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1 IntrodutionThe issue of market preditability has been debated formore than a entury (see [6℄ for earlier papers and [4,11, 14, 16℄ for more reent viewpoints). In 1900, the pio-neering work \Theory of Speulation" of Louis Bahelierused Brownian motion to analyze the stohasti proper-ties of seurity pries [6℄. Sine then, Brownian motionand its variants have beome textbook tools for mod-eling �nanial assets. Relatively reently, the radiallydi�erent methodology of Mandelbrot used fratals toapproximate prie graphs deterministially [17℄. In thispaper, we initiate a study into this long-running issuefrom the perspetive of omputational omplexity.We develop a simple agent-based model for a stokmarket [7, 15℄. The agents are traders equipped withsimple trading strategies, and their trades togetherdetermine the stok pries. We �rst onsider a basiase of this model where there are only two strategies,namely, momentum and ontrarian strategies. Thehoie of this base model and thus our general model isjusti�ed at two levels: (1) Experimental and empirialstudies in the �nane literature [1, 3, 5, 8{10, 13℄ showthat a large number of traders primarily follow thesetwo strategies. (2) Our own simulation results showthat despite its simpliity, the base model is apable ofgenerating prie graphs whih are visually similar to thereent prie movements of high teh stoks (Figures 1and 2).With these justi�ations, we then onsider the issueof market preditability in the general model. We provethat if there are a large number of traders but theyemploy a relatively small number of strategies, thenthere is a polynomial-time algorithm to predit futureprie movements with high auray (Theorem 4.1). Onthe other hand, if there are also a large number ofstrategies, then the problem of prediting future priesbeomes omputationally very hard. To desribe thishardness, we de�ne two new omputational omplexitylasses alled CPP and BCPP (De�nitions 4.1 and 4.2).1



We show that some market predition problems areomplete for these two lasses (Theorems 4.6 and 4.7)and that PNP[O(logn)℄ � BCPP � CPP = PP.These omputational ompleteness results open upthe possibility that the prie graph of a atual stokould be suÆiently deterministi for various predi-tion purposes but appear random to all polynomial-timepredition algorithms. This is in ontrast to the mostpopular aademi belief that the future prie of a stokannot be predited from its historial pries beausethe latter are statistially random and ontain no in-formation. This new viewpoint also di�ers from thefratal-based methodology in that the prie graph of astok ould be a fratal but the fratal might not beomputable in polynomial time. The �ndings in thispaper an by no means settle the debate on market pre-ditability. Our goal is only that this alternative ap-proah ould provide new insights to the preditabilityissue in a systemati manner. In partiular, it ouldprovide a general framework to investigate the manydoumented tehnial trading rules [19℄ and to generatenovel and signi�ant interdisiplinary researh problemsfor omputer siene and �nane.The rest of the paper is organized as follows.Setion 2 disusses the basi market model. Setion 3formulates the general model. Setion 4 proves theomplexity results for market predition in the generalmodel. We onlude the paper with some diretions forfuture researh in Setion 5. Due to spae limitations,the proofs of most of our results are omitted or onlyskethed; omplete proofs an be found in the full paper.2 A Basi Market ModelIn this setion, we present a very simple market model,alled the deterministi-swithing MC (DSMC) model.The letter M stands for a momentum strategy, and theletter C for a ontrarian strategy. These two strategiesand the model itself are de�ned in Setion 2.1. Someomputer simulations for this model are reported inSetion 2.2.Intuitively, these strategies are heuristis (\rules ofthumb") used by traders in the absene of reliable assetvaluation models. As disussed in [10℄, a momentumtrader may observe a sequene of \up" trades (prieinrements) and exeute a buy trade in the antiipationthat she will not be one of the last buyers, knowing verywell that the asset is overpried. Similarly, she maysee some \down" trades (prie derements) and thenmake a sell trade in the hope that there will be moresellers after her. In ontrast, after deteting a numberof \up" (respetively, down) trades, a ontrarian tradermay submit a sell (respetively, buy) trade, antiipatinga prie reversal.

Both experimental and empirial studies haveshown that traders look at past prie dynamis to formtheir expetations of future pries, and a large num-ber of them primarily follow momentum or ontrarianstrategies [1, 5, 8, 9℄. In addition, the traders may swithbetween these two diametrially opposite strategies.Momentum and ontrarian strategies are dominant inthe behavior of professional market timers as well [13℄.The use of momentum and ontrarian strategies some-times signi�es gambling tendenies among traders [5℄.In fat, a market model with momentum and ontrariantraders an also be interpreted as a market with noisetraders and rational traders, where the noise traders es-sentially follow a momentum strategy while the rationaltraders attempt to exploit the noise traders by followinga ontrarian strategy [3, 10℄.2.1 De�ning the DSMC ModelIn the DSMC model, there is only one stok tradedin the market. The model is ompletely spei�edby three integer parameters m;L; k > 0, and a realparameter � > 0 as follows.There arem traders in the market, and eah trader'sstrategy set onsists of momentum (M) and ontrarian(C) strategies. At the beginning of day 1 of theinvestment period, eah trader randomly hooses herinitial strategy from fM; Cg and an integer `i 2 [2; L℄with equal probability, where L is the maximum strategyswithing period. This is the only soure of randomnessin the DSMC model; from this point onwards, there isno random hoie.Rule 2.1. (Deterministi Strategy SwithingRule) For days 1; : : : ; k + 1, there is no trading. Eahtrader starts trading from day k + 2 using her initialstrategy. Trader i uses the same strategy for `i daysand swithes it at the beginning of every `i days.The next rule de�nes the two strategies with respetto a given memory size k, whih is the same for alltraders.Rule 2.2. (Trading Rule) At the beginning of day t,observe the stok pries Pf of days f 2 [t�(k+1); t�1℄.For g 2 [t�k; t�1℄, ount the number ku of days g whenPg > Pg�1; and the number kd of days when Pg < Pg�1.The k-day trend is de�ed as Tr(k; t) = ku� kd. Then, ifTr(k; t) � 0 (respetively, < 0), the momentum strategyM buys (respetively, sells) one share of the stok at themarket prie determined by Rule 2.3 below. In ontrast,the ontrarian strategy C sells (respetively, buys) oneshare of the stok.For instane, suppose that k = 2, and investor ipiks her initial strategyM and `i = 2 at the beginning2



of day 1. She then observes the pries of days 1, 2, 3,whih are, say, $80; $82; $90. At the beginning of day 4,she issues a market order to buy one share of the stok.The orders issued by the traders on day 4 togetherdetermine the prie of day 4 as spei�ed by Rule 2.3.Suppose that the prie of day 4 is $91, then investori issues another market buy order at the beginning ofday 5. Sine her `i is 2, at the beginning of day 6, sheswithes her strategy from M to C.Rule 2.3. (Prie Adjustment Rule) The pries fordays 1; : : : ; k + 1 are given. On day t � k + 2, letmb and ms be the total numbers of buys and sells,respetively. Then, the prie Pt on day t is determinedby the following equation:Pt � Pt�1 = ��(mb �ms);where � is the unit of prie hange.2.2 Computer Simulation on the DSMC ModelWe have onduted some omputer simulationsof the DSMC model to test whether it an generaterealisti prie graphs. Beause we had to examine thegraphs visually, our time onstraints limited the numberof these simulations to only about six hundred. For alarge fration of them, we set m = 20, L = 8, and theinitial k pries in the range of $70 to $90. We thenfoused on testing the e�et of memory size k [18℄. Twomain �ndings are as follows:� For k = 1, the prie graphs were not visually real.� For k = 2, about one out of four graphs were strik-ingly similar to those of reent high teh stoks,whih was a major positive surprise to us. Two rep-resentatives of suh graphs are shown in Figures 1and 2.These two statements are based on our subjetiveimpressions and limited simulations. To further under-stand the DSMC model, it would be useful to automatestatistial analysis on the prie graphs generated by thismodel and ompare them with real stok pries.3 A General Market ModelIn this setion, we de�ne a market model, alled theAS model, where the word AS stands for arbitrarystrategies. It an be veri�ed in a straightforwardmanner that the DSMC model is a speial ase of theAS model.In the AS model, there is only one stok traded inthe market. The model is ompletely spei�ed as followswith �ve parameters: (1) the numberm of traders, (2) a

unit � > 0 of prie hange, (3) a set � = fS1; : : : ;Shg ofstrategies, (4) a prie adjustment rule (Equation 3.1 or3.2 below), and (5) a joint distribution of the populationvariables X1; : : : ; Xh.Rule 3.1. (Market Initialization) There are mtraders in the market. At the beginning of day 1 ofthe investment period, eah trader randomly hoosesher initial strategy from �. Let Xi be the number oftraders who hoose Si. Then, eah Xi is a randomvariable, whih is the only soure of randomness in themodel. (Unlike the DSMC model, beause the allowablegenerality of �, the AS model does not need strategyswithing.)Di�erent joint distributions of the variables Xi leadto di�erent spei� models and predition problems. InSetion 4.2, we onsider joint distributions that tendto Gaussian in the limit as the number m of tradersbeomes large. In Setion 4.3, we onsider the asewhere the variables Xi are independent, and eah is 0or 1 with equal probability.Rule 3.2. (Trading Strategies) There is no tradingon day 0. At the beginning of day t � 1, a traderobserves the historial pries P0; : : : ; Pt�1 and reatsby issuing a market order to buy one share of thestok, hold (i.e., do nothing), or sell one share aordingher strategy. Formally, a strategy is a olletion offuntions S = fS1;S2; : : : ;St; : : :g, where eah St mapsP0; : : : ; Pt�1 to +1 (buy), 0 (hold), or �1 (sell).The prie Pt of day t is determined at the end ofthe day by the day's m market orders using Rule 3.3.Sine the traders hoose their strategies randomly, thesequene P0; P1; : : : ; Pt; : : : is a stohasti proess. Wewrite Ft for the probability spae indued by all possiblesequenes hP0; : : : ; Pti [12℄. Then, we think of eahfuntion St as a random variable on Ft�1.We distinguish between strategies that reat toprie movements and those that ignore them.� S is an ative strategy if the funtions St may ormay not be onstant funtions. An ative trader isone with an ative strategy.� S is a passive strategy if the funtions St all areonstant funtions. A passive trader is one with apassive strategy.Rule 3.3. (Prie Adjustment)The prie P0 is given.At the end of day t � 1, the prie Pt is determined bythe day's market orders to buy or sell from the traders.We onsider two simple rules:3
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Figure 1: A one-year prie sequene generated using the DSMC model. Parameters: number of traders m = 20,memory size k = 2, maximum strategy swithing period L = 8, unit of prie hange � = 0:25, number of tradingdays = 250. The prie graph appears strikingly similar to the reent prie movements of high teh stoks.
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Figure 2: A one-year prie sequene generated using the DSMC model. The parameters are the same as thosefor Figure 1. 4



With the proportional inrement (PI) rule,Pt = Pt�1 + �� hXi=1 Xi�Sit ;(3.1)where � is the unit of prie hange. Thus we an observediretly the net di�erene between the number of buyersand sellers on day t.With the �xed inrement (FI) rule,Pt = Pt�1 + �� sign hXi=1 Xi�Sit! :(3.2)In this ase, the market moves up or down dependingon whether the majority of traders are buying or selling,but the amount by whih it moves is �xed at �.For notational brevity, an AS+FI model refers to anAS model with the �xed inrement rule, and an AS+PImodel refers to an AS model with the proportionalinrement rule.In reality, the prie tends to move up if there aremore buy orders than sell orders; similarly, the prietends to move down if there are more sell orders thanbuy orders. The FI rule is meant to model the sign butnot the magnitude of the slope of this orrelation, whilethe PI rule attempts to model both. Clearly, there anbe many other inrement rules, whih this paper leavesfor future researh.4 Prediting the MarketInformally, the market predition problem at the begin-ning of day t is de�ned as follows:� The data onsists of (1) the �ve parameters of anAS-model, i.e., m, �, �, Xi, and a prie adjustmentrule, and (2) a prie history P0; : : : ; Pt�1.� The goal is to predit the prie Pt by estimat-ing the onditional probabilities Pr[Pt > Pt�1 jP0; : : : ; Pt�1℄, Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄, andPr[Pt = Pt�1 j P0; : : : ; Pt�1℄.Note that Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ is symmetrito Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄ and Pr[Pt = Pt�1 jP0; : : : ; Pt�1℄ = 1 � Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ �Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄. Thus, from this pointonwards, our disussion fouses on estimating Pr[Pt >Pt�1 j P0; : : : ; Pt�1℄.From an algorithmi perspetive, we sometimesassume that the prie adjustment rule and the jointdistribution of the variables Xi are �xed, and that theinput to the algorithm is m, �, a desription of �, andthe prie history. This allows di�erent algorithms for

di�erent model families as well as side-steps the issueof how to represent the possibly very ompliated jointdistribution of the variables Xi as part of the input.As for the desription of �, we only need Si1; : : : ;Sit foreah Si 2 � instead of the whole �, and the desriptionof these funtions an simpli�ed by restriting theirdomains to onsist of the prie sequenes onsistent withthe given prie history.4.1 Markets as Systems of Linear ConstraintsIn the AS+FI model with parameters m and �, aprie sequene P0; : : : ; Pt and � an yield a set of linearinequalities in the population variables Xi as follows. Ifthe prie hanges on day t, we havesign(Pt � Pt�1) hXi=1 SitXi > 0:(4.3)If the prie does not hange, we have instead theequation hXi=1 SitXi = 0:(4.4)Furthermore, any assignment of the variables Xithat satis�es either inequality is feasible with respetto the orresponding prie movement on day t. Inboth ases, Sit is omputable from the prie sequeneP0; : : : ; Pt�1. The same statements hold for days1; : : : ; t � 1. Therefore, given m and �, we an extratfrom � and P0; : : : ; Pt a set of linear onstraints on thevariables Xi. The onverse holds similarly. We formal-ize these two observations in Lemmas 4.1 and 4.2 below.Lemma 4.1. In the AS+FI model with parameters mand �, given � and a prie sequene P0; : : : ; P�, thereare matries A and B with oeÆients in f�1; 0;+1g,h olumns eah, and � rows in total. The rows of A(respetively, B) orrespond to the days when Pj 6=Pj�1 (respetively, Pj = Pj�1). Furthermore. theolumn vetors x = (X1; : : : ; Xh)> onsistent with �and P0; : : : ; P� are exatly those that satisfy Ax > 0and Bx = 0. The matries A and B an be omputed intime O(h�T ), where T is an upper bound on the time toompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Lemma 4.2. In the AS+FI model with parameters mand �, given a system of linear inequalities Ax >0; Bx = 0, where A and B have oeÆients inf�1; 0;+1g with h olumns eah, and � rows in total,there exist (1) a set � of h strategies orresponding tothe h olumns of A and B, and (2) a (� + 1)-day prie5



sequene P0; : : : ; P� with the latter � days orrespond-ing to the � rows of A and B. Furthermore, the valuesof the population variables X1; : : : ; Xn are feasible withrespet to the prie movement on day j if and only ifolumn vetor x = (X1; : : : ; Xn)> satis�es the j-th on-straint in A and B. Also, P0; : : : ; P� and a desriptionof � an be omputed in O(h�) time.In the AS+PI model we obtain only equations, ofthe form: hXi=1 SitXi = 1� (Pt � Pt�1):(4.5)In this ase there is a diret orrespondene betweenmarket data and systems of linear equations. Weformalize this orrespondene in Lemmas 4.3 and 4.4below.Lemma 4.3. In the AS+PI model with parameters mand �, given � and a prie sequene P0; : : : ; P�, there isa matrix B with oeÆients in f�1; 0;+1g, h olumns,and � rows, and a olumn vetor b of length h, suh thatthe olumn vetors x = (X1; : : : ; Xh)> onsistent with� and P0; : : : ; P� are exatly those that satisfy Bx = b.The oeÆients of B and b an be omputed in timeO(h�T ), where T is an upper bound on the time toompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Lemma 4.4. In the AS+PI model with parameters mand �, given a system of linear equations Bx = b, whereB is a � � h matrix with oeÆients in f�1; 0;+1g,there exist (1) a set � of h strategies orrespondingto the h olumns of B, and (2) a (� + 1)-day priesequene P0; : : : ; P� with the last � days orrespondingto the � rows of B. Furthermore, the values of thepopulation variables X1; : : : ; Xn are feasible with respetto the prie movement on day j if and only if olumnvetor x = (X1; : : : ; Xn)> satis�es the j-th onstraintin B. Also, P0; : : : ; P� and a desription of � an beomputed in O(h�) time.4.2 An Easy Case for Market Predition: ManyTraders but Few StrategiesIn Setion 4.2.1, we show that if an AS+FI markethas far more traders than strategies, then it takespolynomial time to estimate the probability that thenext day's prie will rise. In Setion 4.2.2, we disusswhy the same analysis tehnique does not work for anAS+PI market.4.2.1 Prediting an AS+FI MarketFor the sake of emphasizing the dependene on m,let Prm[E℄ be the probability that event E ours whenthere are m traders in the market.

This setion makes the following assumptions:E1 The input to the market predition problem issimply a prie history P0; : : : ; Pt�1. The output islimm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄.E2 The market follows the AS+FI model.E3 � is �xed. The values Sij over all i 2 [1; h℄ areomputable from the input in total time polynomialin j.E4 Eah of the m traders independently hooses arandom strategy Si from � with �xed probabilitypi > 0, where p1 + � � �+ ph = 1.The parameter � is irrelevant.Notie that the olumn vetor X = (X1; : : : ; Xh)>is the sum of m independent identially-distributedvetor-valued random variables with a enter at p =m�(p1; : : : ; ph)>. We reenter and resale X to Y =(X�m�(p1; : : : ; ph)>)=pm. Then, by the Central LimitTheorem (see, e.g., [2, Theorem 29.5℄), as m! +1, Yonverges weakly to a normal distribution entered atthe h-dimensional vetor (0; : : : ; 0)>. In Theorem 4.1below, we rely on this fat to estimate the probabilitythat the market rises for prie histories that our withnonzero probability.Theorem 4.1. Assume thatlimm!1 Prm[P0; : : : ; Pt�1℄ > 0. Then there is afully polynomial-time approximation sheme for esti-mating limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ fromP0; : : : ; Pt�1. The time omplexity of the sheme ispolynomial in (1) the length t of the prie history, (2)the inverse of the relative error bound �, and (3) theinverse of the failure probability �.Remark. We omit the expliit dependeny of therunning time in h and p1; : : : ; ph in order to onentrateon the main point that market predition is easy withthis setion's four assumptions. The parameters h andp1; : : : ; ph are onstant under the assumptions.The proof of Theorem 4.1 is given in the full paper.The essential idea is to onvert the prie history andstrategy sets into a system of linear inequalities usingLemma 4.1, and then apply the Applegate-Kannanvolume omputation algorithm to integrate the limitdistribution on the strategies over the parts of theresulting polytope that are onsistent with a rise or fallon the next trading day.4.2.2 Remarks on Prediting an AS+PI Mar-ket The probability estimation tehnique based on tak-ing m to 1 does not appear to be appliable to the6



AS+PI model, for several reasons. We desribe thesereasons in more detail in the full paper, but the mostserious is that by hoosing a set of strategies in whih allstrategies but a ompletely inative \dummy" strategybuy on the �rst day, we an enfore a �xed number ofative traders by �xing the prie movement on that �rstday. So the problem in this ase redues to the problemof prediting the market with a small number of traders,whih is shown to be diÆult in Theorem 4.6.4.3 A Hard Case for Market Predition: ManyStrategiesSetion 4.2 shows that prediting an AS+FI marketis easy (i.e., takes polynomial time) when the numberm of traders vastly exeeds the number h of strategies.In this setion, we onsider the ase where every tradermay have a distint strategy, and show that preditingan AS+FI or AS+PI market beomes very hard indeed.We now de�ne two deision-problem versions ofmarket predition. Both versions make the followingassumption:� Eah Xi is independently either 0 or 1 with equalprobability.The bounded market predition problem is:� Input: a set of n passive strategies and a priehistory spanning n days suh that the probabilitythat the market rises on day n+ 1 onditioned onthe prie history is either (1) greater than 2=3 or(2) less than 1=3.� Question: Whih ase is it, ase (1) or ase (2)?The unbounded market predition problem is:� Input: a set of n passive strategies and a priehistory spanning n days.� Question: Is the probability that the market riseson day n+1 onditioned on the prie history greaterthan 1/2 (without the usual � term)?The unbounded market predition problem hasless �nanial payo� than the bounded one due todi�erent probability thresholds. For eah of these twoproblems, there are in e�et two versions, dependingon whih prie inrement rule is used; however, bothversions turn out to be equally hard. These twoproblems an be analyzed by similar tehniques, andour disussion below fouses on the bounded marketpredition problem with a hardness theorem for theunbounded market predition problem in Setion 4.3.4.We show in Setion 4.3.1 how to onstrut passivestrategies and prie histories suh that solving bounded

market predition is equivalent to estimating the prob-ability that a Boolean iruit outputs 1 on a randominput onditioned on a seond iruit outputting 1. InSetion 4.3.2, we show that this problem is hard forPNP[O(logn)℄ and omplete for a lass that lies betweenPNP[O(logn)℄ and PP. Thus bounded market preditionis not merely NP-hard, but annot be solved in thepolynomial-time hierarhy at all unless the hierarhyollapses to a �nite level.4.3.1 Redutions from Ciruits to MarketsLemma 4.5 onverts a iruit into a system of linearinequalities, while Lemma 4.6 onverts a system oflinear inequalities into a system of linear equations.These systems an then be onverted into AS+FI andAS+PI market models using Lemmas 4.2 and 4.4,respetively.Note that the restrition in Lemma 4.5 to iruitsonsisting of 2-input NOR gates is not an obstaleto representing arbitrary ombinatorial iruits (withonstant blow-up), as 2-input NOR gates are universal.Lemma 4.5. For any n-input Boolean iruit C on-sisting of m 2-input NOR gates, there exists a systemAx > 0 of 3m + 2 linear onstraints in n +m + 2 un-knowns and a length n+m+2 olumn vetor  with thefollowing properties:1. Both A and  have oeÆients in f�1; 0;+1g thatan be omputed in time O((n+m)2).2. Any 0-1 vetor (x1; : : : ; xn) has a unique 0-1 exten-sion x = (x1; : : : ; xn; xn+1; : : : xn+m+2) satisfyingAx > 0.3. If Ax > 0, then x > 0 if and only ifC(x1; x2; : : : ; xn) = 1.The proof of Lemma 4.5 is is given in the full paper;the essential trik is to represent eah NOR gate as asystem of 0 � 1 inequalities, with a few extra onstantvariables to shift the right-hand sides to 0.One might suspet that the �xed inrement rule'sability to hide the exat values of the left-hand side ofeah onstraint is ritial to disguise the inner workingsof the iruit. However, by adding slak variables we antranslate the inequalities into equations, allowing theuse of a proportional inrement rule without revealingextra information.Lemma 4.6. Let Ax > 0 be a system of m linearinequalities in n variables where A has oeÆients inf�1; 0;+1g. Then there is a system By = 1 of mn �m + 1 linear equations in 2mn � 3m + n + 1 variableswith the following properties:7



1. B has oeÆients in f�1; 0;+1g that an be om-puted in time O((mn)2).2. There is a bijetion f : x 7! y between the 0-1solutions x to Ax > 0 and the 0-1 solutions y toBy = 1, suh that xj = yj for 1 � j � n whenevery = f(x).The proof of Lemma 4.6 is given in the full paper.The essential idea is that we an turn eah inequalityPj Aijxj > 0 into an equation by adding slak variablesto soak up any exess over 1, with some additionalonstraints to ensure that there is a unique assignmentto the slak variables for eah setting of the xj .4.3.2 Conditional Probability ComplexityClassesSuppose that we take a polynomial-time probabilis-ti Turing mahine, �x its inputs, and use the usualCook's Theorem onstrution to turn it into a iruitwhose inputs are the random bits used during its om-putation. Then, we an feed the resulting iruit toLemmas 4.5 and 4.2 to obtain an AS+FI market modelin whih there is exatly one assignment of populationvariables for eah set of random bits, and the prie riseson the last day if and only if the output of the Tur-ing mahine is 1. By applying Lemma 4.6 to the in-termediate system of linear inequalities, we an simi-larly onvert a iruit to an AS+PI model. It followsthat bounded market predition is BPP-hard for eithermodel. But with some leverness, we an exploit theonditioning on past history to show that bounded mar-ket predition is in fat muh harder than this. We doso in Setion 4.3.3, after a brief detour through ompu-tational omplexity in this setion.We proeed to de�ne some new ounting lassesbased on onditional probabilities. One of these, BCPP,has the useful feature that bounded market preditionis BCPP-omplete. We will use this fat to relatethe omplexity of bounded market predition to moretraditional omplexity lasses.The usual ounting lasses of omplexity theory(PP, BPP, R, ZPP, C=, et.) are de�ned in terms ofounting the relative numbers of aepting and rejetingstates of a nondeterministi Turing mahine. We willde�ne a new family of ounting lasses by adding a thirddeision state that does not ount for the purposes ofdetermining aeptane or rejetion.A nonommittal Turing mahine is a nondetermin-isti Turing mahine with three deision states: aept,rejet, and abstain. We represent a nonommittal Tur-ing mahine as a deterministi Turing mahine whihtakes a polynomial number of random bits in addi-tion to its input; eah assignment of the random bits

gives a distint omputation path. A omputation pathis aepting/rejeting/abstaining if it ends in an a-ept/rejet/abstain state, respetively. We often write1, 0, or ? as shorthand for the output of an aepting,rejeting, or abstaining path.Conditional versions of the usual ounting lassesare obtained by arrying over their de�nitions fromstandard nondeterministi Turing mahines to nonom-mittal Turing mahines, with some are in handling thease of no aepting or rejeting paths. We an stillthink of these modi�ed lasses as orresponding to prob-abilisti mahines, but now the probabilities we are in-terested in are onditioned on not abstaining.Definition 4.1. The onditional probabilistipolynomial-time lass (CPP) onsists of those lan-guages L for whih there exists a polynomial-timenonommittal Turing mahine M suh that x 2 L ifand only if the number of aepting paths when M isrun with input x exeeds the number of rejeting paths.Definition 4.2. The bounded onditional probabilistipolynomial-time lass (BCPP) onsists of those lan-guages L for whih there exists a onstant � > 0 and apolynomial-time nonommittal Turing mahineM suhthat (1) x 2 L implies that a fration of at least 12 + �of the total number of aepting and rejeting paths areaepting and (2) x =2 L implies that a fration of atleast 12 + � of the total number of aepting and rejet-ing paths are rejeting.Definition 4.3. The onditional randomizedpolynomial-time lass (CR) onsists of those lan-guages L for whih there exists a onstant � > 0 anda polynomial-time nonommittal Turing mahine Msuh that (1) x 2 L implies that a fration of at least� of the total number of aepting and rejeting pathsare aepting, and (2) x =2 L implies that there are noaepting paths.As we show in Theorems 4.2 and 4.3, CPP and CRturn out to be the same as the unonditional lasses PPand NP, respetively.Theorem 4.2. CPP = PP.Proof. First of all, PP � CPP beause a PP mahineis a CPP mahine that happens not to have anyabstaining paths. For the inverse diretion, representeah abstaining path of a CPP mahine by a paironsisting of one aepting and one rejeting path, andeah aepting or rejeting path by two aepting orrejeting paths. Then the resulting PP mahine aeptsif and only if the CPP mahine does.8



Theorem 4.3. CR = NP.Proof. To show NP � CR, replae eah rejetingpath of an NP mahine with an abstaining path in aCR mahine. For the inverse diretion, replae eahabstaining path of the CR mahine with a rejeting pathin the NP mahine.BCPP appears to be a more interesting lass. Sineit is learly a subset of CPP, we have:Corollary 4.1. BCPP � PP.Proof. Immediate from Theorem 4.2 and the de�nitionof BCPP and CPP.On the other hand, BCPP appears to be muhstronger than the analogous non-onditional lass BPP.For example, it is straightforward to show that NP �BPP. Use the representation of an NP-mahine as adeterministi mahine M that takes some polynomialnumber of \hint" bits in addition to its input, andreplae these N hint bits with N random bits r. Inaddition, supply another 2N random bits r0, whihwill be used to amplify the onditional probability ofaepting paths. Now let M 0(x; r; r0) aept if M(x; r)aepts; rejet if M(x; r) rejets and r0 = ~0; andabstain if M(x; r) rejets and r0 6= ~0. Then if M hasany aepting path on input x, M 0 has at least 22Naepting paths and at most 2N � 1 rejeting paths, foran exponentially large probability of aepting| sinewe have ampli�ed the small number of aepting pathsso that they overwhelm the few rejetors. Alternatively,if M(x; r) never aepts, neither does M 0.By repeating this sort of ampli�ation of \good"paths, we an in fat simulate O(log n) queries of an NP-orale, as stated in the following theorem. The proof isgiven in the full paper.Theorem 4.4. PNP[O(logn)℄ � BCPP.An interesting open question is where exatlyBCPP lies between PNP[O(logn)℄ and PP. It is oneiv-able that by leverly exploiting the power of ondition-ing to amplify low-probability events one ould showBCPP = PP. However, we will ontent ourselves withthe muh easier result of showing that the usual ampli-�ation tehnique for BPP also applies to BCPP.Theorem 4.5. If L 2 BCPP, then there exists a non-ommittal Turing mahine M suh that the probabilitythat M aepts onditioned on not abstaining is at least1 � f(n) if x 2 L and at most f(n) if x =2 L, wheren = jxj and f(n) is any funtion of the form 2�O(n)for some onstant  > 0.

4.3.3 Bounded Market Predition Is BCPP-ompleteIn Setion 4.3.2, we have de�ned the omplexitylass BCPP and have shown that it ontains the pow-erful lass PNP[O(logn)℄. In this setion, we show thatbounded market predition is omplete for BCPP. In asense, this result says that market predition is a uni-versal predition problem: if we an predit a market,we an predit any event onditioned on past historyas long as we an sample from an underlying disreteprobability spae whose size is at most exponential.It also says that bounded market predition is veryhard. Using Theorems 4.4 and 4.5, even if the next day'sprie is determined with all but an exponentially smallprobability, it annot be solved in the polynomial-timehierarhy unless the hierarhy ollapses to a �nite level.Theorem 4.6. The bounded market predition problemis omplete for BCPP, in either the AS+FI or theAS+PI model.We will sketh the proof of Theorem 4.6; the details aregiven in the full paper. We omit the proof that boundedmarket predition is ontained in BCPP; it is not veryhard.To redue from any BCPP-language L to marketpredition in the AS+FI model, amplify the onditionalprobability of aeptane to 1=3; 2=3 using Theorem 4.5,and onstrut iruits C6? and C1 from the resulting ma-hine that ompute whether M does not abstain andwhether it aepts, respetively. Convert both iruitsto sets of 0�1 linear inequalities using Lemma 4.5. En-ode the onstraints for both systems and the require-ment that C 6? outputs 1 as a prie history and set ofstrategies using Lemma 4.2, with the prie movementon the next day of trading determined by the output ofC1. The redution is omplete.To show the similar result for the AS+PI model, useLemma 4.6 to onvert the systems of inequalities for theAS+FI model to systems of equations, and proeed asabove using Lemma 4.4.4.3.4 Unbounded Market Predition is CPP-ompleteThe unbounded market predition problem seemsharder beause the probability threshold in question is 12with no � bound in ontrast to the thresholds 23 and 13 forthe bounded market predition problem. The followingtheorem reets this intuition. However, sine we donot know whether BCPP is distint from PP, we do notknow whether unbounded predition is stritly harder.Theorem 4.7. The unbounded market predition prob-lem is omplete for CPP = PP, in either the AS+FI orthe AS+PI model.9



Proof. Similar to the proof of Theorem 4.6.5 Future Researh DiretionsThere are many problems left open in this paper. Belowwe briey disuss some general diretions for furtherresearh.We have reported a number of simulation andtheoretial results for the AS model. As for empirialanalysis, it would be of interest to �t atual marketdata to the model. We an then use the estimatedparameters to (1) test whether the model has anyprediative power and (2) test the e�etiveness of new orknown trading algorithms. This diretion may requirearefully hoosing \realisti" strategies for �. Besidesthe momentum and ontrarian strategies, there aresome popular ones whih are worth onsidering, suh asthose based on support levels. Investment newslettersould be a useful soure of suh strategies.The AS model is an idealized one. We have ho-sen suh simpliity as a matter of researh methodol-ogy. It is relatively easy to design highly ompliatedmodels whih an generate very omplex market behav-ior. A more hallenging and interesting task is to de-sign the simplest possible model whih an generate thedesired market harateristis. For instane, a signif-iant researh diretion would be to �nd the simplestmodel in whih market predition is omputationallyhard. On the other hand, it would be of great interestto �nd the most general models in whih market predi-tion takes only polynomial time. For this goal, we anonsider injeting more realism into the model by intro-duing resoure-bounded learning (the generality of �is equivalent to unbounded learning), variable memorysize, transation osts, buying power, limit orders, shortsell, options, et.AknowledgmentsThis work originated with David Fisher's senior projetin 1999, advised by Ming-Yang Kao. David would liketo thank his father and role model, Professor MihaelFisher, for teahing, mentoring, and inspiring himthroughout ollege.Referenes[1℄ P. B. Andreassen and S. Krause, Judgementalextrapolation and the saliene of hange, Journal ofForeasting, 9 (1990), pp. 347{372.[2℄ P. Billingsley, Probability and Measure, John Wileyand Sons, seond ed., 1986.[3℄ F. Blak, Noise, Journal of Finane, 41 (1986),pp. 529{543.
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