
Approximate counting
Randomized consensus

Conclusions

Approximate Shared-Memory Counting
Despite a Strong Adversary

James Aspnes Keren Censor

January 5th, 2009

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Model

Processes can read and write
shared atomic registers.

Read on an atomic register
returns value of last write.

Timing of operations is
controlled by an adversary.

Cost of a high-level
operation is number of
low-level operations (register
reads and writes) used.

1

1

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Approximate counting

Each of n processes increments a shared counter at most
once.

Counter read operation should return number of increments
within δ relative error with high probability.

Cost of read should be � n.

O(n/ log n) is enough for our intended application.

Õ(n4/5+ε), for any fixed ε, is what we achieve.

Counter must work despite strong adversary that can see
internal states of processes.

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Counting by collect

Each process writes its
increment to a separate
register.

To read the counter, read all
registers and add them up.
(This takes Θ(n) time!)

Counter read always includes
writes that finish before read
starts.

1

1

1

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Latecomers

If a write starts before the
collect finishes, reader may
or may not read it.

OK as long as total returned
by collect doesn’t exceed
number of writes finished or
in progress.

1

1

1

1

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Approximate counting

We want a counter that acts like the simple collect, but will
sacrifice accuracy for speed.
Counter read is δ-accurate if it:

1 Returns at least (1− δ) times the number of increments that
finish before the read starts.

2 Returns at most (1 + δ) times the number of increments that
start before the read finishes.

(This is a pretty weak guarantee.)

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Counting by sampling

Instead of reading all registers,
randomly sample s registers and
multiply by n/s.

With no concurrent
increments, gives predictable
additive error w.h.p.
(standard Chernoff bounds).

Danger of undercount with
� n/s increments.

Danger of overcount if
adversary controls
concurrent writes.

1

1

1

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Counting by sampling

Instead of reading all registers,
randomly sample s registers and
multiply by n/s.

With no concurrent
increments, gives predictable
additive error w.h.p.
(standard Chernoff bounds).

Danger of undercount with
� n/s increments.

Danger of overcount if
adversary controls
concurrent writes.

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Counting by sampling

Instead of reading all registers,
randomly sample s registers and
multiply by n/s.

With no concurrent
increments, gives predictable
additive error w.h.p.
(standard Chernoff bounds).

Danger of undercount with
� n/s increments.

Danger of overcount if
adversary controls
concurrent writes.

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Potemkin village attack

Strong adversary controls all
timing and can see where
reader is about to look.

So it rushes an increment
into each register the reader
is about to read.

Amazing! Ones everywhere!

Reader always returns n.

1

1

1

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Two-sided sampling

Incrementers also write to
random locations.

Collisions are reduced by
using N � n registers.

Adversary can’t cause
overcount with late
increments: each new
increment only increases
chance of 1 in target register
by 1/N.

But undercount problem
gets worse: granularity is
now N/s.

1

1

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Sampling counter: details

Fix small ε > 0 and let s = n4/5+ε, N = n6/5+ε/4.

Expected increments lost to collisions is
O(n2/N) = O(n4/5−ε/4).

Completed increments are sampled with standard deviation
O((N/s)

√
s) = O(n4/5−ε/4); stock Chernoff bounds give

bound on undercounts.

Concurrent increments may depend in odd ways on behavior
of adversary, but a supermartingale argument and appropriate
tail bound give a similar bound on overcounts.

Result: After n4/5 increments, probability that a single call to

sampling read is δ-inaccurate is at most exp
(
− δ2nε/2

2

)
(1 + o(1))

= small.

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Small numbers of increments

Use a second counter for few
increments:

Each incrementer now writes
D = Õ(logO(1/ε) n) of
Õ(n4/5+ε) registers.

Reader reads all the registers
and divides by D.

Write locations are chosen
using an expander ⇒ k
increments give between
(1− δ)Dk and Dk ones.

Fails only after sampling
counter starts working.

1

1

1

1

1

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Model
Handling many increments
Handling few increments
Full result

Combined counter

The full counter combines the two components:

Incrementer increments sampling counter first, then expander
counter.

Reader checks expander counter first, then checks sampling
counter if expander overflows.

Since sampling counter is always ≥ expanding counter,
sampling counter is only used in its accurate range.

Result: δ-accurate approximate counter w.h.p. in Õ(logO(1/ε) n)
register writes per increment and Õ(n4/5+ε) register reads per
counter read.

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Randomized consensus

Want n processes to agree on a bit despite asynchrony and up
to n − 1 halting failures.

Impossible for deterministic algorithms with even one failure
(Fischer-Lynch-Paterson 1985; Loui and Abu-Amara 1987).

Possible using randomization even with strong adversary.

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Randomized consensus: total work

Exponential-time algorithm (Abrahamson 1988).
Reduction to random voting (Aspnes-Herlihy 1989).

Generate Θ(n2) random ±1 votes.
Use counter to test if we have enough votes.
Ω(n) standard deviation beats votes hidden in dead processes
with constant probability.
First polynomial-time algorithm (O(n6)).

Only check termination every Θ(n/ log n) votes
(Bracha-Rachman 1991) ⇒ O(log n) amortized cost to check
counter ⇒ O(n2 log n) total work (but same individual
work).

Use termination flag to stop voting when one process notices
termination (Attiya-Censor 2007) ⇒ only need to check every
Θ(n) votes ⇒ O(1) amortized cost per vote ⇒ O(n2) total
work. Also shown to be optimal.

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

Randomized consensus: individual work

Simple ±1 voting may force one process to generate all Ω(n2) votes
itself. What if we want each process to only do O(n) operations?

Weighted voting (Aspnes-Waarts 1996).
Faster processes cast bigger votes.
Have to check termination slightly more often to avoid
runaway big votes.
With Bracha-Rachman-style termination test, individual work
is O(n log2 n) (= O(n2 log2 n) total work, worse that
Bracha-Rachman).

Attiya-Censor termination bit reduces cost to O(n log n)
(Aspnes-Attiya-Censor 2008).

Main limitation is each process still checks counter Ω(log n)
times ⇒ Ω(n log n) cost with simple counter.

New result: (AAC 2008) + sublinear counter + much pushing
and shoving ⇒ O(n) individual work. This is optimal by
previous lower bound of (Attiya-Censor 2007).

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

What’s left?

Randomized consensus: pretty much done (in this model).

Further counter improvements:

Practical time complexity.
Exact counting.
Linearizability.
Unbounded increments.

January 5th, 2009 Approximate Shared-Memory Counting



Approximate counting
Randomized consensus

Conclusions

What’s left?

Randomized consensus: pretty much done (in this model).

Further counter improvements:

Practical time complexity.(*)
Exact counting.(*)
Linearizability.
Unbounded increments.

(*) Can get deterministic exact counting with O(log2 n) cost for
increments and O(log n) for reads. (Aspnes-Attiya-Censor, in
preparation.)

January 5th, 2009 Approximate Shared-Memory Counting


	Approximate counting
	Model
	Handling many increments
	Handling few increments
	Full result

	Randomized consensus
	Conclusions

