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1 Introdu
tionThe issue of market predi
tability has been debated formore than a 
entury (see [6℄ for earlier papers and [4,11, 14, 16℄ for more re
ent viewpoints). In 1900, the pio-neering work \Theory of Spe
ulation" of Louis Ba
helierused Brownian motion to analyze the sto
hasti
 proper-ties of se
urity pri
es [6℄. Sin
e then, Brownian motionand its variants have be
ome textbook tools for mod-eling �nan
ial assets. Relatively re
ently, the radi
allydi�erent methodology of Mandelbrot used fra
tals toapproximate pri
e graphs deterministi
ally [17℄. In thispaper, we initiate a study into this long-running issuefrom the perspe
tive of 
omputational 
omplexity.We develop a simple agent-based model for a sto
kmarket [7, 15℄. The agents are traders equipped withsimple trading strategies, and their trades togetherdetermine the sto
k pri
es. We �rst 
onsider a basi

ase of this model where there are only two strategies,namely, momentum and 
ontrarian strategies. The
hoi
e of this base model and thus our general model isjusti�ed at two levels: (1) Experimental and empiri
alstudies in the �nan
e literature [1, 3, 5, 8{10, 13℄ showthat a large number of traders primarily follow thesetwo strategies. (2) Our own simulation results showthat despite its simpli
ity, the base model is 
apable ofgenerating pri
e graphs whi
h are visually similar to there
ent pri
e movements of high te
h sto
ks (Figures 1and 2).With these justi�
ations, we then 
onsider the issueof market predi
tability in the general model. We provethat if there are a large number of traders but theyemploy a relatively small number of strategies, thenthere is a polynomial-time algorithm to predi
t futurepri
e movements with high a

ura
y (Theorem 4.1). Onthe other hand, if there are also a large number ofstrategies, then the problem of predi
ting future pri
esbe
omes 
omputationally very hard. To des
ribe thishardness, we de�ne two new 
omputational 
omplexity
lasses 
alled CPP and BCPP (De�nitions 4.1 and 4.2).1



We show that some market predi
tion problems are
omplete for these two 
lasses (Theorems 4.6 and 4.7)and that PNP[O(logn)℄ � BCPP � CPP = PP.These 
omputational 
ompleteness results open upthe possibility that the pri
e graph of a a
tual sto
k
ould be suÆ
iently deterministi
 for various predi
-tion purposes but appear random to all polynomial-timepredi
tion algorithms. This is in 
ontrast to the mostpopular a
ademi
 belief that the future pri
e of a sto
k
annot be predi
ted from its histori
al pri
es be
ausethe latter are statisti
ally random and 
ontain no in-formation. This new viewpoint also di�ers from thefra
tal-based methodology in that the pri
e graph of asto
k 
ould be a fra
tal but the fra
tal might not be
omputable in polynomial time. The �ndings in thispaper 
an by no means settle the debate on market pre-di
tability. Our goal is only that this alternative ap-proa
h 
ould provide new insights to the predi
tabilityissue in a systemati
 manner. In parti
ular, it 
ouldprovide a general framework to investigate the manydo
umented te
hni
al trading rules [19℄ and to generatenovel and signi�
ant interdis
iplinary resear
h problemsfor 
omputer s
ien
e and �nan
e.The rest of the paper is organized as follows.Se
tion 2 dis
usses the basi
 market model. Se
tion 3formulates the general model. Se
tion 4 proves the
omplexity results for market predi
tion in the generalmodel. We 
on
lude the paper with some dire
tions forfuture resear
h in Se
tion 5. Due to spa
e limitations,the proofs of most of our results are omitted or onlysket
hed; 
omplete proofs 
an be found in the full paper.2 A Basi
 Market ModelIn this se
tion, we present a very simple market model,
alled the deterministi
-swit
hing MC (DSMC) model.The letter M stands for a momentum strategy, and theletter C for a 
ontrarian strategy. These two strategiesand the model itself are de�ned in Se
tion 2.1. Some
omputer simulations for this model are reported inSe
tion 2.2.Intuitively, these strategies are heuristi
s (\rules ofthumb") used by traders in the absen
e of reliable assetvaluation models. As dis
ussed in [10℄, a momentumtrader may observe a sequen
e of \up" trades (pri
ein
rements) and exe
ute a buy trade in the anti
ipationthat she will not be one of the last buyers, knowing verywell that the asset is overpri
ed. Similarly, she maysee some \down" trades (pri
e de
rements) and thenmake a sell trade in the hope that there will be moresellers after her. In 
ontrast, after dete
ting a numberof \up" (respe
tively, down) trades, a 
ontrarian tradermay submit a sell (respe
tively, buy) trade, anti
ipatinga pri
e reversal.

Both experimental and empiri
al studies haveshown that traders look at past pri
e dynami
s to formtheir expe
tations of future pri
es, and a large num-ber of them primarily follow momentum or 
ontrarianstrategies [1, 5, 8, 9℄. In addition, the traders may swit
hbetween these two diametri
ally opposite strategies.Momentum and 
ontrarian strategies are dominant inthe behavior of professional market timers as well [13℄.The use of momentum and 
ontrarian strategies some-times signi�es gambling tenden
ies among traders [5℄.In fa
t, a market model with momentum and 
ontrariantraders 
an also be interpreted as a market with noisetraders and rational traders, where the noise traders es-sentially follow a momentum strategy while the rationaltraders attempt to exploit the noise traders by followinga 
ontrarian strategy [3, 10℄.2.1 De�ning the DSMC ModelIn the DSMC model, there is only one sto
k tradedin the market. The model is 
ompletely spe
i�edby three integer parameters m;L; k > 0, and a realparameter � > 0 as follows.There arem traders in the market, and ea
h trader'sstrategy set 
onsists of momentum (M) and 
ontrarian(C) strategies. At the beginning of day 1 of theinvestment period, ea
h trader randomly 
hooses herinitial strategy from fM; Cg and an integer `i 2 [2; L℄with equal probability, where L is the maximum strategyswit
hing period. This is the only sour
e of randomnessin the DSMC model; from this point onwards, there isno random 
hoi
e.Rule 2.1. (Deterministi
 Strategy Swit
hingRule) For days 1; : : : ; k + 1, there is no trading. Ea
htrader starts trading from day k + 2 using her initialstrategy. Trader i uses the same strategy for `i daysand swit
hes it at the beginning of every `i days.The next rule de�nes the two strategies with respe
tto a given memory size k, whi
h is the same for alltraders.Rule 2.2. (Trading Rule) At the beginning of day t,observe the sto
k pri
es Pf of days f 2 [t�(k+1); t�1℄.For g 2 [t�k; t�1℄, 
ount the number ku of days g whenPg > Pg�1; and the number kd of days when Pg < Pg�1.The k-day trend is de�ed as Tr(k; t) = ku� kd. Then, ifTr(k; t) � 0 (respe
tively, < 0), the momentum strategyM buys (respe
tively, sells) one share of the sto
k at themarket pri
e determined by Rule 2.3 below. In 
ontrast,the 
ontrarian strategy C sells (respe
tively, buys) oneshare of the sto
k.For instan
e, suppose that k = 2, and investor ipi
ks her initial strategyM and `i = 2 at the beginning2



of day 1. She then observes the pri
es of days 1, 2, 3,whi
h are, say, $80; $82; $90. At the beginning of day 4,she issues a market order to buy one share of the sto
k.The orders issued by the traders on day 4 togetherdetermine the pri
e of day 4 as spe
i�ed by Rule 2.3.Suppose that the pri
e of day 4 is $91, then investori issues another market buy order at the beginning ofday 5. Sin
e her `i is 2, at the beginning of day 6, sheswit
hes her strategy from M to C.Rule 2.3. (Pri
e Adjustment Rule) The pri
es fordays 1; : : : ; k + 1 are given. On day t � k + 2, letmb and ms be the total numbers of buys and sells,respe
tively. Then, the pri
e Pt on day t is determinedby the following equation:Pt � Pt�1 = ��(mb �ms);where � is the unit of pri
e 
hange.2.2 Computer Simulation on the DSMC ModelWe have 
ondu
ted some 
omputer simulationsof the DSMC model to test whether it 
an generaterealisti
 pri
e graphs. Be
ause we had to examine thegraphs visually, our time 
onstraints limited the numberof these simulations to only about six hundred. For alarge fra
tion of them, we set m = 20, L = 8, and theinitial k pri
es in the range of $70 to $90. We thenfo
used on testing the e�e
t of memory size k [18℄. Twomain �ndings are as follows:� For k = 1, the pri
e graphs were not visually real.� For k = 2, about one out of four graphs were strik-ingly similar to those of re
ent high te
h sto
ks,whi
h was a major positive surprise to us. Two rep-resentatives of su
h graphs are shown in Figures 1and 2.These two statements are based on our subje
tiveimpressions and limited simulations. To further under-stand the DSMC model, it would be useful to automatestatisti
al analysis on the pri
e graphs generated by thismodel and 
ompare them with real sto
k pri
es.3 A General Market ModelIn this se
tion, we de�ne a market model, 
alled theAS model, where the word AS stands for arbitrarystrategies. It 
an be veri�ed in a straightforwardmanner that the DSMC model is a spe
ial 
ase of theAS model.In the AS model, there is only one sto
k traded inthe market. The model is 
ompletely spe
i�ed as followswith �ve parameters: (1) the numberm of traders, (2) a

unit � > 0 of pri
e 
hange, (3) a set � = fS1; : : : ;Shg ofstrategies, (4) a pri
e adjustment rule (Equation 3.1 or3.2 below), and (5) a joint distribution of the populationvariables X1; : : : ; Xh.Rule 3.1. (Market Initialization) There are mtraders in the market. At the beginning of day 1 ofthe investment period, ea
h trader randomly 
hoosesher initial strategy from �. Let Xi be the number oftraders who 
hoose Si. Then, ea
h Xi is a randomvariable, whi
h is the only sour
e of randomness in themodel. (Unlike the DSMC model, be
ause the allowablegenerality of �, the AS model does not need strategyswit
hing.)Di�erent joint distributions of the variables Xi leadto di�erent spe
i�
 models and predi
tion problems. InSe
tion 4.2, we 
onsider joint distributions that tendto Gaussian in the limit as the number m of tradersbe
omes large. In Se
tion 4.3, we 
onsider the 
asewhere the variables Xi are independent, and ea
h is 0or 1 with equal probability.Rule 3.2. (Trading Strategies) There is no tradingon day 0. At the beginning of day t � 1, a traderobserves the histori
al pri
es P0; : : : ; Pt�1 and rea
tsby issuing a market order to buy one share of thesto
k, hold (i.e., do nothing), or sell one share a

ordingher strategy. Formally, a strategy is a 
olle
tion offun
tions S = fS1;S2; : : : ;St; : : :g, where ea
h St mapsP0; : : : ; Pt�1 to +1 (buy), 0 (hold), or �1 (sell).The pri
e Pt of day t is determined at the end ofthe day by the day's m market orders using Rule 3.3.Sin
e the traders 
hoose their strategies randomly, thesequen
e P0; P1; : : : ; Pt; : : : is a sto
hasti
 pro
ess. Wewrite Ft for the probability spa
e indu
ed by all possiblesequen
es hP0; : : : ; Pti [12℄. Then, we think of ea
hfun
tion St as a random variable on Ft�1.We distinguish between strategies that rea
t topri
e movements and those that ignore them.� S is an a
tive strategy if the fun
tions St may ormay not be 
onstant fun
tions. An a
tive trader isone with an a
tive strategy.� S is a passive strategy if the fun
tions St all are
onstant fun
tions. A passive trader is one with apassive strategy.Rule 3.3. (Pri
e Adjustment)The pri
e P0 is given.At the end of day t � 1, the pri
e Pt is determined bythe day's market orders to buy or sell from the traders.We 
onsider two simple rules:3
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Figure 1: A one-year pri
e sequen
e generated using the DSMC model. Parameters: number of traders m = 20,memory size k = 2, maximum strategy swit
hing period L = 8, unit of pri
e 
hange � = 0:25, number of tradingdays = 250. The pri
e graph appears strikingly similar to the re
ent pri
e movements of high te
h sto
ks.
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Figure 2: A one-year pri
e sequen
e generated using the DSMC model. The parameters are the same as thosefor Figure 1. 4



With the proportional in
rement (PI) rule,Pt = Pt�1 + �� hXi=1 Xi�Sit ;(3.1)where � is the unit of pri
e 
hange. Thus we 
an observedire
tly the net di�eren
e between the number of buyersand sellers on day t.With the �xed in
rement (FI) rule,Pt = Pt�1 + �� sign hXi=1 Xi�Sit! :(3.2)In this 
ase, the market moves up or down dependingon whether the majority of traders are buying or selling,but the amount by whi
h it moves is �xed at �.For notational brevity, an AS+FI model refers to anAS model with the �xed in
rement rule, and an AS+PImodel refers to an AS model with the proportionalin
rement rule.In reality, the pri
e tends to move up if there aremore buy orders than sell orders; similarly, the pri
etends to move down if there are more sell orders thanbuy orders. The FI rule is meant to model the sign butnot the magnitude of the slope of this 
orrelation, whilethe PI rule attempts to model both. Clearly, there 
anbe many other in
rement rules, whi
h this paper leavesfor future resear
h.4 Predi
ting the MarketInformally, the market predi
tion problem at the begin-ning of day t is de�ned as follows:� The data 
onsists of (1) the �ve parameters of anAS-model, i.e., m, �, �, Xi, and a pri
e adjustmentrule, and (2) a pri
e history P0; : : : ; Pt�1.� The goal is to predi
t the pri
e Pt by estimat-ing the 
onditional probabilities Pr[Pt > Pt�1 jP0; : : : ; Pt�1℄, Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄, andPr[Pt = Pt�1 j P0; : : : ; Pt�1℄.Note that Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ is symmetri
to Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄ and Pr[Pt = Pt�1 jP0; : : : ; Pt�1℄ = 1 � Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ �Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄. Thus, from this pointonwards, our dis
ussion fo
uses on estimating Pr[Pt >Pt�1 j P0; : : : ; Pt�1℄.From an algorithmi
 perspe
tive, we sometimesassume that the pri
e adjustment rule and the jointdistribution of the variables Xi are �xed, and that theinput to the algorithm is m, �, a des
ription of �, andthe pri
e history. This allows di�erent algorithms for

di�erent model families as well as side-steps the issueof how to represent the possibly very 
ompli
ated jointdistribution of the variables Xi as part of the input.As for the des
ription of �, we only need Si1; : : : ;Sit forea
h Si 2 � instead of the whole �, and the des
riptionof these fun
tions 
an simpli�ed by restri
ting theirdomains to 
onsist of the pri
e sequen
es 
onsistent withthe given pri
e history.4.1 Markets as Systems of Linear ConstraintsIn the AS+FI model with parameters m and �, apri
e sequen
e P0; : : : ; Pt and � 
an yield a set of linearinequalities in the population variables Xi as follows. Ifthe pri
e 
hanges on day t, we havesign(Pt � Pt�1) hXi=1 SitXi > 0:(4.3)If the pri
e does not 
hange, we have instead theequation hXi=1 SitXi = 0:(4.4)Furthermore, any assignment of the variables Xithat satis�es either inequality is feasible with respe
tto the 
orresponding pri
e movement on day t. Inboth 
ases, Sit is 
omputable from the pri
e sequen
eP0; : : : ; Pt�1. The same statements hold for days1; : : : ; t � 1. Therefore, given m and �, we 
an extra
tfrom � and P0; : : : ; Pt a set of linear 
onstraints on thevariables Xi. The 
onverse holds similarly. We formal-ize these two observations in Lemmas 4.1 and 4.2 below.Lemma 4.1. In the AS+FI model with parameters mand �, given � and a pri
e sequen
e P0; : : : ; P�, thereare matri
es A and B with 
oeÆ
ients in f�1; 0;+1g,h 
olumns ea
h, and � rows in total. The rows of A(respe
tively, B) 
orrespond to the days when Pj 6=Pj�1 (respe
tively, Pj = Pj�1). Furthermore. the
olumn ve
tors x = (X1; : : : ; Xh)> 
onsistent with �and P0; : : : ; P� are exa
tly those that satisfy Ax > 0and Bx = 0. The matri
es A and B 
an be 
omputed intime O(h�T ), where T is an upper bound on the time to
ompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Lemma 4.2. In the AS+FI model with parameters mand �, given a system of linear inequalities Ax >0; Bx = 0, where A and B have 
oeÆ
ients inf�1; 0;+1g with h 
olumns ea
h, and � rows in total,there exist (1) a set � of h strategies 
orresponding tothe h 
olumns of A and B, and (2) a (� + 1)-day pri
e5



sequen
e P0; : : : ; P� with the latter � days 
orrespond-ing to the � rows of A and B. Furthermore, the valuesof the population variables X1; : : : ; Xn are feasible withrespe
t to the pri
e movement on day j if and only if
olumn ve
tor x = (X1; : : : ; Xn)> satis�es the j-th 
on-straint in A and B. Also, P0; : : : ; P� and a des
riptionof � 
an be 
omputed in O(h�) time.In the AS+PI model we obtain only equations, ofthe form: hXi=1 SitXi = 1� (Pt � Pt�1):(4.5)In this 
ase there is a dire
t 
orresponden
e betweenmarket data and systems of linear equations. Weformalize this 
orresponden
e in Lemmas 4.3 and 4.4below.Lemma 4.3. In the AS+PI model with parameters mand �, given � and a pri
e sequen
e P0; : : : ; P�, there isa matrix B with 
oeÆ
ients in f�1; 0;+1g, h 
olumns,and � rows, and a 
olumn ve
tor b of length h, su
h thatthe 
olumn ve
tors x = (X1; : : : ; Xh)> 
onsistent with� and P0; : : : ; P� are exa
tly those that satisfy Bx = b.The 
oeÆ
ients of B and b 
an be 
omputed in timeO(h�T ), where T is an upper bound on the time to
ompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Lemma 4.4. In the AS+PI model with parameters mand �, given a system of linear equations Bx = b, whereB is a � � h matrix with 
oeÆ
ients in f�1; 0;+1g,there exist (1) a set � of h strategies 
orrespondingto the h 
olumns of B, and (2) a (� + 1)-day pri
esequen
e P0; : : : ; P� with the last � days 
orrespondingto the � rows of B. Furthermore, the values of thepopulation variables X1; : : : ; Xn are feasible with respe
tto the pri
e movement on day j if and only if 
olumnve
tor x = (X1; : : : ; Xn)> satis�es the j-th 
onstraintin B. Also, P0; : : : ; P� and a des
ription of � 
an be
omputed in O(h�) time.4.2 An Easy Case for Market Predi
tion: ManyTraders but Few StrategiesIn Se
tion 4.2.1, we show that if an AS+FI markethas far more traders than strategies, then it takespolynomial time to estimate the probability that thenext day's pri
e will rise. In Se
tion 4.2.2, we dis
usswhy the same analysis te
hnique does not work for anAS+PI market.4.2.1 Predi
ting an AS+FI MarketFor the sake of emphasizing the dependen
e on m,let Prm[E℄ be the probability that event E o

urs whenthere are m traders in the market.

This se
tion makes the following assumptions:E1 The input to the market predi
tion problem issimply a pri
e history P0; : : : ; Pt�1. The output islimm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄.E2 The market follows the AS+FI model.E3 � is �xed. The values Sij over all i 2 [1; h℄ are
omputable from the input in total time polynomialin j.E4 Ea
h of the m traders independently 
hooses arandom strategy Si from � with �xed probabilitypi > 0, where p1 + � � �+ ph = 1.The parameter � is irrelevant.Noti
e that the 
olumn ve
tor X = (X1; : : : ; Xh)>is the sum of m independent identi
ally-distributedve
tor-valued random variables with a 
enter at p =m�(p1; : : : ; ph)>. We re
enter and res
ale X to Y =(X�m�(p1; : : : ; ph)>)=pm. Then, by the Central LimitTheorem (see, e.g., [2, Theorem 29.5℄), as m! +1, Y
onverges weakly to a normal distribution 
entered atthe h-dimensional ve
tor (0; : : : ; 0)>. In Theorem 4.1below, we rely on this fa
t to estimate the probabilitythat the market rises for pri
e histories that o

ur withnonzero probability.Theorem 4.1. Assume thatlimm!1 Prm[P0; : : : ; Pt�1℄ > 0. Then there is afully polynomial-time approximation s
heme for esti-mating limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ fromP0; : : : ; Pt�1. The time 
omplexity of the s
heme ispolynomial in (1) the length t of the pri
e history, (2)the inverse of the relative error bound �, and (3) theinverse of the failure probability �.Remark. We omit the expli
it dependen
y of therunning time in h and p1; : : : ; ph in order to 
on
entrateon the main point that market predi
tion is easy withthis se
tion's four assumptions. The parameters h andp1; : : : ; ph are 
onstant under the assumptions.The proof of Theorem 4.1 is given in the full paper.The essential idea is to 
onvert the pri
e history andstrategy sets into a system of linear inequalities usingLemma 4.1, and then apply the Applegate-Kannanvolume 
omputation algorithm to integrate the limitdistribution on the strategies over the parts of theresulting polytope that are 
onsistent with a rise or fallon the next trading day.4.2.2 Remarks on Predi
ting an AS+PI Mar-ket The probability estimation te
hnique based on tak-ing m to 1 does not appear to be appli
able to the6



AS+PI model, for several reasons. We des
ribe thesereasons in more detail in the full paper, but the mostserious is that by 
hoosing a set of strategies in whi
h allstrategies but a 
ompletely ina
tive \dummy" strategybuy on the �rst day, we 
an enfor
e a �xed number ofa
tive traders by �xing the pri
e movement on that �rstday. So the problem in this 
ase redu
es to the problemof predi
ting the market with a small number of traders,whi
h is shown to be diÆ
ult in Theorem 4.6.4.3 A Hard Case for Market Predi
tion: ManyStrategiesSe
tion 4.2 shows that predi
ting an AS+FI marketis easy (i.e., takes polynomial time) when the numberm of traders vastly ex
eeds the number h of strategies.In this se
tion, we 
onsider the 
ase where every tradermay have a distin
t strategy, and show that predi
tingan AS+FI or AS+PI market be
omes very hard indeed.We now de�ne two de
ision-problem versions ofmarket predi
tion. Both versions make the followingassumption:� Ea
h Xi is independently either 0 or 1 with equalprobability.The bounded market predi
tion problem is:� Input: a set of n passive strategies and a pri
ehistory spanning n days su
h that the probabilitythat the market rises on day n+ 1 
onditioned onthe pri
e history is either (1) greater than 2=3 or(2) less than 1=3.� Question: Whi
h 
ase is it, 
ase (1) or 
ase (2)?The unbounded market predi
tion problem is:� Input: a set of n passive strategies and a pri
ehistory spanning n days.� Question: Is the probability that the market riseson day n+1 
onditioned on the pri
e history greaterthan 1/2 (without the usual � term)?The unbounded market predi
tion problem hasless �nan
ial payo� than the bounded one due todi�erent probability thresholds. For ea
h of these twoproblems, there are in e�e
t two versions, dependingon whi
h pri
e in
rement rule is used; however, bothversions turn out to be equally hard. These twoproblems 
an be analyzed by similar te
hniques, andour dis
ussion below fo
uses on the bounded marketpredi
tion problem with a hardness theorem for theunbounded market predi
tion problem in Se
tion 4.3.4.We show in Se
tion 4.3.1 how to 
onstru
t passivestrategies and pri
e histories su
h that solving bounded

market predi
tion is equivalent to estimating the prob-ability that a Boolean 
ir
uit outputs 1 on a randominput 
onditioned on a se
ond 
ir
uit outputting 1. InSe
tion 4.3.2, we show that this problem is hard forPNP[O(logn)℄ and 
omplete for a 
lass that lies betweenPNP[O(logn)℄ and PP. Thus bounded market predi
tionis not merely NP-hard, but 
annot be solved in thepolynomial-time hierar
hy at all unless the hierar
hy
ollapses to a �nite level.4.3.1 Redu
tions from Cir
uits to MarketsLemma 4.5 
onverts a 
ir
uit into a system of linearinequalities, while Lemma 4.6 
onverts a system oflinear inequalities into a system of linear equations.These systems 
an then be 
onverted into AS+FI andAS+PI market models using Lemmas 4.2 and 4.4,respe
tively.Note that the restri
tion in Lemma 4.5 to 
ir
uits
onsisting of 2-input NOR gates is not an obsta
leto representing arbitrary 
ombinatorial 
ir
uits (with
onstant blow-up), as 2-input NOR gates are universal.Lemma 4.5. For any n-input Boolean 
ir
uit C 
on-sisting of m 2-input NOR gates, there exists a systemAx > 0 of 3m + 2 linear 
onstraints in n +m + 2 un-knowns and a length n+m+2 
olumn ve
tor 
 with thefollowing properties:1. Both A and 
 have 
oeÆ
ients in f�1; 0;+1g that
an be 
omputed in time O((n+m)2).2. Any 0-1 ve
tor (x1; : : : ; xn) has a unique 0-1 exten-sion x = (x1; : : : ; xn; xn+1; : : : xn+m+2) satisfyingAx > 0.3. If Ax > 0, then 
x > 0 if and only ifC(x1; x2; : : : ; xn) = 1.The proof of Lemma 4.5 is is given in the full paper;the essential tri
k is to represent ea
h NOR gate as asystem of 0 � 1 inequalities, with a few extra 
onstantvariables to shift the right-hand sides to 0.One might suspe
t that the �xed in
rement rule'sability to hide the exa
t values of the left-hand side ofea
h 
onstraint is 
riti
al to disguise the inner workingsof the 
ir
uit. However, by adding sla
k variables we 
antranslate the inequalities into equations, allowing theuse of a proportional in
rement rule without revealingextra information.Lemma 4.6. Let Ax > 0 be a system of m linearinequalities in n variables where A has 
oeÆ
ients inf�1; 0;+1g. Then there is a system By = 1 of mn �m + 1 linear equations in 2mn � 3m + n + 1 variableswith the following properties:7



1. B has 
oeÆ
ients in f�1; 0;+1g that 
an be 
om-puted in time O((mn)2).2. There is a bije
tion f : x 7! y between the 0-1solutions x to Ax > 0 and the 0-1 solutions y toBy = 1, su
h that xj = yj for 1 � j � n whenevery = f(x).The proof of Lemma 4.6 is given in the full paper.The essential idea is that we 
an turn ea
h inequalityPj Aijxj > 0 into an equation by adding sla
k variablesto soak up any ex
ess over 1, with some additional
onstraints to ensure that there is a unique assignmentto the sla
k variables for ea
h setting of the xj .4.3.2 Conditional Probability ComplexityClassesSuppose that we take a polynomial-time probabilis-ti
 Turing ma
hine, �x its inputs, and use the usualCook's Theorem 
onstru
tion to turn it into a 
ir
uitwhose inputs are the random bits used during its 
om-putation. Then, we 
an feed the resulting 
ir
uit toLemmas 4.5 and 4.2 to obtain an AS+FI market modelin whi
h there is exa
tly one assignment of populationvariables for ea
h set of random bits, and the pri
e riseson the last day if and only if the output of the Tur-ing ma
hine is 1. By applying Lemma 4.6 to the in-termediate system of linear inequalities, we 
an simi-larly 
onvert a 
ir
uit to an AS+PI model. It followsthat bounded market predi
tion is BPP-hard for eithermodel. But with some 
leverness, we 
an exploit the
onditioning on past history to show that bounded mar-ket predi
tion is in fa
t mu
h harder than this. We doso in Se
tion 4.3.3, after a brief detour through 
ompu-tational 
omplexity in this se
tion.We pro
eed to de�ne some new 
ounting 
lassesbased on 
onditional probabilities. One of these, BCPP,has the useful feature that bounded market predi
tionis BCPP-
omplete. We will use this fa
t to relatethe 
omplexity of bounded market predi
tion to moretraditional 
omplexity 
lasses.The usual 
ounting 
lasses of 
omplexity theory(PP, BPP, R, ZPP, C=, et
.) are de�ned in terms of
ounting the relative numbers of a

epting and reje
tingstates of a nondeterministi
 Turing ma
hine. We willde�ne a new family of 
ounting 
lasses by adding a thirdde
ision state that does not 
ount for the purposes ofdetermining a

eptan
e or reje
tion.A non
ommittal Turing ma
hine is a nondetermin-isti
 Turing ma
hine with three de
ision states: a

ept,reje
t, and abstain. We represent a non
ommittal Tur-ing ma
hine as a deterministi
 Turing ma
hine whi
htakes a polynomial number of random bits in addi-tion to its input; ea
h assignment of the random bits

gives a distin
t 
omputation path. A 
omputation pathis a

epting/reje
ting/abstaining if it ends in an a
-
ept/reje
t/abstain state, respe
tively. We often write1, 0, or ? as shorthand for the output of an a

epting,reje
ting, or abstaining path.Conditional versions of the usual 
ounting 
lassesare obtained by 
arrying over their de�nitions fromstandard nondeterministi
 Turing ma
hines to non
om-mittal Turing ma
hines, with some 
are in handling the
ase of no a

epting or reje
ting paths. We 
an stillthink of these modi�ed 
lasses as 
orresponding to prob-abilisti
 ma
hines, but now the probabilities we are in-terested in are 
onditioned on not abstaining.Definition 4.1. The 
onditional probabilisti
polynomial-time 
lass (CPP) 
onsists of those lan-guages L for whi
h there exists a polynomial-timenon
ommittal Turing ma
hine M su
h that x 2 L ifand only if the number of a

epting paths when M isrun with input x ex
eeds the number of reje
ting paths.Definition 4.2. The bounded 
onditional probabilisti
polynomial-time 
lass (BCPP) 
onsists of those lan-guages L for whi
h there exists a 
onstant � > 0 and apolynomial-time non
ommittal Turing ma
hineM su
hthat (1) x 2 L implies that a fra
tion of at least 12 + �of the total number of a

epting and reje
ting paths area

epting and (2) x =2 L implies that a fra
tion of atleast 12 + � of the total number of a

epting and reje
t-ing paths are reje
ting.Definition 4.3. The 
onditional randomizedpolynomial-time 
lass (CR) 
onsists of those lan-guages L for whi
h there exists a 
onstant � > 0 anda polynomial-time non
ommittal Turing ma
hine Msu
h that (1) x 2 L implies that a fra
tion of at least� of the total number of a

epting and reje
ting pathsare a

epting, and (2) x =2 L implies that there are noa

epting paths.As we show in Theorems 4.2 and 4.3, CPP and CRturn out to be the same as the un
onditional 
lasses PPand NP, respe
tively.Theorem 4.2. CPP = PP.Proof. First of all, PP � CPP be
ause a PP ma
hineis a CPP ma
hine that happens not to have anyabstaining paths. For the inverse dire
tion, representea
h abstaining path of a CPP ma
hine by a pair
onsisting of one a

epting and one reje
ting path, andea
h a

epting or reje
ting path by two a

epting orreje
ting paths. Then the resulting PP ma
hine a

eptsif and only if the CPP ma
hine does.8



Theorem 4.3. CR = NP.Proof. To show NP � CR, repla
e ea
h reje
tingpath of an NP ma
hine with an abstaining path in aCR ma
hine. For the inverse dire
tion, repla
e ea
habstaining path of the CR ma
hine with a reje
ting pathin the NP ma
hine.BCPP appears to be a more interesting 
lass. Sin
eit is 
learly a subset of CPP, we have:Corollary 4.1. BCPP � PP.Proof. Immediate from Theorem 4.2 and the de�nitionof BCPP and CPP.On the other hand, BCPP appears to be mu
hstronger than the analogous non-
onditional 
lass BPP.For example, it is straightforward to show that NP �BPP. Use the representation of an NP-ma
hine as adeterministi
 ma
hine M that takes some polynomialnumber of \hint" bits in addition to its input, andrepla
e these N hint bits with N random bits r. Inaddition, supply another 2N random bits r0, whi
hwill be used to amplify the 
onditional probability ofa

epting paths. Now let M 0(x; r; r0) a

ept if M(x; r)a

epts; reje
t if M(x; r) reje
ts and r0 = ~0; andabstain if M(x; r) reje
ts and r0 6= ~0. Then if M hasany a

epting path on input x, M 0 has at least 22Na

epting paths and at most 2N � 1 reje
ting paths, foran exponentially large probability of a

epting| sin
ewe have ampli�ed the small number of a

epting pathsso that they overwhelm the few reje
tors. Alternatively,if M(x; r) never a

epts, neither does M 0.By repeating this sort of ampli�
ation of \good"paths, we 
an in fa
t simulate O(log n) queries of an NP-ora
le, as stated in the following theorem. The proof isgiven in the full paper.Theorem 4.4. PNP[O(logn)℄ � BCPP.An interesting open question is where exa
tlyBCPP lies between PNP[O(logn)℄ and PP. It is 
on
eiv-able that by 
leverly exploiting the power of 
ondition-ing to amplify low-probability events one 
ould showBCPP = PP. However, we will 
ontent ourselves withthe mu
h easier result of showing that the usual ampli-�
ation te
hnique for BPP also applies to BCPP.Theorem 4.5. If L 2 BCPP, then there exists a non-
ommittal Turing ma
hine M su
h that the probabilitythat M a

epts 
onditioned on not abstaining is at least1 � f(n) if x 2 L and at most f(n) if x =2 L, wheren = jxj and f(n) is any fun
tion of the form 2�O(n
)for some 
onstant 
 > 0.

4.3.3 Bounded Market Predi
tion Is BCPP-
ompleteIn Se
tion 4.3.2, we have de�ned the 
omplexity
lass BCPP and have shown that it 
ontains the pow-erful 
lass PNP[O(logn)℄. In this se
tion, we show thatbounded market predi
tion is 
omplete for BCPP. In asense, this result says that market predi
tion is a uni-versal predi
tion problem: if we 
an predi
t a market,we 
an predi
t any event 
onditioned on past historyas long as we 
an sample from an underlying dis
reteprobability spa
e whose size is at most exponential.It also says that bounded market predi
tion is veryhard. Using Theorems 4.4 and 4.5, even if the next day'spri
e is determined with all but an exponentially smallprobability, it 
annot be solved in the polynomial-timehierar
hy unless the hierar
hy 
ollapses to a �nite level.Theorem 4.6. The bounded market predi
tion problemis 
omplete for BCPP, in either the AS+FI or theAS+PI model.We will sket
h the proof of Theorem 4.6; the details aregiven in the full paper. We omit the proof that boundedmarket predi
tion is 
ontained in BCPP; it is not veryhard.To redu
e from any BCPP-language L to marketpredi
tion in the AS+FI model, amplify the 
onditionalprobability of a

eptan
e to 1=3; 2=3 using Theorem 4.5,and 
onstru
t 
ir
uits C6? and C1 from the resulting ma-
hine that 
ompute whether M does not abstain andwhether it a

epts, respe
tively. Convert both 
ir
uitsto sets of 0�1 linear inequalities using Lemma 4.5. En-
ode the 
onstraints for both systems and the require-ment that C 6? outputs 1 as a pri
e history and set ofstrategies using Lemma 4.2, with the pri
e movementon the next day of trading determined by the output ofC1. The redu
tion is 
omplete.To show the similar result for the AS+PI model, useLemma 4.6 to 
onvert the systems of inequalities for theAS+FI model to systems of equations, and pro
eed asabove using Lemma 4.4.4.3.4 Unbounded Market Predi
tion is CPP-
ompleteThe unbounded market predi
tion problem seemsharder be
ause the probability threshold in question is 12with no � bound in 
ontrast to the thresholds 23 and 13 forthe bounded market predi
tion problem. The followingtheorem re
e
ts this intuition. However, sin
e we donot know whether BCPP is distin
t from PP, we do notknow whether unbounded predi
tion is stri
tly harder.Theorem 4.7. The unbounded market predi
tion prob-lem is 
omplete for CPP = PP, in either the AS+FI orthe AS+PI model.9



Proof. Similar to the proof of Theorem 4.6.5 Future Resear
h Dire
tionsThere are many problems left open in this paper. Belowwe brie
y dis
uss some general dire
tions for furtherresear
h.We have reported a number of simulation andtheoreti
al results for the AS model. As for empiri
alanalysis, it would be of interest to �t a
tual marketdata to the model. We 
an then use the estimatedparameters to (1) test whether the model has anypredi
ative power and (2) test the e�e
tiveness of new orknown trading algorithms. This dire
tion may require
arefully 
hoosing \realisti
" strategies for �. Besidesthe momentum and 
ontrarian strategies, there aresome popular ones whi
h are worth 
onsidering, su
h asthose based on support levels. Investment newsletters
ould be a useful sour
e of su
h strategies.The AS model is an idealized one. We have 
ho-sen su
h simpli
ity as a matter of resear
h methodol-ogy. It is relatively easy to design highly 
ompli
atedmodels whi
h 
an generate very 
omplex market behav-ior. A more 
hallenging and interesting task is to de-sign the simplest possible model whi
h 
an generate thedesired market 
hara
teristi
s. For instan
e, a signif-i
ant resear
h dire
tion would be to �nd the simplestmodel in whi
h market predi
tion is 
omputationallyhard. On the other hand, it would be of great interestto �nd the most general models in whi
h market predi
-tion takes only polynomial time. For this goal, we 
an
onsider inje
ting more realism into the model by intro-du
ing resour
e-bounded learning (the generality of �is equivalent to unbounded learning), variable memorysize, transa
tion 
osts, buying power, limit orders, shortsell, options, et
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