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Abstract

Ranged hash functions generalize hash tables to the set-
ting where hash buckets may come and go over time, a
typical case in distributed settings where hash buckets
may correspond to unreliable servers or network connec-
tions. Monotone ranged hash functions are a particular
class of ranged hash functions that minimize item reas-
signments in response to churn: changes in the set of
available buckets. The canonical example of a mono-
tone ranged hash function is the ring-based consistent
hashing mechanism of Karger et al. [13]. These hash
functions give a maximum load of Θ

(
n
m log m

)
when n

is the number of items and m is the number of buckets.
The question of whether some better bound could be
obtained using a more sophisticated hash function has
remained open.

We resolve this question by showing two lower
bounds. First, the maximum load of any randomized
monotone ranged hash function is Ω(

√
n
m lnm) when

n = o(m log m). This bound covers almost all of the
nontrivial case, because when n = Ω(m log m) simple
random assignment matches the trivial lower bound of
Ω(n/m). We give a matching (though impractical) up-
per bound that shows that our lower bound is tight over
almost all of its range. Second, for randomized mono-
tone ranged hash functions derived from metric spaces,
there is a further trade-off between the expansion factor
of the metric and the load balance, which for the spe-
cial case of growth-restricted metrics gives a bound of
Ω

(
n
m log m

)
, asymptotically equal to that of consistent

hashing. These are the first known non-trivial lower
bounds for ranged hash functions. They also explain
why in ten years no better ranged hash functions have
arisen to replace consistent hashing.
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1 Introduction

Hash tables are one of the oldest tools in computer
science. In the classic model of a hash table, an
unknown data set from a large domain is assigned
to a fixed number of buckets, through a consistent
mapping (the hash function) from the data domain to
the buckets. However, in many applications in today’s
computing systems, such as peer-to-peer systems [22],
or Internet routers [3], not only is the current data set
(keys, network flows) unknown, but the availability of
buckets (peers, peer links) also changes over time. This
change in the set of participants of the system is called
churn [5], and it is a serious concern for any large
distributed system.

Hashing has been applied to distributed systems
via ranged hash functions, introduced by Karger et
al. [13]. Ranged hash functions are hash functions that
depend on the set of available buckets. A typical ranged
hash function hashes items to positions in some space,
and then assigns each item to the nearest available
bucket; as the set of buckets changes, an item may
move to a new nearest available bucket. Such hash
functions have the property of being monotone, [13]
meaning that each data item has its own preference list
and hashes to the first available bucket in this list. This
property minimizes reassignment costs [3], and perhaps
because of this, all practical ranged hash functions have
this monotonicity property. This includes systems that
already do load balancing by, for example, creating
multiple virtual locations for each bucket [13,22].

We are interested in obtaining lower bounds on the
maximum load for any these monotone ranged hash
functions, parameterized in terms of the number of data
items n and the number of available buckets m. Our
lower bounds hold even if: (a) the hash function is
optimal for the given n and m; (b) the data set is
optimal for the given hash function; and (c) the only
power given to the adversary is the worst-case choice
of available buckets. Furthermore, though our lower
bounds are stated for a worst-case choice of buckets,
the proof technique used means that they continue to
hold with 1 − o(1) probability for a uniform random
choice of buckets.

Randomization is fundamental to our problem, be-



cause no lower bounds have been shown for randomized
ranged hash functions. Randomization is also important
for practical algorithms. For the deterministic case, it is
easy to obtain terrible load balancing. In the full paper,
we show that all deterministic monotone ranged hash
functions experience a load of Ω(

√
n) in the worst case

when n = m. A naive deterministic implementation of
consistent hashing would be even worse: an adversary
deleting all buckets outside of some very narrow interval
can get nearly all n items in the first remaining bucket.

With randomization, the hash function can do much
better. Nonetheless, we give two lower bounds. For
a general monotone ranged hash function, we show a
lower bound of Ω

(√
n
m log m

)
when n = o(m log m);

when n = Ω(m log m) the trivial lower bound of Ω(n/m)
matches the upper bound obtained from random as-
signment. We give a tight matching upper bound for
the small-n case based on finding nearest neighbors in
a hypercube; unfortunately, because of the difficulty
of nearest-neighbors in a hypercube, this upper bound
does not give a practical implementation of a distributed
hash function.

Our second lower bound applies to the more prac-
tical setting of ranged hash functions based on as-
signing each item to the nearest bucket in a metric
space, where the choice of how to embed both items
and buckets in the space may be based on an ar-
bitrary joint distribution. We show a trade-off be-
tween KR-dimension [6, 12, 16], a counting measure of
doubling dimension and load balance; in a space
with KR-dimension K, no randomized monotone ranged
hash function—even one where the embedding of items
and buckets is chosen according to a non-uniform non-
independent distribution—can do better than Ω(2−2K ·
n
m lnm). As with our general lower bound, the result
continues to hold with a uniform choice of buckets with
probability 1− o(1).

The interesting case is when the KR-dimension is
constant, since such a growth-restricted metric al-
lows finding nearest neighbors quickly using known tech-
niques [12]. Our lower bound shows that in this case,
even a hash function based on a very cleverly chosen
metric space, embedding, and probability distribution
cannot beat the O( n

m lnm) upper bound of simple con-
sistent hashing using a uniform independent distribu-
tion on a one-dimensional ring. Our lower bound thus
hints at the reason for the continued practical use of
this technique.

Organization. We give a formal description of
our model in Section 2. Previous work is described
in Section 3. Our results are described formally in
Section 4, and the details are given in the following
sections.

2 Model

Items and buckets. Given a domain of items
I = [N ], and a domain of buckets U = [M ], where the
buckets may become available and unavailable, we refer
to the set S of available buckets as the state. A ranged
hash function is a function in the form of h : 2U×I → U .
We denote by hS the assignment of items to buckets
imposed by h for a specific state S. Naturally, we require
that hS(I) ⊆ S for any S ⊆ U .

For any data set D ⊆ I, and any state S, the load
of bucket b ∈ U is denoted as `D

S (b) = |h−1
S (b)∩D|, and

we let `D
S = maxb∈S `D

S (b) be the maximum load of state
S. If the data set D is the entire domain I, we omit D
and write `S(b) for `D

S (b) and `S for `D
S .

Besides load balance, another critical performance
parameter of ranged hash functions is smoothness,
which is characterized by the number of reassigned items
going from one state to another. Smoothness represents
a natural requirement for a data structure that the
maintenance cost should be small when the state of the
data structure changes. In [13], the property of being
monotone is introduced to characterize those ranged
hash functions with optimal smoothness. This property
says that removing buckets only changes the position
of items in the removed buckets: formally, a ranged
hash function h is monotone if for all S ⊆ T ⊆ U ,
hS(i) = hT (i) if hT (i) ∈ S. For a monotone ranged
hash function, items are reassigned only if necessary.

Monotone ranged hash functions can always be
described by a preference matrix. A preference
matrix π is an N ×M matrix where each row πi is a
permutation of U . In [13], it is shown that a ranged hash
function h is monotone if and only if there is a preference
matrix π, such that π−1

i (hS(i)) = minb∈S π−1
i (b) for

every S and i, i.e., if and only if every item possesses an
ordering of buckets, and is always assigned to the first
available bucket according to its order. Throughout this
paper, we use the notations of a monotone ranged hash
function h and its corresponding preference matrix π
interchangeably.

In many applications of ranged hash functions, it is
impractical to store a complete list of M possible buck-
ets for every item. A general and natural methodology
to efficiently represent a monotone ranged hash func-
tion is to embed I and U in a metric space and assign
each item i to the closest available bucket in the cur-
rent state. An implementation of ranged hash function
then involves a specific embedding of items and buckets
in a metric space, and a mechanism supporting nearest
neighbor search (NNS) [9,12] in that metric.

Performance measures. We consider the effect
on load balance of two important properties of a ranged
hash function: (a) the requirement of optimal smooth-



ness (i.e. being monotone); and (b) the expansion prop-
erties of the underlying metric space (which may dra-
matically affect the hardness of searching nearest neigh-
bors).

For this purpose, we define a measure called the
price of churn. We define this in terms of a class of
ranged hash functions sharing a particular property. For
a class H of ranged hash functions, let P : H denote an
arbitrary probability distribution over hash functions in
H. The price of churn for H is defined formally as

`H(N,M,n,m)

= max
S∈(Um)

min
D∈(In)

min
P:H

sup
{

L
∣∣∣ Pr
P

[`D
S ≥ L] = 1− o(1)

}
.

This represents the lower bound on the maximum load
of all randomized ranged hash functions with property
H. With I = [N ] and U = [M ], for any randomized
ranged hash function with some property H, for any
data set D ∈

(I
n

)
, there exists a state S ∈

(U
m

)
, such

that the maximum load `D
S is at least `H(N,M,n,m)

with high probability.
Note that in this notion of lower bound, the data

set D is fixed by us, and then the state S is chosen
by an adversary. This is different from a lower bound
against both a worst-case S and a worst-case D. We
use this alternative formulation because our purpose
is to understand specifically how a changing set of
participants may affect a system: thus we focus on the
costs caused solely by the unknown state, rather than
other issues such as an unknown data set (which has
been covered by the study of hash tables). Our lower
bound states that even if the system is fully optimized
towards the current data set, there is still some price
we have to pay for unpredictable participation in the
system. Giving this additional power to the ranged hash
function only strengthens our lower bounds.

3 Previous work

So far the only practical construction of ranged hash
function is consistent hashing, which was introduced by
Karger et al. [13] along with the notion of a ranged
hash function. Here items and buckets are mapped
to a uniformly random place in the continuous unit
circle [0, 1), and each item is assigned to the closet
available bucket. For any data set |D| = n and any state
|S| = m, the maximum load `D

S is with high probability
Θ( n

m lnm).
Consistent hashing was originally designed for web

caching; however, through its utility in a wide variety
of distributed settings, it has become the foundation
of many modern distributed systems [2, 8, 11, 21, 22].
Many systems that implement consistent hashing have
tried different ways to improve load balance [1, 4, 14,

15, 17, 19]. All of these methods involve evenly cutting
the unit circle by enforcing a certain pattern by which
points in the unit circle are occupied. With this
method, the systems sacrifice the “off-line” property of
a hash function; the location of buckets now depends
on the order in which they arrive and depart, requiring
coordination mechanisms to manage the assignment.

The question of whether such coordination is neces-
sary has remained open. No new ranged hash function
with better performance has been proposed since consis-
tent hashing. No non-trivial lower bound is known to us
for ranged hash functions either. Although ranged hash
functions as a class of meaningful mathematical objects
have been known for a decade, we have little knowledge
about their structure, and the relation between their
parameters.

4 Our results

We prove that for the class of monotone ranged hash
functions `monotone(N,M,n,m) = Ω(

√
n
m lnm) for the

case that n = o(m log m) and `monotone(N,M,n,m) =
Ω( n

m ) for the case that n = Ω(m log m). This bound is
tight for almost all settings of n and m. This shows
a similar property as the price of unknown data set
(in general we can do no better than random-balls-
into-bins [18] against a worst-case data set): they both
approach the asymptotic optimum O( n

m ) as n grows
to Ω(m log m). However, the price of churn is much
smaller than the skew induced by a random balls-into-
bins assignment.

We then look at ranged hash functions arising from
metric spaces. We explore the relation between the
load balance and the expansion properties of the metric.
We adopt a counting measure of doubling dimension
introduced in [12], which is called KR-dimension in the
literature [6,16], namely, we say the embedding of U has
KR-dimension K if doubling the radius may increase
the size of the balls in U by at most a factor of 2K .
We prove that for the class of ranged hash functions
implemented via metric-space embedding where U has
KR-dimension K, `K-dimKR(N,M,n,m) = Ω(2−2K ·
n
m lnm) if K ≤ 1

4 log2(
n
m lnm). Combining with a

widely believed conjecture for nearest neighbor search,
“the curse of dimensionality” [9], this trade-off provides
us a very interesting insight: although dimensionality
curses search, it blesses load balance.

When the KR-dimension is O(1), the metric is
called growth-restricted. In this case, the trade-off
becomes `O(1)-dimKR(N,M,n,m) = Ω( n

m lnm), which is
exactly the bound for the maximum load of consistent
hashing.

Despite the fact that the original [0, 1) metric used
in consistent hashing is not in general growth-restricted



for uniformly distributed buckets, our lower bound ap-
plies to consistent hashing because we can—without
changing the structure of the algorithm—replace this
metric with a (growth-restricted) discrete counting met-
ric that simply counts the number of bucket locations
between any two buckets. Our result thus shows that
consistent hashing is optimal for all constructions aris-
ing from growth-restricted metrics. This is particularly
interesting for distributed computing for two reasons.
First, growth-restricted metrics are among the strongest
metrics for which efficient exact nearest-neighbor search
is currently possible. Second, as argued in [12], a
growth-restricted metric holds in the case of many typi-
cal Internet applications. Our results thus demonstrate
that consistent hashing is optimal for such applications.

Besides these specific results, we contribute new
techniques to analyzing ranged hash functions. Pre-
vious approaches [13, 19] can be seen as bounding the
maximum volume of Voronoi cells governed by random
centers. This technique works fine for restricted cases
such as constructions arising from 1-dimensional metric
space, but does not appear to generalize to more gen-
eral classes of (randomized) ranged hash functions. Our
method is to explore directly the structure of the pref-
erence matrices. By bounding certain measures of the
richness of this structure, we can prove lower bounds for
general monotone ranged hash functions. For ranged
hash function arising from metric spaces, we consider
the connection between load balance and the density
of balls in the metric space; using this we can prove a
trade-off between load balance and the expansion rate.

5 Domain reduction

In order to avoid considering too many possibilities, it
is helpful to be able to reduce the problem of churn to
a few representative special cases. In this section, we
describe how to do so.

We say a property H of ranged hash functions is
I-hereditary, if for any h ∈ H, and any I ′ ⊆ I,
the restriction of h on the domain I ′ still belongs to
H. We say a property H of ranged hash functions is
probabilistically U-hereditary, if for any h ∈ H, and
any M ′ < M , there is some distribution of U ′ ∈

( U
M ′

)
such that the restriction of h on the domain U ′ belongs
to H with high probability.

It is easy to see that the property of being mono-
tone is both I-hereditary and U-hereditary, since any
restriction of a preference matrix is still a preference
matrix.

The following lemma allows reducing the price of
churn to a base case with small parameters.

Lemma 5.1. For any class H of ranged hash functions

and any n ≤ min(M,N) and m ≤ n,

1. if H is I-hereditary, then `H(N,M,n,m) ≥
`H(n, M, n,m);

2. if H is probabilistically U-hereditary, then
`H(N,M,n,m) ≥ `H(N,x, n,m) for any
m ≤ x ≤M .

Proof. 1. Observe that for any randomized ranged
hash function h with I-hereditary property H, if
for some data set D ∈

(I
n

)
that Pr[`D

S < L] = Ω(1)
for all S ∈

(U
m

)
, the restriction of h on the new

item domain I ′ = D is still a randomized ranged
hash functions with property H (since H is I-
hereditary), and it still holds for the new ranged
hash function that Pr[`S < L] = Ω(1) for all S ∈(U
m

)
. Therefore, assuming that `H(n, M, n,m) =

L, i.e. for any randomized ranged hash functions
defined on I ′ = [n] and U ′ = [M ] with property
H, it holds that Pr[`S ≥ L] = 1 − o(1) for
some state S ∈

(U ′
m

)
, according to the converse-

negative proposition to the above observation, for
all randomized ranged hash functions defined on
I = [N ] and U = [M ] with property H, for
all data sets D ∈

(I
n

)
, there must exist some

state S ∈
(U
m

)
such that Pr[`D

S ≥ L] = 1 −
o(1), i.e. `H(N,M,n,m) ≥ L, which implies that
`H(N,M,n,m) ≥ `H(n, M, n,m).

2. We assume that `H(N,x, n,m) = L, i.e. for any
randomized ranged hash functions defined on I ′ =
[N ] and U ′ = [x] with property H, for all data set
D ∈

(I′
n

)
, it holds that Pr[`D

S ≥ L] = 1 − o(1)
for some state S ∈

(U ′
m

)
. For any randomized

ranged hash functions h defined on I = [N ] and
U = [M ] with property H, if H is probabilistically
U-hereditary, we can randomly pick x buckets,
say [x], such that the restriction of h on the new
bucket domain U ′ = [x] has property H with high
probability, therefore according to the previous
assumption, for the new ranged hash function,
with high probability, for all data set D ∈

(I
n

)
, it

holds that Pr[`D
S ≥ L] = 1 − o(1) for some state

S ∈
(U ′

m

)
⊆

(U
m

)
, i.e. for h, for all data set D ∈

(I
n

)
,

it holds that Pr[`D
S ≥ L] = 1− o(1) for some state

S ∈
(U
m

)
, which means that `H(N,M,n,m) ≥ L, so

we prove that `H(N,M,n,m) ≥ `H(N,x, n,m).

6 Load balance vs. monotonicity

In this section, we prove the following theorem.

Theorem 6.1. For any randomized monotone ranged
hash function with domain I = [N ] and U = [M ], for



any sufficiently large n and m that N > 2n, M > 2m,
and n ≥ m, for any data set D ∈

(I
n

)
, there exists a

state S ∈
(U
m

)
, such that the maximum load `D

S = Ω(L)
with high probability, where

L =
{ √

n
m lnm m ≤ n < o(m log m)

n
m n = Ω(m log m)

.

An equivalent statement is that
`monotone(N,M,n,m) = Ω(L), where L is defined
as above.

According to Lemma 5.1, it is sufficient to consider
`monotone(n, m′, n,m) for m′ = max(n, 2m). For the rest
of this section, we assume that I = [n] and U = [m′],
that is, we only consider the n×m′ preference matrices.
Since the Ω( n

m ) bound is trivial, we are only interested
in the case where m ≤ n < o(m log m).

Instead of directly proving the lower bound for ran-
domized ranged hash functions, we look at an arbitrary
deterministic π, and show a probabilistic bound on max-
imum load for a uniformly random state S ∈

(U
m

)
. The

same bound for randomized hash functions with worst-
case S follows from Yao’s min-max principle.

Given a monotone ranged hash function π, for any
bucket b ∈ U and any set of items A ⊆ I, we define the
A-neighborhood ∆A(b) = {πij | i ∈ A and j ≤ π−1

i (b)},
i.e. ∆A(b) is the union of the set of buckets preferred
by each item from A over b, including b. We say |A| as
the width of the neighborhood. It is easy to see that
the concept of neighborhood characterizes the load of a
bucket.

Lemma 6.1. For any state S ⊆ U , the load `S(b) of
bucket b at state S is at least L, if and only if there is
some A ⊆ I such that |A| = L and ∆A(b) ∩ S = {b}.

It is thus sufficient to look at the collection of L-
wide neighborhoods ∆L = {∆A(b) | b ∈ U , |A| = L},
which is a set system with ground set U , and show
that for the uniformly random S ∈

(U
m

)
, with high

probability there exists some ∆A(b) ∈ ∆L such that
∆A(b) ∩ S = {b}. However, the intersection between
neighborhoods can be extremely complicated for arbi-
trary π, which makes the deviation hard to analyze. To
overcome this, we extend the combinatorial deletion
method introduced in [10,20], namely, we sequentially
delete those buckets which cause the correlations, un-
til the remaining family of neighborhoods has a suffi-
ciently large disjoint subfamily. We do this in such a
way that, conditioning on the previous deletions, the
presence of each deleted bucket can only increase the
maximum load.

We first investigate the case where the entries in
each column of π do not include many duplicates. We

show that in this case we can get a large disjoint subfam-
ily of neighborhoods by applying the Hajnal-Szemeredi
Theorem [7]. After that the standard analysis of devia-
tion can be applied.

Let λj(b) denote the number of b-entries in column
j of π, i.e. λj(b) = |{i | πij = b}|.

Lemma 6.2. Let L =
√

m′

m lnm. For any constants

0 < β < 1
2 and 0 < α <

√
1
2 − β, if for a n × m′

preference matrix π, it holds that for every b ∈ U and
every column j ≤ αL, λj(b) = Õ(nβ), then

Pr
S∈([m′]

m )
[`S ≥ αL] = 1− o(1).

Proof. We first construct a family of disjoint αL-wide
neighborhood {∆Ab

(b)}b∈U , where |U | = Ω̃(n1−2β), and
for any b ∈ U , |∆Ab

(b)| ≤ α2L2. Then we apply
the second moment method to argue that with high
probability, at least one of such neighborhoods has
∆Ab

(b) ∩ S = {b}.
We only consider the first αL columns of π. Since

λj(b) = Õ(nβ) for every b, there are at least Ω̃(n1−β)
buckets b, each of which appears at least αL times in
the first αL columns; it follows that there is set V of
such bs that |V | = Ω̃(n1−β), and for every b ∈ V , there
is a Ab that |Ab| = αL and the whole neighborhood
∆Ab

(b) is in the first αL columns. This guarantees that
|∆Ab

(b)| ≤ αL|Ab| = α2L2.
We define a graph G(V,E) with the above V as

the vertex set, and (a, b) ∈ E if ∆Aa
(a) intersects with

∆Ab
(b). Since λj(b) = Õ(nβ) and the size of each

∆Ab
(b) is bounded by α2L2 = O(lnn), the degree of

G(V,E) is at most Õ(nβ). According to the Hajnal-
Szemeredi Theorem [7], there is an independent set U
of size Ω̃(n1−2β). Translating back from the graph to the
neighborhood structure, this says that there is a family
of disjoint neighborhoods {∆Ab

(b)}b∈U of cardinality
Ω̃(n1−2β), such that |∆Ab

(b)| ≤ α2L2 for every b ∈ U .
For any bucket b ∈ U , let Xb be the indicator that

Xb = 1 if ∆Ab
(b) ∩ S = {b}, and Xb = 0 if otherwise.

Let X =
∑

b∈U Xb. Due to Lemma 6.1, Pr[`S ≥ αL] ≥
Pr[∃b ∈ U,∆Ab

(b) ∩ S = {b}] = 1− Pr[X = 0].

For any constant 0 < α <
√

1
2 − β,

E(X) = |U | · Pr[∆Ab
(b) ∩ S = {b}]

≥ Ω̃(n1−2β)
(

m− α2L2

m− 1

)/(
m′

m

)
≥ Ω̃(n1−2β−2α2

)
= ω(1).

For any a, b ∈ U , ∆Aa(a) and ∆Ab
(b) are disjoint, thus

cov(Xa, Xb) ≤ 0, therefore var(X) =
∑

b∈U var(Xb) +



∑
a6=b cov(Xa, Xb) ≤

∑
b∈U var(Xb) ≤ E(X). Due to

Chebyshev’s inequality,

Pr[X = 0] ≤ Pr[|X − E(X)| ≥ E(X)]

≤ var(X)
E2(X)

≤ 1
E(X)

= o(1).

Therefore Pr[`S ≥ αL] ≥ 1− Pr[X = 0] ≥ 1− o(1).

Next we deal with the case where some bucket
appears many times in some column, but in all the
preceding columns, the number of appearances of any
single bucket is small.

Lemma 6.3. Let L =
√

m′

m lnm. For any constants

β > 0 and 0 < α <

√
β

2 , if for a n × m′ preference
matrix π, it holds that λk(b) ≥ αLn

βk
αL for some k ≤ αL

and some b ∈ U , and λj(a) < αLn
β(k−1)

αL for all j < k
and all a ∈ U , then

Pr
S∈([m′]

m )
[`S ≥ αL | b ∈ S] = 1− o(1).

Proof. The case for k = 1 is trivial, so we assume that
k > 1.

Let t = λk(b). Without loss of generality, we
assume that πik = b for i = 1, 2, . . . , t. Let Xi be the
indicator that Xi = 1 if πij 6∈ S for all j < k and
Xi = 0 if otherwise, and let X =

∑t
i=1 Xi. Note that

Pr[`S ≥ αL | b ∈ S] ≥ Pr[X ≥ αL].

E(X) = t · E(Xi)
= t · Pr[∀j < k, πij 6∈ S]

= t

(
m′ − k

m− 1

)/(
m′ − 1
m− 1

)
≥ t

(
1− m− 1

m′ − k + 1

)(k−1)

.

Let G([t], E) be the dependency digraph that (i1, i2) ∈
E if cov(Xi1 , Xi2) > 0. It is easy to see that (i1, i2) ∈ E
only if the row i1 and i2 of π share some entries in
the first k − 1 columns. Since λj(a) < αLn

β(k−1)
αL for

all j < k and a ∈ U , the degree of the dependency
graph is at most k ·αLn

β(k−1)
αL , thus the number of edges

|E| ≤ t
2αkLn

β(k−1)
αL , therefore

∑
i1 6=i2

cov(Xi1 , Xi2) ≤
2|E| ≤ αtkLn

β(k−1)
αL = o(E2(X)) for any constants

β > 0 and 0 < α <

√
β

2 , hence var(X) = o(E2(X)).

From Chebyshev’s inequality, Pr[X < αL] ≤
var(X)

(E(X)−αL)2 = o(1), therefore Pr[`S ≥ αL | b ∈ S] ≥
Pr[X ≥ αL] = 1− o(1).

Combining the two lemmas, we have the following
theorem.

Theorem 6.2. For any monotone ranged hash function
π with I = [n] and U = [m′], where m′ = max(n, 2m),
and n = o(m log m) it holds that,

Pr
S∈([m′]

m )

[
`S ≥ Ω

(√
n

m
lnm

)]
= 1− o(1).

Proof. We denote that L(x, y) =
√

x
y ln y. Note that

L(m′,m) ≥
√

n
m lnm.

For an arbitrary π, we can construct a sequence
of buckets b1, b2, . . . , bt by the following procedure.
Initially t = 1, the constants are set as β = 1

3 and
α = 1

4 .

1. If in the current π, for every 1 ≤ j ≤ αL(m′,m)

and for any b, λj(b) < αL(m′,m)n
jβ

αL(m′,m) , then
terminate.

2. Pick one b with minimum j such that λj(b) ≥
αL(m′,m)n

jβ

αL(m′,m) . Let bt ← b and t ← t + 1.
Delete b from π, that is, let π become the restriction
of π on U \ {b}.

3. If t < log2 n go to Step 1, if otherwise terminate.

Summing the total probability, we have

Pr
S∈([m′]

m )

[
`S ≥

1
2
αL(m′,m)

]

=
t∑

k=1

(
Pr

S∈([m′]
m )

[
`S ≥

1
2
αL(m′,m)

∣∣ {bi}i<k ⊆ S, bk ∈ S
]

· Pr
S∈([m′]

m )

[
{bi}i<k ⊆ S, bk ∈ S

])
+

(
Pr

S∈([m′]
m )

[
`S ≥

1
2
αL(m′,m)

∣∣ {bi}i≤t ⊆ S
]

· Pr
S∈([m′]

m )

[
{bi}i≤t ⊆ S

])

≥
t∑

k=1

(
Pr

S∈([m′−k+1]
m )

[
`S ≥ αL(m′ − k + 1,m) | bk ∈ S

]
· Pr
S∈([m′−t]

m )

[
{bi}i<k ⊆ S, bk ∈ S

])



+
(

Pr
S∈([m′−t]

m )

[
`S ≥ αL(m′ − t, m)

]
· Pr
S∈([m′−t]

m )

[
{bi}i≤t ⊆ S

])
The second inequality is due to fact that L(m′ −
O(log2 n),m) ≥ 1

2L(m′,m) and the observation that
conditioning on T ⊆ S is equivalent to that π becomes
the restriction of π on U \T and the probability is taken
over uniformly random S from

(
[m′]\T

m

)
.

Due to Lemma 6.3, for the first t terms Pr[`S ≥
αL(m′ − k + 1,m) | bk ∈ S] = 1 − o(1) for every k. If
t < log2 n, all buckets with large number of replications
are deleted, thus for the last term, π is as required by
Lemma 6.2, hence Pr[`S ≥ αL(m′ − t, m)] = 1 − o(1),
therefore the total is 1-o(1). Alternatively, if t = log2 n,
then Pr[{bi}i≤t ⊆ S] = o(1), which means that the total
is at least (1− o(1)− o(1)), which is also (1− o(1)).

A direct corollary to Theorem 6.2 is that for any
distribution of monotone ranged hash functions that
I = [n] and U = [m′], the same statement still holds for
the uniformly random S with size m, thus holds for the
the worst-case S with size m, i.e. `monotone(n, m′, n,m) =
Ω(L) where L is as defined in Theorem 6.1. By
Lemma 5.1, we have that `monotone(N,M,n,m) = Ω(L),
thus Theorem 6.1 is proved.

7 Tightness of the lower bound

In this section we address the tightness of the lower
bound of `monotone(M,N, n,m), and show evidence that
the lower bound is tight in almost all settings.

We first consider a simple construction of (random-
ized) monotone ranged hash function. For I = [N ] and
U = [M ], define a randomized N ×M preference ma-
trix Π as follow: for each i ∈ I, row Πi is a uniformly
and independently random permutation of U . It is easy
to see that for any data set D ∈

(I
n

)
and any state

S ∈
(U
m

)
, the ranged hash function Π assigns each of the

n items independently to a uniformly random bucket
in S. According to the well-known balls-into-bins re-
sult [18], when n = Ω(m log m), the maximum load is
with high probability O( n

m ), i.e. the lower bound is tight
for the case that n = Ω(m log m). However, for the case
that n is close to m, there is a gap between the maxi-
mum load of Π and the lower bound. The gap is maxi-
mized when n = Θ(m), where the maximum load of Π
is Θ(lnn/ ln lnn) but the lower bound is Ω(

√
lnn).

We then introduce a construction that approaches
the lower bound when n is close to m. We first deal
with the base case where I = U = [n]. For convenience,
we assume that n is power of 2 and n ≥ cm for some
constant c > 1.

The Perturbed Cube. Intuitively, this construc-
tion is a Hamming cube with perturbations. Each
bucket is mapped to a vertex of the cube; each item
is mapped to a vertex of the cube as well. The prefer-
ence list is determined by Hamming distance plus some
perturbation to break ties.1

More formally, let φ : [n] → {0, 1}log n × [0, 1) be
a mapping from [n] to a (1 + log n)-dimensional vector
space X as follow: φ(k) = x where xi =

⌊
k/2i−1

⌋
mod 2

for i = 1, 2, . . . , log n and x1+log n = k/n, i.e. the first
log n entries of φ(k) comprise the binary representation
of k, and the last entry is k/n.

For I = U = [n], let h be a monotone ranged hash
function defined as follows. First, embed I and U in
the same metric space (X, d) by the same mapping φ as
defined above, where d is the `1 distance. Next, for any
item i ∈ I and any state S ⊆ U , let hS(i) be some b with
the property that ∀a ∈ S, d(φ(i), φ(b)) ≤ d(φ(i), φ(a)).
Note that there are at most two such points b for each
i; in case of a tie, we pick an arbitrary one. We denote
by π the resulting preference matrix.

We now show that the maximum load for the
perturbed cube is, with high probability, O

(√
n
m lnm

)
,

for the case that n is close to m:

Theorem 7.1. Let π be as constructed above. If n =
o
(

m ln m
(ln ln m)2

)
and n ≥ cm for some constant c > 1, then

there is a constant α > 0 such that

Pr
S∈(Um)

[
`S ≥ α ·

√
n

m
lnm

]
= o(1).

Proof. Let L = α ·
√

n
m lnm. Considering the collection

of all L-wide neighborhoods ∆L = {∆A(b) | b ∈
U and A ∈

(I
L

)
} defined on π, it is sufficient to show

that with high probability, none of the neighborhoods
∆A(b) ∈ ∆L has ∆A(b)∩S = {b}. Two key observations
are: (1) the chance that any entry after the first L2

column is ever reached is negligible, thus we only need
to consider the neighborhoods contained in the first L2

columns of π; and (2) for every L-wide neighborhood,
|∆A(b)| = Ω(L2). Applying these two facts, the theorem
is proved. The detailed proof will be given in the full
version of the paper.

1This perturbed cube construction of ranged hash function
does not imply a practical distributed hash table as consistent
hashing does. This is because the nearest neighbor search in high
dimensional Hamming space is believed to be hard. We propose
this construction only to show the tightness of the bound of the
price of churn with monotone ranged hash functions. However,
it might turn out be useful for more centralized applications of
ranged hash functions, as in Internet routers [3], where nearest-
neighbor search is unnecessary and it may be feasible to store the
whole preference matrix in the routing table.



To construct a randomized ranged hash function
against a worst-case S, we randomly rename the buck-
ets by applying a uniformly random permutation to
U . With I = [n] and U = [n], for any S ∈

(U
m

)
that n = o

(
m ln m

(ln ln m)2

)
, the maximum load `S is with

high probability O
(√

n
m lnm

)
. We show that the

lower bound of `monotone(n, n, n,m) is tight when n =
o
(

m ln m
(ln ln m)2

)
. This statement can also be easily ex-

tended to `monotone(M,N, n,m) for N = O(n) and M =
O(n).

For general domain sizes N and M , we have a
non-uniform construction through reduction to the base
case N = M = [n]. Given I = [N ] and U = [M ],
let r : [M ] → [n] be a uniformly random projection
from [M ] to [n]. We construct a monotone ranged hash
function h′ by the rule that for each i ∈ [n] ⊂ I, and
any S ⊆ U , hS(i) is chosen to be some b ∈ r−1(hr(S)(i)),
with arbitrary tie breaking. Intuitively, the first n items
in I are assigned to the buckets in state S according to
the perturbed cube h at the state r(S).

For any S ∈
(U
m

)
with n = o

(
m ln m

(ln ln m)2

)
, we

have that with high probability |r(S)| = Θ(m). Thus
the maximum load contributed by these n items is
asymptotically the same as the maximum load in the
n-vertex perturbed cube, which is O

(√
n
m lnm

)
. (Note

that the concentration of r may only decrease the
maximum load.) For h′, there exists a data set D ∈(U

n

)
such that for any state S ∈

(U
m

)
where n =

o
(

m ln m
(ln ln m)2

)
, the maximum load `D

S is O
(√

n
m lnm

)
with high probability.

It follows that the lower bound of
`monotone(M,N, n,m) is tight whenever n = o

(
m ln m

(ln ln m)2

)
or n = Ω(m log m).

8 Load balance vs. expansion rate

General preference matrices create scalability problems,
since they require storing Ω(M log M) bits of informa-
tion for each item. Instead, we would prefer a more
compact representation that allows each node (bucket)
in the system to store at most mo(1) bits of information.
A general way to do so is embedding items and buck-
ets into a metric space, and then assign each item to
the closest bucket in the current state. Because of this
scalability constraint, we are restricted to the cases that
n = m1+o(1)—if a node cannot handle more than mo(1)

bits, we surely do not expect it to store more than that
many data items.

In this section, we consider monotone ranged hash
functions based on this approach, and show a trade-
off between load balance and the expansion rate of the

underlying metric. Our results demonstrate that con-
sistent hashing on a one-dimensional ring gives optimal
load balance among all growth-restricted metrics.

Formally, we start with a metric space (X, d), and
assume I ⊆ X and U ⊆ X. A ranged hash function
h can then be defined as follows. For every S ⊆ U
and i ∈ I, hS(i) is the nearest neighbor of i in
S; specifically, it satisfies the constraint that for any
b ∈ S, d(i, hS(i)) ≤ d(i, b). In order to make this
definition precise, we further require that the embedding
is “sparse”, that is, the chance that there is more than
one nearest neighbor for any given point is negligible. It
is obvious that such a ranged hash function is monotone.

The expansion rate of the underlying metric is
important because it affects the hardness of finding
nearest neighbors. Given any x ∈ X, Y ⊆ X, and
r > 0, we let BY (x, r) = {b ∈ Y | d(x, b) ≤ r} be the
ball of radius r around x in Y . The KR-dimension [12]
of Y , denoted as dimKR(Y ), is the smallest K such that
|BY (x, 2r)| ≤ 2K |BY (x, r)| for all x ∈ X, r ≥ 0. We say
Y is growth-restricted if it has constant KR-dimension,
i.e. dimKR(Y ) = O(1).2

For each x ∈ X, let rx(t) be the smallest value
that |BY (x, rx(t))| = t. The following lemma captures
the connection between the expansion rate of the metric
and the density of overlapped balls, which is central to
proving the trade-off between expansion rate and load
balancing.

Lemma 8.1. Let Y ⊆ X with dimKR(Y ) = K.
For any A ⊆ X, if

⋂
x∈A BY (x, rx(t)) 6= ∅, then

|
⋃

x∈A BY (x, rx(t))| ≤ t22K .

Proof. Consider any x, y ∈ X, and suppose that rx(t) ≥
ry(t). If there exists some b ∈ B(x, rx(t)) ∩B(x, rx(t)),
then B(y, ry(t)) ⊆ B(x, 3rx(t)), since for any a ∈
B(y, ry(t)), d(a, x) ≤ d(a, y) + d(y, b) + d(b, x) ≤ 3rx(t).
For the same reason, if

⋂
x∈A B(x, rx(t)) 6= ∅, we

can take the largest rx(t) and so
⋃

x∈A B(x, rx(t)) ⊆
B(x, 3rx(t)). Because dimKR(Y ) = K, |B(x, 3rx(t))| ≤
22K |B(x, rx(k))| = t22K .

For any monotone ranged hash function π arising
from a metric space (X, d), the preference list πi for
each item i ∈ I is a list of buckets in U sorted by
increasing distance from i. It is not hard to see that
{πi1, πi2, . . . , πit} = BU (i, ri(t)) for any t, i.e., for each
row of π, its first t entries is a t-point ball around i in

2In [12], the definition also includes a minimum threshold of
the size of balls. For simplicity, we drop this assumption. We
can do so because for any size state S, the threshold has to be
sufficiently small to enforce the nearest neighbor search, which
means that the threshold is independent of |U|.



U . Combining this fact with Lemma 8.1, we have the
following proposition.

Proposition 8.1. If dimKR(U) = K, for any b ∈
U and any A ⊂ I, |∆A(b)| ≤ t22K where t =
maxi∈A π−1

i (b).

This implies that if a neighborhood ∆A(b) is con-
tained in the first t columns of π, the size of the neigh-
borhood is at most t22K no matter how large A is.

All the above facts intuitively suggest that for
ranged hash functions arising from a metric, the KR-
dimension of U strongly affects the structure of the
preference matrices, and thus controls load balancing.
This intuition is justified by the following lemma.

Lemma 8.2. Let π be a monotone ranged hash func-
tion with |I| = n, |U| = m′, and dimKR(U) = K,
where m′ = max(n, 2m), n = m1+o(1), and K ≤
1
4 log2(

n
m lnm). Then for any constant 0 < α < 1

2 ,

Pr
S∈(Um)

[
`S ≥ α2−2K · n

m
lnm

]
= 1− o(1).

Proof. Let L = α2−2K · n
m lnm. With the given

constraints on the parameters, L = Ω(
√

lnm) ∩mo(1).
As in the proof of Theorem 6.1, we consider two cases
depending on the number of duplicate entries in each
column of π. Recall that for each column j and bucket
b, λj(b) represents the number of copies of b in j.

Case 1: If for each j ≤ L and b ∈ U , λj(b) < L4/α,
applying the same argument as in Lemma 6.2 gives that
there exists a family of disjoint L-wide neighborhoods
{∆Ab

(b)}b∈U such that (a) |U | = Ω̃(n) and (b) for each
b ∈ U , the whole neighborhood ∆Ab

(b) is contained in
the first L columns of π.

From Proposition 8.1, |∆Ab
(b)| ≤ L · 22K . Again

repeating the analysis in Lemma 6.2, we have that
Pr[`S < L] = Õ(n−1+2α) = o(1) with α < 1

2 .
Case 2: There is some j ≤ L and some b, such that

λj(b) ≥ L4/α. Without loss of generality, we assume
that πij = b for i = 1, 2, . . . , t, where t = L4/α. We only
consider the first L2 columns in these t rows. Because
they share the same entry b, according to Proposition
8.1, |{πij | 1 ≤ i ≤ t, 1 ≤ j ≤ L2}| = L222K , i.e., there
are L222K distinct entries in the first L2 columns of π
in these t rows. Effectively, π assigns t = L4/α items
to only L222K buckets. The maximum load in these
buckets is thus at least 1

αL22−2K ≥ L, as long as none
of these rows are totally absent from S. The probability
that there is at least one such bad row (containing
no element of S in its first L2 entries) is at most
t · Pr[[L2] ⊆ S] ≤ 1

αL4(1− m
m′−L2 )L2

= o(1). Therefore
with high probability, the maximum load `S ≥ L.

Naturally, the same bound holds for randomized
ranged hash functions against a worst-case S. Specif-
ically, for any family of ranged hash functions with
dimKR(U) = K, `K-dimKR(n, m′, n,m) = Ω(2−2K ·
n
m lnm), where K ≤ 1

4 log2(
n
m lnm).

In [12], Karger and Ruhl show that a uniformly
selected subset of U has essentially the same KR-
dimension with high probability,3 i.e. K-dimKR is prob-
abilistically U-hereditary. It is easy to see that K-
dimKR is also I-hereditary, since the KR-dimension of
U is irrelevant of I. By Lemma 5.1, for all ranged hash
functions with the same KR-dimension of U it holds that
`K-dimKR(N,M,n,m) ≥ `K-dimKR(n, m′, n,m). This
gives us the following theorem.

Theorem 8.1. For any distribution of ranged hash
functions with |I| = N , |U| = M , and dimKR(U) = K,
for any sufficiently large n and m with N > 2n, M >
2m, n ≥ m, n = m1+o(1), and 1

4 log2(
n
m lnm) ≥ K,

it holds that for any data set D ∈
(I
n

)
, there exists a

state S ∈
(U
m

)
, such that `D

S = Ω(2−2K · n
m lnm) with

high probability. Equivalently, under these conditions,
`K-dimKR(N,M,n,m) = Ω(2−2K · n

m lnm).

This justifies our previous observation that dimen-
sionality helps load balance even though it hurts search-
ing.

In particular, if U is growth-restricted,
`O(1)-dimKR(N,M,n,m) = Ω( n

m lnm) for N > 2n,
M > 2m, n ≥ m, and n = m1+o(1). This bound is tight
because it is achieved by standard consistent hashing,
which (as discussed in Section 4) can be modeled
using a discrete growth-restricted metric in place of
the usual continuous [0, 1) metric. This lower bound
explains where the Θ( n

m lnm) bound for consistent
hashing comes from: it is the best we can get from
any growth-restricted metric. It also explains why no
more sophisticated growth-restricted metric has arisen
to displace consistent hashing.

Unlike the case for general monotone ranged hash
functions, in a growth restricted metric, the price of
churn dominates the balls-into-bins skew, and unlike
the balls-into-bins bound, the price of churn does not
approach O( n

m ) as n grows to Ω(m log m). The price
of churn in this setting is also robust for all values of n
and m satisfying the scalability condition n = m1+o(1).

3In fact, they show that a set S of uniformly random m points
from U with dimKR(U) = K has dimKR(S) ≤ K + 1 with
probability 1 − exp(−Ω(t)) if we only care about balls larger
than a threshold t. Because all balls in our proofs have size
L = Ω(

√
ln m), we can easily make the probability (1 − o(1))

without affecting our argument. We also ignore the +1 on the
KR-dimension, because it can only affect the maximum load by
a constant factor.



These facts suggest that in systems that yield growth-
restricted metric, which is the typical case for Internet
applications, the unreliability of nodes is more critical
than the uncertainty of data.
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