by chemical
reaction networks. Distributed Computing, 2015. To appear.

[CCN12] Luca Cardelli and Attila Csikász-Nagy. The cell cycle
switch computes approximate majority. Nature Scientific
Reports, 2:656:1–656:9, September 2012.

[CDS+13] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srnivas, An-
drew Phillips, Luca Cardelli, David Soloveichik, and Georg
Seelig. Programmable chemical controllers made from dna.
Nature Nanotechnology, 8(10):755–762, September 2013.

[DMST07] Ian B. Dodd, A. M. Micheelsen, Kim Sneppen, and
Geneviéve Thon. Theoretical analysis of epigenetic cell
memory by nucleosome modification. Cell, 129(4):813–822,
2007.

[Dot14] David Doty. Timing in chemical reaction networks. In
Proceedings of the 25th ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pages 772–784, 2014.

[DS15] David Doty and David Soloveichik. Stable leader election
in population protocols requires linear time. In Proceedings
of the 29th International Symposium on Distributed Comput-
ing, DISC ’15, pages 602–616, 2015.

[DV12] Moez Draief and Milan Vojnovic. Convergence speed
of binary interval consensus. SIAM Journal on Control and
Optimization, 50(3):1087–1109, May 2012.

[GP16] Mohsen Ghaffari and Merav Parter. A polylogarithmic
gossip algorithm for plurality consensus. In Proceedings

of the 35th ACM Symposium on Principles of Distributed
Computing, PODC ’16, pages 117–126, 2016.

[GS17] Leszek Gąsieniec and Grzegorz Stachowiak. Fast space
optimal leader election in population protocols. arXiv
preprint arXiv:1704.07649, 2017.

[KMPS95] Anil Kamath, Rajeev Motwani, Krishna Palem, and
Paul Spirakis. Tail bounds for occupancy and the satisfiability
threshold conjecture. Random Structures & Algorithms,
7(1):59–80, August 1995.

[MNRS14] George B. Mertzios, Sotiris E. Nikoletseas, Christo-
foros Raptopoulos, and Paul G. Spirakis. Determining ma-
jority in networks with local interactions and very small lo-
cal memory. In Proceedings of the 41st International Collo-
quium on Automata, Languages, and Programming, ICALP
’14, pages 871–882, 2014.

[PTW15] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical
balanced allocations and the (1 + Îš)-choice process. Random
Structures & Algorithms, 47(4):760–775, July 2015.

[PVV09] Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic.
Using three states for binary consensus on complete graphs.
In Proceedings of the 28th IEEE Conference on Computer
Communications, INFOCOM ’09, pages 2527–2535, 2009.

A Majority Lower Bound
Given a protocol Pk with k states executing in a system of
n agents, for a configuration c and a set of configurations Y ,
let us define T [c =⇒ Y] as the expected parallel time it takes
from c to reach some configuration in Y for the first time.

LEMMA A.1. In a system of n agents executing protocol
Pk, let f : N → R+ be a fixed function, c : Λk → N be
a configuration, and Y be a set of configurations, such that
every transition sequence from c to some y ∈ Y has an f -
bottleneck. Then it holds that T [c =⇒ Y] ≥ n−1

2f(n)k2 .4

Proof. By definition, every transition sequence from c to
a configuration y ∈ Y contains an f -bottleneck, so it is
sufficient to lower bound the expected time for the first f -
bottleneck transition to occur from c before reaching Y .
In any configuration c′ reachable from c, for any pair of
states r1, r2 ∈ Λk such that (r1, r2) → (p1, p2) is an f -
bottleneck transition in c′, the definition implies that c′(r1) ·
c′(r2) ≤ f(n). Thus, the probability that the next pair
of agents selected to interact are in states r1 and r2, is at
most 2f(n)

n(n−1) . Taking an union bound over all k2 possible
such transitions, the probability that the next transition is f -
bottleneck is at most k2 2f(n)

n(n−1) . Bounding by a Bernoulli

trial with success probability 2f(n)k2

n(n−1) , the expected number
of interactions until the first f -bottleneck transition is at least

4Notice that the assumption is about every transition sequence having a
bottleneck. Thus, passing some bottleneck cannot be avoided. However, it is
true that a particular bottleneck in some fixed configuration can be cleared if
the necessary bottleneck states are generated by subsequent non-bottleneck
transitions.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

n(n−1)
2f(n)k2 . The expected parallel time is this quantity divided
by n, completing the argument.

LEMMA A.2. Consider a population protocol Pk for ma-
jority, executing in a system of n agents. Fix a function f .
Assume that Pk stabilizes in expected time o

(
n

f(n)·k2

)
from

an initial configuration in. Then, for all sufficiently large n,
there exists a configuration yn with n agents and a transi-
tion sequence pn, such that (1) in =⇒pn yn, (2) pn has no
f -bottleneck, and (3) yn has a stable majority decision.

Proof. We know that the expected stabilization time from
in is finite. Therefore, a configuration yn that has a stable
majority decision must be reachable from in through some
transition sequence pn. However, we also need pn to satisfy
the second requirement.

Let Yn be a set of all stable output configurations with
n agents. Suppose for contradiction that every transition
sequence from in to some y ∈ Yn has an f -bottleneck. Then,
using Lemma A.1, the expected time to stabilize from in to a
majority decision is T [in =⇒ Yn] ≥ n−1

2f(n)k2 = Θ(n
f(n)k2).

But we know that the protocol stabilizes from in in time
o(n
f(n)k2), and the contradiction completes the proof.

LEMMA A.3. Let P be a monotonic population protocol
satisfying output dominance that stably computes majority
decision for all sufficiently large n using s(n, ε) states. For
all sufficiently large n′ and n > 2n′, consider executing
protocol Ps(n,ε) in a system of n agents, from an initial
configuration in′ with εn′ more agents in state B. Consider
any c with in′ =⇒ c, that has a stable majority decision
WINB . Then c(A) = 0.

Proof. For sufficiently large n′ and n, we can consider
executing protocol Ps(n,ε) from an initial configuration in′ ,
and know that it stabilizes to the correct majority decision,
because P is a monotonic protocol.

Assume for contradiction that c(A) > 0. Since c has a
stable majority decision WINB , we must have γs(n,ε)(A) =
WINB . Now consider a system of n agents, executing
Ps(n,ε), where n′ agents start in configuration in′ and reach
c, and the remaining agents each start in state A. Clearly,
for the system of n > 2n′ agents, A is the majority. Define
c′ to be configuration c plus n − n′ agents in state A. We
only added agents in state A from c to c′ and c(A) > 0,
thus for any state s ∈ Λs(n,ε) with c′(s) > 0, we have
c(s) > 0. However, as c has a stable majority WINB ,
by output dominance, any configuration c′′ with c′ =⇒ c′′

that has a stable majority decision, should have a decision
WINB .

As P stably computes the majority decision, Ps(n,ε)
should stabilize in a finite expected time for n agents. c′

is reachable from an initial configuration of n agents. Thus,
some configuration c′′ with a stable majority decision must

be reachable from c′. However, the initial configuration
has majority A, and c′′ has a majority decision WINB , a
contradiction.

LEMMA A.4. [Suffix Transition Ordering Lemma] Let Pk
be a population protocol executing in a system of n agents.
Fix b ∈ N, and let β = k2b + kb. Let x, y : Λk → N
be configurations of n agents such that (1) x =⇒q y via a
transition sequence q without a β2-bottleneck. (2) x(A) ≥
β, and (3) y(A) = 0. Define

∆ = {d ∈ Λk | y(d) ≤ b}
to be the set of states whose count in configuration y is at
most b. Then there is an order {d1, d2, . . . , dm} ⊆ ∆5, such
that d1 = A and for all j ∈ {1, . . . ,m} (1) dj ∈ ∆, and
(2) there is a transition αj of the form (dj , sj) → (oj , o

′
j)

that occurs at least b times in q. Moreover, sj , oj , o′j ∈
(Λk −∆) ∪ {dj+1, . . . , dm}.

Proof. We know by definition thatA ∈ ∆. We will construct
the ordering in reverse, i.e. we will determine ej for j =
|∆|, |∆| − 1, . . . in this order, until ej = A. Then, we set
m = |∆| − j + 1 and d1 = ej , . . . , dm = e|∆|.

We start by setting j = |∆|. Let ∆|∆| = ∆. At each
step, we will define the next ∆j−1 as ∆j − {ej}. We define
Φj : (Λk → N)→ N based on ∆j as Φj(c) =

∑
d∈∆j

c(d),
i.e. the number of agents in states from ∆j in configuration
c. Notice that once ∆j is well-defined, so is Φj .

The following works for all j as long as ej′ 6= A for
all j′ > j, and thus, lets us construct the ordering. Because
y(d) ≤ b for all states in ∆, it follows that Φj(y) ≤ jb ≤ kb.
On the other hand, we know that x(A) ≥ β and A ∈ ∆j , so
Φj(x) ≥ β ≥ kb ≥ Φj(y). Let c′ be the last configuration
along q from x to y where Φj(c

′) ≥ β, and r be the suffix of
q after c′. Then, r must contain a subsequence of transitions
u each of which strictly decreases Φj , with the total decrease
over all of u being at least Φj(c

′)−Φj(y) ≥ β − kb ≥ k2b.
Let α : (r1, r2)→ (p1, p2) be any transition in u. α is in

u so it strictly decreases Φj , and without loss of generality
r1 ∈ ∆j . Transition α is not a β2-bottleneck since q does
not contain such bottlenecks, and all configurations c along
u have c(d) < β for all d ∈ ∆j by definition of r. Hence,
we must have c(r2) > β meaning r2 6∈ ∆j . Exactly one
state in ∆j decreases its count in transition α, but α strictly
decreases Φj , so it must be that both p1 6∈ ∆j and p2 6∈ ∆j .
We take dj = r1, sj = r2, oj = p1 and o′j = p2.

There are k2 different types of transitions. Each transi-
tion in u decreases Φj by one and there are at least k2b such
instances, at least one transition type must repeat in u at least
b times, completing the proof.

CLAIM 2. Let n′′ = n′ · (m + 1) + 2εn and i be an initial
configuration of n′′ agents consisting of m + 1 copies of

5Recall that it is possible that {d1, d2, . . . , dm} ⊂ ∆.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

configuration in′ plus 2εn agents in state A. Then, i =⇒ z,
for a configuration z, such that for all s ∈ Λk, if z(s) > 0
then yn′(s) > 0.

Here yn′ comes from the application of Lemma A.2 and
m is the size of the ordering on a subset of ∆.

Proof. In this proof, we consider transition sequences that
might temporarily bring counts of agents in certain states
below zero. This will not be a problem because later we
add more agents in these states, so that the final transition
sequence is well-formed, meaning that no count ever falls
below zero.

We do the following induction. For every j with 1 ≤
j ≤ m, consider an initial configuration ιj consisting of j
copies of configuration in′ plus 2εn agents in state A. Then,
there exists a transition sequence qj from ιj that leads to a
configuration zj , with the following properties:

1. For any d ∈ ∆ − {dj+1, . . . , dm}, the count of agents
in d remains non-negative throughout qj . Moreover, if
yn′(d) = 0, then zj(d) = 0.

2. For any d 6∈ ∆ − {dj+1, . . . , dm} the minimum count
of agents in d during qj is ≥ −3j · (2εn).

3. For any d ∈ {dj+1, . . . , dm}, if yn′(d) = 0, then
|zj(d)| ≤ 3j · (2εn).

The base case: Consider j = 1. Here ι1 is simply in′
combined with 2εn agents in stateA. We know in′ =⇒q yn′ .
Thus, from ι1 by the same transition sequence q we reach a
configuration yn′ plus 2εn agents in state d1 = A. Moreover,
by suffix transition ordering lemma, we know that transition
α1 of form (A, s1) → (o1, o

′
1) occurs at least b(n) ≥ (2εn)

times in q. We add 2εn occurences of transition α1 at the end
of q and let q1 be the resulting transition sequence. z1 is the
configuration reached by q1 from ι1.

For any d ∈ Λk, during the transition sequence q, the
counts of agents are non-negative. In the configuration after
q, the count of agents in state d1 = A is yn′(A)+2εn = 2εn,
and during the remaining transitions of q1 (2εn occurences
of α1), the count of agents in A remains non-negative and
reaches z1(d1) = 0 as required (since yn′(d1) = yn′(A) =
0). s1, o1, o

′
1 ∈ (Λk − ∆) ∪ {d2, . . . dm} implies that for

any state d ∈ ∆ − {d1, d2, . . . , dm}, the count of agents
in d remains unchanged and non-negative for the rest of
q1. Moreover, z1(d) = yn′(d), thus if yn′(d) = 0 then
z1(d) = 0. This completes the proof of the first property.

Now, consider any d 6∈ ∆ − {d2, . . . , dm}. The count
of d is non-negative during q, and might decrease by at
most 2εn < 3j · (2εn) during the remaining 2εn occurences
of transition α1 in q1 (achieved only when s1 = d and
s1 6= o1, o

′
1). This proves the second property.

The final count of any state in z1 differs by at most
2 · (2εn) ≤ 3j · (2εn) from the count of the same state in
yn′ . (the only states with different counts can be s1, o1 and
o′1, and the largest possible difference of precisely 2 · (2εn)

is attained when o1 = o′1). This implies the third property.
Inductive step: We assume the inductive hypothesis for
some j < m and prove it for j+1. Inductive hypothesis gives
us configuration ιj and a transition sequence qj to another
configuration zj , satisfying the three properties for j. We
have ιj+1 = in′ + ιj , adding another new configuration in′
to previous ιj .

Let u be the minimum count of state dj+1 during qj .
If u ≥ 0, we let q1

j+1 = q. Otherwise, we remove |u| ≤
3j · (2εn) ≤ b(n) instances of transition αj+1 from q, and
call the resulting transition sequence q1

j+1.
Now from ιj+1 = in′ + ιj consider performing tran-

sition sequence q1
j+1 followed by qj . q1

j+1 affects the ex-
tra configuration in′ (difference between ιj and ιj+1), and
produces |u| extra agents in state dj+1 if u was negative.
Now, when qj is performed afterwards, the count of state
dj+1 never becomes negative.

Let v be the count of dj+1 in the configuration reached
by the transition sequence q1

j+1 followed by qj from ιj+1.
Since the count never becomes negative, we have v ≥ 0.
If yn′(dj+1) > 0, then we let this sequence be qj+1. If
yn′(dj+1) = 0, then we add v occurences of transition αj+1,
i.e. qj+1 is q1

j+1 followed by qj followed by v times αj+1.
The configuration reached from ιj+1 by qj+1 is zj+1.

Consider d ∈ ∆ − {dj+2, . . . , dm}. For d = dj+1,
if yn′(dj+1) = 0, then we ensured that zj+1(dj+1) = 0
by adding v occurences of transitions αj+1 at the end. In
fact, by construction, the count of agents in dj+1 never be-
comes negative during qj+1. It does not become negative
during q1

j+1 and the |u| extra agents in state dj+1 that are
introduced ensure futher non-negativity of the count dur-
ing qj . Finally, if the count is positive and yn′(dj+1) =
0, it will be reduced to 0 by the additional occurences
of transition αj+1, but it will not become negative. For
d ∈ ∆ − {dj+1, dj+2, . . . , dm}, recall that αj+1 =
(dj+1, sj+1) → (oj+1, o

′
j+1), where sj+1, oj+1, o

′
j+1 ∈

(Λk −∆) ∪ {dj+2, . . . dm}. Thus, none of sj+1, oj+1, o
′
j+1

are equal to d. This implies that the count of agents in d re-
main non-negative during qj+1 as the removal and addition
of αj+1 does not affect the count (count is otherwise non-
negative during q; also during qj by inductive hypothesis).
If yn′(d) = 0, we have zj+1(d) = zj(d) + yn′(d) = 0, as
desired. This proves the first property.

The states for which the minimum count of agents
during qj+1 might be smaller than during qj are sj+1, oj+1

and o′j+1. Let us first consider oj+1 and o′j+1. In our
construction, we might have removed at most 3j · (2εn)
occurences of αj+1 from q to get q1

j+1, and the largest
decrease of count would happen by 2 · 3j · (2εn) if oj+1 =
o′j+1. Adding transitions αj+1 at the end only increases the
count of oj+1 and o′j+1. Therefore, the minimum count
of agents for these two states is −3j · (2εn) − 2 · 3j ·

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

(2εn) = −3j+1 · (2εn), as desired. Now consider state
sj+1. We can assume sj+1 6= oj+1, o

′
j+1 as otherwise,

the counts would either not change or can be analyzed as
above for oj+1. Removing occurences of transition αj+1

only increases count of sj+1, and it only decreases if we add
v occurences of αj+1 at the end to get the count of dj+1 to 0.
Since yn′(dj+1) should be 0 in this case in order for us to add
transitions at the end, we know v = zj(dj+1) if u ≥ 0, and
v = zj(dj+1) + |u| if u < 0. In the second case, we remove
|u| occurences before adding v occurences, so the minimum
count in both cases decreases by at most |zj(dj+1)|. By
induction hypothesis the minimum count is ≥ −3j · (2εn)
and |zj(dj+1)| ≤ 3j · (2εn), so the new minimum count of
sj+1 is ≥ −2 · 3j · (2εn) ≥ −3j+1 · (2εn). This proves the
second property.

In order to bound the maximum new |zj+1(d)| for
d ∈ {dj+2, . . . , dm} with yn′(d) = 0, we take a similar
approach. Since yn′(d) = 0, if |zj+1(d)| differs from
|zj(d)|, then d must be either sj+1, oj+1 or o′j+1. The
minimum negative value that zj+1(d) can achieve can be
shown to be 3j+1 · (2εn) with the same argument as in the
previous paragraph - considering d = oj+1 = o′j+1 and
d = sj+1 and estimating the maximum possible decrease,
combined with |zj(d)| ≤ 3j · (2εn). Let us now bound
the maximum positive value. If d = oj+1 = o′j+1, the
increase caused by v additional occurences of αj+1 at the
end of qj+1 is 2v. As before, v = zj(dj+1) if u ≥ 0,
and v = zj(dj+1) + |u| if u < 0, and in the second case,
we also decrease the count of d by 2|u| when removing
|u| occurences of αj+1 to build q1

j+1 from q. Thus, the
maximum increase is 2|zj(dj+1)| ≤ 2 · 3j · (2εn). If
d = sj+1, then the only increase comes from at most
|u| ≤ 3j · (2εn) removed occurences of αj+1. Therefore,
the maximum positive value of zj+1(d) equals maximum
positive value of zj(d) which is 3j · (2εn) plus the maximum
possible increase of 2 · 3j · (2εn), giving 3j+1 · (2εn) as
desired. This completes the proof for the third property and
of the induction.
The rest of the proof: We take i = in′ + ιm and z =
yn′ + zm. The transition sequence p from i to z starts by
q from in′ to yn′ , followed by qm.

By the first property of qm, and the fact that no count
is ever negative in q from in′ to yn′ , for any d ∈ ∆, the
count of agents in state d never becomes negative during
p. Next, consider any state d ∈ Λk − ∆. By the second
property, when qm is executed from ιm to zm, the minimum
possible count in qm is −3m · (2εn). However, in transition
sequence p, qm from ιm to zm follows q, and after q we have
an extra configuration yn′ in the system. By the definition of
∆, yn′(d) ≥ b(n) ≥ 3k · (2εn) ≥ 3m · (2εn). Therefore, the
count of agents in d also never becomes negative during p,
and thus the final transition sequence p is well-formed.

Now, consider a state s, such that yn′(s) = 0. We only

need to show that z(s) = 0. By definition of ∆, we have
s ∈ ∆, and the first property implies z(s) = zm(s) = 0,
completing the proof.

B Leaderless Phase Clock
COROLLARY B.1. Given the above process, the following
holds: Suppose c is a configuration with G(c) ≤ γ log n, for
some constant γ. Then, for any constant parameter β, there
exists a constant γ′(β), such that with probability 1−m/nβ ,
for each configuration c′ reached by the m interactions
following c, it holds that G(c′) < γ′(β) log n.

Proof. We let γ′(β) = 2γ + 4+2β
α , where α is the constant

from Lemma 4.1, and let ρ = γ′(β) log n. As discussed
in Section 4, since we are counting the number of steps from
configuration c, where the gap is less than ρ, until the gap
becomes ≥ ρ, we can instead analyze the unbounded two-
choice process. In the two choice process, Γ(0) corresponds
to the potential in configuration c. By simple bounding, we
must have that Γ(0) ≤ 2nαγ+1. Assume without loss of
generality that Γ(0) = 2nαγ+1.

It has already been established by Lemma 4.1 that

E[Γ(t+ 1)|Γ(t)] ≤
(

1− α

n

)
Γ(t) + θ.

This implies that Γ(t) will always tend to decrease until it
reaches the threshold Θ(n)6. So, its expectation will always
be below its level at step 0 (in configuration c).

Hence, we have that, for any t ≥ 0,
E[Γ(t)] ≤ 2nαγ+1.

By Markov’s inequality, we will obtain that
Pr[Γ(t) ≥ nαγ+2+β] ≤ 1/nβ .

It follows by convexity of the exponential and the definition
of Γ that for each c′,

Pr[G(c′) ≥ 2(γ + (2 + β)/α) log n] ≤ 1/nβ .

Setting ρ = γ′(β) = 2γ + 4+2β
α and taking union bound

over the above event for m steps following configuration c
completes the proof.

C Majority Upper Bound
LEMMA C.1. In any reachable configuration of the phased
majority algorithm from valid initial configurations, the
number of clock agents is at most n/2.

Proof. n workers start in input states and at most one clock
is created per two agents in these initial worker states. This
happens only when two workers in the input states with
opposite preferences interact while clock-creation is true.
However, the values get cancelled, and due to the transition
rules, the agent that did not become a clock may never re-
enter the initial state. Therefore, per each clock created there

6By applying expectation and telescoping, as in the proof of Theorem
2.10 in [PTW15].

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

is one agent that will never become a clock, proving the
claim.

LEMMA C.2. (RUMOR SPREADING) Suppose that in some
configuration c, one agent knows a rumor. The rumor is
spread by interactions through a set of agents S with |S| ≥
n/2. Then, the expected number of interactions from c for
all agents in S to know the rumor is O(n log n). Moreover,
for sufficiently large constant β, after βn log n interactions,
all agents know the rumor with probability 1− n−9.

Proof. The behavior of this dynamics, also known as epi-
demic spreading, is folklore. Analysis follows via coupon
collector arguments. The expectation bound is trivial and
proved for instance in [AG15], Lemma 4.2.

A formal proof of the high probability claim using
techniques from [KMPS95] can for instance be found
in [AAE08a]. The fact that rumor spreads through at least
half of the agents affects the bounds by at most a constant
factor. To see this, observe that each interaction has a con-
stant probability of being between agents in S ∪ {u}, where
u is the source of the rumor. Thus, with high probability
by Chernoff, constant fraction of interactions actually occur
between these agents and these intaractions act as a rumor
spreading on S ∪ {u}.

LEMMA C.3. (BACKUP) Let c be a configuration of all
agents, containing a backup agent. Then, withinO(n2 log n)
expected intaractions from c, the system will stabilize to the
correct majority decision.

Proof. By Lemma C.2, within O(n log n) expected interac-
tions all agents will be in a backup state. That configura-
tion will correspond to a reachable configuration of the 4-
state protocol of [DV12, MNRS14], and all remaining inter-
actions will follow this backup protocol. As the agents have
the same input in 4-state protocol as in the original protocol,
it can only stabilize to the correct majority decision. The
4-state protocol stabilizes in n2 log n expected interactions
from any reachable configuration, completing the proof.

LEMMA C.4. (CORRECTNESS) If the system stabilizes to
majority decision WINX for X ∈ {A,B}, then state X
had the majority in the initial configuration.

Proof. Without loss of generality, assume that state A had
the majority in the initial configuration (WINA is the correct
decision). For contradiction, suppose the system stabilizes
to the decision WINB . Then, the stable configuration may
not contain terminators in state DA or strong workers with
preference WINA. We show that such configurations are
unreachable in backup-free executions.

If any agent is in state DA during the execution, it will
remain in DA unless an error occurs (and agents change
to backup states). In neither of these cases can the system

stabilize to decision WINB . This is because γ(DA) =
WINA and in executions where some agent enters a backup
state, we stabilize to the correct decision by Lemma C.3.

By Invariant 1, for any configuration C reached by a
backup-free execution during which, additionally, no agent is
ever is state DA, we have Q(C) ≥ n. But any configuration
C with strictly positive Q(C) contains at least one strong
agent with preference WINA, as desired.

LEMMA C.5. (TERMINATOR) Let c be a configuration of
all agents, containing a terminator agent. In backup-free
executions, the system stabilizes to the correct majority
decision within O(n log n) interactions in expectation and
with high probability. Otherwise, the system stabilizes within
O(n2 log n) expected intaractions.

Proof. If there is a backup agent in c, then the claim follows
from Lemma C.3.

Otherwise, the terminator spreads the rumor, such that
the agents that the rumor has reached are always either in the
same terminator state, or in an backup state. By Lemma C.2,
this takes O(n log n) interactions both in expectation and
with high probability. If all agents are in the same terminator
state, then the system has stabilized to the correct majority
decision by Lemma C.4. Otherwise, there is a backup agent
in the system, and by Lemma C.3, the system will stabilize
within further O(n2 log n) expected interactions.

We derive a lemma about each type of phase.

LEMMA C.6. (CANCELLATION) Suppose in configuration
c every agent is either a clock or a worker in the same
cancellation phase φ (φ is odd). Consider executing 8(β +
1)n log n interactions from c conditioned on an event that
during this interaction sequence, no clock is ever in a state
with label EVEN , and that the phase clock gap is never
larger than ρ. Let c′ be the resulting configuration. Then,
with probability 1 − n−β , in c′ it holds that: (1) all strong
agents have the same preference, or there are at most n/10
strong agents with each preference; (2) every agent is still a
clock, or a worker in phase φ.

Proof. By our assumption, no clock is ever in a state with
label EVEN during the interaction sequence. This implies
that no worker may enter phase φ+1 or become a terminator.
We assumed that the phase clock gap never violates the
threshold ρ, and we know all workers are in the same phase,
so backups also do not occur.

In configuration c, all workers are in phase φ, which is
a cancellation phase, and must have values in {0, 1}. This
is true for phase 1, and when an agent becomes active in a
later cancellation phase, it updates value 1/2 to 1, so having
value 1/2 is impossible. Thus, the only strong agents in the
system have value 1. As no weak worker or a clock may
become strong during these 8(β+ 1)n log n interactions, the

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

count of strong agents never increases. The only way the
count of strong agents decreases is when two agents with
value 1 and opposite preferences interact. In this case, the
count always decreases by 2 (both values become 0 or if
clock-creation=true, one agent becomes a clock).

Our claim about the counts then is equivalent to Lemma
5 in [AAE08a] invoked with a different constant (5 instead
of 4, as 8(β + 1)n log n > 5(β + 1)n lnn) and by treating
strong agents with different preferences as (1, 0) and (0, 1).

LEMMA C.7. (DUPLICATION) Suppose in configuration c
every agent is either a clock or a worker in the same
duplication phase φ (φ is even). Consider executing 8(β +
1)n log n interactions from c conditioned on events that
during this interaction sequence (1) no clock is ever in a state
with label ODD , (2) the phase clock gap is never larger than
ρ, and (3) the number of weak workers is always ≥ n/10.
Let c′ be the resulting configuration. Then, with probability
1−n−β , in c′ it holds that: (1) all strong workers have value
1/2; (2) every agent is still a clock, or a worker in phase φ.

Proof. By our assumption, no clock is ever in a state with
label ODD during the interaction sequence. This implies
that no worker may enter phase φ+1 or become a terminator.
We assumed that the phase clock gap never violates the
threshold ρ, and we know all workers are in the same phase,
so backups also do not occur.

In a duplication phase, workers may not update a state
such that their value becomes 1. Consider a fixed strong
worker state in configuration c with value 1. By the as-
sumption, probability of an interaction between our fixed
agent and a weak worker is at least n/10

n(n−1)/2 ≥ 1/5n.
If such an interaction occurs, our agent’s value becomes
1/2. The probability that this does not happen is at most
(1−1/5n)8(β+1)n logn ≤ (1−1/5n)5n·(β+1) lnn = n−β−1.
By union bound over at most n agents, we get that with prob-
ability 1− n−β , no worker will have value 1, as desired.

Next, we develop a few more tools before proving stabiliza-
tion guarantees.

LEMMA C.8. Suppose we execute α(β + 1)n log n succes-
sive interactions for α ≥ 3/2. With probability 1− n−β , no

agent interacts more than 2α(1 +
√

3
2α)(β + 1) log n times

in these interactions.

Proof. Consider a fixed agent in the system. In any inter-
action, it has a probability 2/n of being chosen. Thus, we
consider a random variable Bin(α(β + 1)n log n, 2/n), i.e.
the number of successes in independent Benoulli trials with

probability 2/n. By Chernoff bound, setting σ =
√

3
2α ≤ 1,

the probability interacting more than 2α(1 +σ)(β+ 1) log n
times is at most 1/nβ+1. Union bound over n agents com-
pletes the proof.

Notice that the number of interactions trivially upper
bounds the number of times an agent can go through any type
of state transition during these interactions. In particular, the
probability that any clock in the system increases its position

more than 2α(1 +
√

3
2α)(β + 1) log n times during these

interactions is n−β .

LEMMA C.9. Consider a configuration in which there are
between 2n/5 and n/2 clocks, each with a position in [0, 2ρ),
and all remaining agents are workers in the same phase φ,
where φ is odd. Then, the number of interactions before some
clock reaches position 2ρ is O(n log n) with probability
1− n−β .

Proof. In this case, until some clock reaches position 2ρ,
no backup or terminator agents may appear in the sys-
tem. Every interaction between two clocks increases one of
them. Therefore, the number of interactions until some clock
reaches position 2ρ is upper bounded by the number of inter-
actions until 2ρn interactions are performed between clocks.
At each interaction, two clocks are chosen with probability
at least 1/9 (for all sufficiently large n). We are interested
in the number of Bernoulli trials with success probability
1/9, necessary to get 2ρn successes with probability at least
1 − n−β . As we have ρ = Θ(log n), this is O(n log n) by
Chernoff bound.

LEMMA C.10. Let δ(c) for a configuration c be the number
of weak workers minus the number of workers with value
1. Suppose that throughout a sequence of interactions from
configuration c to configuration c′ it holds that (1) all agents
are clocks and workers; and (2) no worker enters an odd
phase. Then, δ(c′) ≥ δ(c).

Proof. We will prove that δ is monotonically non-decreasing
for configurations along the interaction sequence from c to
c′. Under our assumptions, interactions that affect δ are can-
cellations and duplications. A cancellation decreases the
count of workers with value 1 and increases the count of
weak workers, increasing δ of the configuration. A dupli-
cation decrements both, the number of workers with value 1,
and the number of weak workers, leaving δ unchanged.

LEMMA C.11. If the initial majority state has an advantage
of εn agents over the minority state, our algorithm stabilizes
to the correct majority decision inO(log 1/ε · log n) parallel
time, with high probability.

Proof. In this argument, we repeatedly consider high prob-
ability events, and suppose they occur. In the end, an union
bound over all these events gives the desired result.

Consider the first 8(β + 1)n log n interactions of the
protocol. Initially there are no clocks, and each clock starts
with a position 0 and increases its position at most by one per

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

interaction. By Lemma C.8, with probability 1−n−β , during
these interactions no clock may reach position Tc = 23(β +
1) log n, as that would require an agent to interact more
than Tc times. The states of the clock with label EVEN
all have position 2ρ ≥ 58(β + 1) logn. Therefore, we can
apply Lemma C.6 and get that in the resulting configuration
c, with probability 1−n−β , either all strong workers have the
same preference, or the number of strong workers with each
preference is at most n/10. We will deal with the case when
all strong agents have the same preference later. For now,
suppose the number of strong workers with each preference
is at most n/10. As every cancellation up to this point creates
one weak worker and one clock, the number of clocks and
weak workers is equal and between 2n/5 and n/2. Thus, for
δ defined as in Lemma C.10 we have δ(c) ≥ n/5 > n/10.
We also know that in configuration c, each agent is either a
clock that has not yet reached position Tc = 23(β + 1) log n
(and thus, also not reached a position with a label EVEN),
or it is a worker still in phase 1.

By Lemma C.9, with probability at least 1−n−β , within
O(n log n) interactions we reach a configuration c′ where
some clock is at a position 2ρ, which has a label EVEN .
But before this, some clock must first reach position Tc.
Consider the first configuration c1 when this happens. The
clock at position Tc would set clock-creation ← false.
Notice that from c1, clock-creation=false propagates via
rumor spreading, and after the rumor reaches all agents,
no agent will ever have clock-creation=true again, and no
more clocks will be created. By Lemma C.2, this will
be the case with high probability7 in a configuration c2
reached after (3/2)βn log n interactions from c1. Moreover,
by Lemma C.8, no clock will have reached a position larger
than Tc + 6(β + 1) log n ≤ 29(β + 1) log n in c2, which
is precisely the quantity γ log n we used as the maximum
starting gap when applying Corollary B.1 to determine the
ρ of our phase clock. In c2, all clocks have positions in
[0, 29(β+1) log n), and no more clocks will ever be created.
By Lemma C.1 and since the number of clocks was ≥ 2n/5
in configuration c, the number of clock agents is from now
on fixed between 2n/5 and n/2 (unless some agent becomes
a backup or a terminator). Also, the definition of ρ lets us
focus on the high probability event in Corollary B.1, that
the phase clock gap remains less than ρ during Θ(n log n)
interactions following c2.

Since 29(β + 1) log n < ρ < 2ρ, in c2 no clock has
reached a state with label EVEN , and thus, configuration
c2 occurs after configuration c and before configuration c′.
Recall that we reach c′ from c within O(n log n) interac-
tions with high probability. In c′, some clock has reached
position 2ρ, but the other agents are still either clocks with

7Recall that β was chosen precisely to be sufficiently large for the whp
claim of Lemma C.2.

position in [ρ, 2ρ), or workers in phase 1. Let c′′ be a con-
figuration reached after (3/2)βn log n interactions follow-
ing c′. By Lemma C.8, in c′′, all clocks will have positions
≤ 2ρ + 6(β + 1) logn < 3ρ. Combining with the fact that
at least one agent was at 2ρ in c′, maximum gap is < ρ,
and positions [ρ, 2ρ) have label buffer, we obtain that dur-
ing the (3/2)βn log n interactions from c′ leading to c′′, all
clocks will be in states with label EVEN or buffer. However,
there is at least one clock with label EVEN starting from
c′, spreading the rumor through workers making them enter
phase 2. Due to Lemma C.1, at least half of the agents are
workers. Therefore, by Lemma C.2, in c′′, with probability
at least 1− n−9, all worker agents are in phase 2. All clocks
will be less than gap ρ apart from each other with some clock
with a position in [2ρ, 3ρ), and no clock with position ≥ 3ρ.

We now repeat the argument, but for a duplication phase
instead of a cancellation using Lemma C.7, and starting
with all clocks with positions in [2ρ, 3ρ) as opposed to
[0, ρ) and all workers in phase 2. We consider a sequence
of 8(β + 1)n log n interactions, and by Lemma C.8, no
clock will reach position 3ρ + 23(β + 1) log n. Thus, no
agent will update to an odd phase and since δ(c) ≥ n/10,
by Lemma C.10, the number of weak agents must be at
least n/10 throughout the interaction sequence, allowing the
application of Lemma C.7. We get that with high probability,
after O(n log n) rounds, there will again only be clocks and
workers in the system. All clocks will be less than gap ρ
apart with some clock at a position in [3ρ, 0) and with no
clock yet reaching position 0 (wrapping around).

Now, due to the loop structure of the phase clock, we can
use the same argument as in Lemma C.9 to claim that, with
probability at least 1 − n−β , within O(n log n) interactions
we reach a configuration where some clock is at a position
0 (label ODD). Because maximum gap is < ρ, all clocks
will have label buffer, and the clock at 0 will now spread
the rumor making all workers enter phase 3 within the
next (3/2)βn log n interactions. No worker will become a
terminator, since Lemma C.7 guarantees that all the agents
with value 1 get their values duplicated (turned into 1/2)
before they enter phase 3.

Then, we repeat the argument for a cancellation phase
(as for phase 1), except that interactions do not create clock
agents (due to clock-creation=false) With high probability,
within O(n log n) interactions, all agents will again be in a
worker or a clock state. Moreover, either all strong agents
will support the same decision, or the number of strong
agents supporting each decision will be at most n/10. Since
by Lemma C.1, the number of clocks is at most n/2, δ as de-
fined in Lemma C.10 is at least n/2−2(n/10)−2(n/10) =
n/10 for this configuration, and will remain so until some
agent reaches phase 5, allowing us to use Lemma C.7 for
phase 4, etc.

Due to Invariant 1, the case when all strong worker

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

agents support the same decision must occur before phase
2 log 1/ε + 1. Assume that original majority was A, then
Q(c) must remain larger than εn2 (up to this point all agents
are clocks or workers, so the condition aboutDA holds). The
maximum potential in phase 2 log 1/ε + 1 is εn2 and it is
attained when all agents are strong and support WINA.

Hence, we only need to repeat the argument O(log 1/ε)
times. The number of high probability events that we
did union bound over is O(n · log 1/ε · log n) (number of
interactions for the phase clock). Combining everything,
we get that with probability 1 − O(log 1/ε)

n9 , the algorithm
stabilizes within O(log 1/ε · log n) parallel time.

LEMMA C.12. If the initial majority state has an advantage
of εn agents over the minority state, our algorithm stabilizes
to the correct majority decision inO(log 1/ε·log n) expected
parallel time.

Proof. We know that in the high probability case
of Lemma C.11, the protocol stabilizes within O(log 1/ε ·
log n) parallel time. What remains to bound the expectation
the low probability events of Lemma C.11.

Notice that as soon as any agent gets into an backup
or a terminator state, by Lemma C.3 and Lemma C.5, the
remaining expected time for the protocol to stabilize is
O(n2 log n) interactions. Therefore, we will be looking to
bound expected time to reach configurations with a backup
or a terminator agent.

Without loss of generality, suppose A is the inital ma-
jority. If all agents start in A, then the system is already
stable with the correct decision. If the initial configuration
contains just a single agent in state B, then it takes expected
O(n) interactions for this agent to interact with an agent in
stateA, and lead to a configuration where n−2 agents are in
state A (worker state with value 1 and preference WINA),
one agent is a worker with value 0 and one agent is a clock
with position 0. One of these two agents (weak worker and
the clock) has preference WINB and it takes another O(n)
expected interactions for it to meet a strong agent with pref-
erence WINA and update its own preference. At that point
(after O(1) expected parallel time) the system will be stable
with the correct majority decision (since there is only one
clock, its position remains at 0, and because of this, workers
do not perform any phase updates).

Next, we consider the case when there are at least 2
agents in state B in the initial configuration. Interactions be-
tween two agents both in stateA and two agents both in state
B do not lead to state updates. After one cancellation, as in
the previous case, there will be agents in input states, one
clock stuck at position 0, and one weak worker that might
change its preference, but not phase or value. Therefore, af-
ter O(n) expected interactions, we will get at least two clock
agents in the system.

Unless some agent ends up in a backup or a terminator

state (this is a good case, as discussed earlier) the number of
clocks never decreases. During interactions when there are
k ≥ 2 clocks in the system, the probability of an interaction
between two clocks is k(k−1)/2

n(n−1)/2 ≥ k/n2. Therefore, it
takes O(n2/k) expected interactions for one of the clocks
to increment its position. After k · 4ρ = O(k log n)
such increments of some clock position, at least one of the
clocks should go through all the possible positions. Notice
that this statement is true without the assumption about the
maximum gap of the clock (important, because that was a
with high probability guarantee, while here we are deriving
an expectation bound that holds from all configurations)

Consider any non-clock agent v in the system in some
configuration c. Since we know how to deal with the case
when some agent ends up in a backup or a terminator state,
suppose v is a worker. The clock agent that traverses all
positions in [0, 4ρ) necessarily passes through a state with
label ODD and with label EVEN . If v is in an odd phase
and does not move to an even phase, then when the clock
is in state labelled EVEN , there would be 1/n2 chance of
interacting with v, and vice versa. If such intaraction occurs,
and v does not change its state to a non-worker, then it
must necessarily increase its phase. Therefore, in any given
configuration, for any given worker, the expected number of
interactions before it either changes to a non-worker state or
increases it phase is O(k log n · n

2

k · n
2) = O(n4 log n).

By Lemma C.1, there can be at most n/2 clocks in the
system in any configuration. Also, non-worker states can
never become worker states again. The maximum number
of times a worker can increase its phase is O(log n). Thus,
withinO(n5 log2 n) expected interactions, either some agent
should be in a backup or terminator state, or in the maximum
phase possible (2 logn+ 1).

If some worker reaches a maximum phase possible,
there are no backup or terminator agents and there exists an-
other worker with a smaller phase, within O(n2) expected
interactions they will interact. This will either turn both
agents into backups, or the other agent will also enter phase
2 log n+ 1. Thus, within at most O(n3) additional expected
interactions, all workers will be in phase 2 log n + 1 (un-
less there is a backup or a terminator in the system). This
contradicts with Invariant 1, implying that our assumption
that no agent gets into a backup or a terminator state should
be violated within expected O(n5 log2 n) interactions (us-
ing linearity of expectation and discarding asymptotically
dominated terms). Hence, the protocol always stabilizes
within O(n4 log2 n) expected parallel time. The system sta-
bilizes in this expected time in the low probability event
of Lemma C.11, giving the total expectated time of at most
O(log 1/ε · log n) + O(log 1/ε·n4·log2 n)

n9 = O(log 1/ε · log n)
as desired.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

D Phased Leader Election

Overview: We partition the state space into clock states,
contender states, and follower states. A clock state is just
a position on the phase clock loop. A contender state and
a follower state share the following two fields (1) a phase
number in [1,m], which we will fix to m = O(log n) later,
and (2) a High/Low indicator within the phase. Finally, all
states have the following bit flags (1) clock-creation, as in the
majority protocol, and (2) a coin bit for generating synthetic
coin flips with small bias, as in [AAE+17]8 The loop size of
the phase clock will be Θ(log n) as in the majority. Thus, the
state complexity of the algorithm is Θ(log n).

All agents start as contenders, with phase number 1
and a High indicator. The coin is initialized with 0 and
clock-creation=true. Each agent flips its coin at every
interaction. As in majority, labels buffer, ODD and EVEN
are assigned to clock positions. Only contenders map to the
leader output.
Clock States and Flags: Clock agents, as in the major-
ity algorithm, follow the phase clock protocol from Sec-
tion 4 to update their position. When a clock with
clock-creation=true reaches the threshold Tc, it sets
clock-creation to false. The clock-creation flag works ex-
actly as in the majority protocol.
Contenders and Followers: The idea of followers that
help contenders eliminate each other comes from [AG15].
A follower maintains a maximum pair of (phase number,
High/Low indicator) ever encountered in any interaction
partner, contender or follower (lexicographically ordered,
High > Low). When a contender meets another agent
with a larger phase-indicator pair than its own, it becomes
a follower and adopts the pair. An agent with a strictly larger
pair than its interaction partner does not update its state/pair.
Also, when two agents with the same pair interact and one
of them is a follower, both remain in their respective states.

When two contenders with the same pair interact and
clock-creation=true, one of them becomes a clock at posi-
tion 0. If clock-creation=false, then one of them becomes
a follower with the same pair. The other contender remains
in the same state. As in phased majority, we want to control
the counts of states and in particular, avoid creating more
than n/2 clocks. This can be accomplished by adding a sin-
gle created bit initialized to 0. When two contenders with
the same pair meet, and both of their created bit is 0, then
one of them becomes a clock and another sets created to
1. Otherwise, if one of the contenders has created= 1,
then it becomes a follower; the other remains unchanged.

8State transitions in population protocols are deterministic and the
protocol does not have access to a random coin flips. The idea for synthetic
coin flips is to simulate an outcome of a random coin flip based on part of
the state of the interaction partner. This can be made to work because the
scheduler is randomized.

Then Lemma C.1 still works and gives that we will never
have more than n/2 clocks.
Contender Phase Update: Consider a contender in phase
φ. If φ is odd phase and the contender meets a clock
whose state has an EVEN label, or when φ is even and the
contender meets a clock with an ODD-labelled state, then
it increments its phase number to φ + 1. However, again
due to technical reasons (to guarantee unbiased synthetic
randomness), entering the next phase happens in two steps.
First the agent changes to a special intermediate state (this
can be implemented by a single bit that is true if the state
is intermediate), and only after the next interaction changes
to non-intermediate contender with phase φ+ 1 and sets the
High/Low indicator to the coin value of the latest interaction
partner. If the coin was 1, indicator is set to High and
if the coin was 0, then it is set to Low . For the partner,
meeting with an intermediate state is almost like missing an
interaction - only the coin value is flipped. An exception
to the rule of incrementing the phase is obviously when a
contender is in phase m. Then the state does not change.

THEOREM D.1. Our algorithm elects a unique stable
leader within O(log2 n) parallel time, both with high proba-
bility and in expectation.

Proof. We first prove that is always at least one contender in
the system. Assume the contrary, and consider the interac-
tion sequence leading to a contenderless configuration. Con-
sider the contender which had the highest phase-indicator
pair when it got eliminated, breaking ties in favor of the later
interaction. This is a contradiction, because no follower or
other contender may have eliminated it, as this requires hav-
ing a contender with a larger phase-indicator pair.

By construction, the interacted bit combined
with Lemma C.1 ensures that there are never more than n/2
clocks in the system. We set up the phase clock with the
same ρ as in majority, and also the clock-creation threshold
Tc = 23(β + 1) log n. After the first 8(β + 1)n log n
interactions, with probability 1 − n−β , there will be at
least 2/5n clocks. The proof of this claim is similar
to Lemma C.7: if the number of contenders with initial
state and created set to 0 was at least n/10 throughout the
sequence of interactions, then any given agent would have
interacted with such agent with high probabiliy, increasing
the number of clocks. Otherwise, the number of agents with
created = 0 falls under n/10, but there are as many agents
that are clocks as contenders that are not created = 0 and at
least (n− n/10)/2 > 2n/5.

Now we can apply the same argument as in Lemma C.11
and get that, with high probability, the agents will keep en-
tering larger and larger phases. In each phase, as in the
majority argument, a rumor started at each agent reaches
all other agents with high probability. This means that
if a contender in a phase selects indicator High , then all

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

other contenders that select indicator Low in the same phase
will get eliminated with high probability. By Theorem
4.1 from [AAE+17], the probability that a given contender
picks High is at least 1/2 − 1/28 with probability at least
1 − 2 exp(−

√
n/4). For every other agent, the probabil-

ity of choosing Low is similarly lower bounded. Thus,
Markov’s inequality implies that in each phase, the num-
ber of contenders decreases by a constant fraction with con-
stant probability, and phases are independent of each other.
By a Chernoff bound, it is sufficient to take logarithmi-
cally many phases to guarantee that one contender will re-
main, with high probability, taking a union bound with the
event that each phase takes O(log n) parallel time, as proved
in Lemma C.11.

To get an expected bound, observe that when there are
more than two contenders in the system, there is 1/n2 prob-
ability of their meeting. Hence, the protocol stabilizes from
any configuration, in particular in the with low probability
event, within O(n3) interactions, which does not affect the
total expected parallel time of O(log2 n).

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Model and Problem Statement
	Lower Bound on Majority
	Leaderless Phase Clock
	The Phased Majority Algorithm
	Conclusions and Future Work
	Acknowledgments
	Majority Lower Bound
	Leaderless Phase Clock
	Majority Upper Bound
	Phased Leader Election

