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Handling many increments
Handling few increments
Full result

Approximate counting

@ Processes can read and write @O — 1
shared atomic registers.

@ Read on an atomic register XC 1
returns value of last write. E— \
- o e
@ Timing of operations is P
controlled by an adversary.
_ CJC Sy
@ Cost of a high-level — 1

operation is number of Y /
low-level operations (register

reads and writes) used.
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Approximate counting

@ Each of n processes increments a shared counter at most
once.
@ Counter read operation should return number of increments
within ¢ relative error with high probability.
@ Cost of read should be < n.
e O(n/logn) is enough for our intended application.
o O(n*/5+€), for any fixed ¢, is what we achieve.
@ Counter must work despite strong adversary that can see
internal states of processes.
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Approximate counting

Counting by collect

@ Each process writes its
increment to a separate
register.

@ To read the counter, read all
registers and add them up.
(This takes ©(n) time!)

@ Counter read always includes
writes that finish before read
starts.
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Latecomers

o If a write starts before the
collect finishes, reader may

|
7

or may not read it. @ce | 1 ©e
@ OK as long as total returned — —

by collect doesn't exceed Y

number of writes finished or — 1

in progress. @@ ——1
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Approximate counting

We want a counter that acts like the simple collect, but will
sacrifice accuracy for speed.
Counter read is d-accurate if it:

@ Returns at least (1 — ) times the number of increments that
finish before the read starts.

@ Returns at most (1 + §) times the number of increments that
start before the read finishes.

(This is a pretty weak guarantee.)
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Counting by sampling

Instead of reading all registers,
randomly sample s registers and @@ | 1
multiply by n/s.

@ With no concurrent
. . . @@ —| 1
increments, gives predictable —
additive error w.h.p.
(standard Chernoff bounds).
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Counting by sampling

Instead of reading all registers,
randomly sample s registers and
multiply by n/s.

o With no concurrent
increments, gives predictable
additive error w.h.p. @@ —- 1
(standard Chernoff bounds).

@ Danger of undercount with
< n/s increments.

e

Y

@ Danger of overcount if
adversary controls
concurrent writes.
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Potemkin village attack

@@ | 1
2
@ Strong adversary controls all
iming an n her
ti |g.adca see where YC ]
reader is about to look. N

@ So it rushes an increment
into each register the reader @@ 1
is about to read.

@ Amazing! Ones everywhere!

@ Reader always returns n.
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Approximate counting

Two-sided sampling

@ Incrementers also write to
random locations.

o Collisions are reduced by
using N > n registers.

@ Adversary can't cause
overcount with late
increments: each new
increment only increases
chance of 1 in target register
by 1/N.

@ But undercount problem
gets worse: granularity is
now N/s.
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Sampling counter: details

Fix small € > 0 and let s = n*/5t¢, N = pb/5+¢/4,

@ Expected increments lost to collisions is
O(n?/N) = O(n*/>=</4).

o Completed increments are sampled with standard deviation
O((N/s)y/s) = O(n*/>=</4); stock Chernoff bounds give
bound on undercounts.

@ Concurrent increments may depend in odd ways on behavior
of adversary, but a supermartingale argument and appropriate
tail bound give a similar bound on overcounts.

Result: After n*/® increments, probability that a single call to
sampling read is d-inaccurate is at most exp ( on /2) (1+0(1))

= small.
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Small numbers of increments

Use a second counter for few

and divides by D.

@ Write locations are chosen
. CXC)
using an expander = k ~—
increments give between
(1 — 6)Dk and Dk ones.

o Fails only after sampling
counter starts working.

increments:
@ Each incrementer now writes 1
D = O(log®*/9) ) of
O(n*/5%¢) registers. X0 1 \
@ Reader reads all the registers > )

(
AN
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Combined counter

The full counter combines the two components:

@ Incrementer increments sampling counter first, then expander
counter.

@ Reader checks expander counter first, then checks sampling
counter if expander overflows.

@ Since sampling counter is always > expanding counter,
sampling counter is only used in its accurate range.

Result: d-accurate approximate counter w.h.p. in 5(Iogo(1/€) n)
register writes per increment and O(n*/>%€) register reads per
counter read.
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Randomized consensus

Randomized consensus

@ Want n processes to agree on a bit despite asynchrony and up
to n — 1 halting failures.

@ Impossible for deterministic algorithms with even one failure
(Fischer-Lynch-Paterson 1985; Loui and Abu-Amara 1987).

@ Possible using randomization even with strong adversary.
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Randomized consensus

Randomized consensus: total work

e Exponential-time algorithm (Abrahamson 1988).
@ Reduction to random voting (Aspnes-Herlihy 1989).
o Generate ©(n?) random =1 votes.
o Use counter to test if we have enough votes.
o Q(n) standard deviation beats votes hidden in dead processes
with constant probability.
o First polynomial-time algorithm (O(n®)).

@ Only check termination every ©(n/ log n) votes
(Bracha-Rachman 1991) = O(log n) amortized cost to check
counter = O(n?log n) total work (but same individual
work).

@ Use termination flag to stop voting when one process notices
termination (Attiya-Censor 2007) = only need to check every
O(n) votes = O(1) amortized cost per vote = O(n?) total
work. Also shown to be optimal.
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Randomized consensus

Randomized consensus: individual work

Simple £1 voting may force one process to generate all Q(n?) votes
itself. What if we want each process to only do O(n) operations?
e Weighted voting (Aspnes-Waarts 1996).

o Faster processes cast bigger votes.

e Have to check termination slightly more often to avoid
runaway big votes.

e With Bracha-Rachman-style termination test, individual work
is O(nlog® n) (= O(n?log® n) total work, worse that
Bracha-Rachman).

@ Attiya-Censor termination bit reduces cost to O(nlog n)
(Aspnes-Attiya-Censor 2008).

e Main limitation is each process still checks counter Q(log n)
times = Q(nlog n) cost with simple counter.

o New result: (AAC 2008) + sublinear counter + much pushing
and shoving = O(n) individual work. This is optimal by
previous lower bound of (Attiya-Censor 2007).
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Conclusions

What's left?

e Randomized consensus: pretty much done (in this model).
@ Further counter improvements:

Practical time complexity.

Exact counting.

Linearizability.

Unbounded increments.
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Conclusions

What's left?

e Randomized consensus: pretty much done (in this model).
@ Further counter improvements:

Practical time complexity.(*)

Exact counting.(*)

Linearizability.

Unbounded increments.

(*) Can get deterministic exact counting with O(log? n) cost for
increments and O(log n) for reads. (Aspnes-Attiya-Censor, in
preparation.)
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