
Relationships Between Broadcast and

Shared Memory in Reliable Anonymous

Distributed Systems

James Aspnes1, Faith Fich2, and Eric Ruppert3

1 Yale University
2 University of Toronto

3 York University

Abstract. We study the power of reliable anonymous distributed sys-
tems, where processes do not fail, do not have identifiers, and run iden-
tical programmes. We are interested specifically in the relative pow-
ers of systems with different communication mechanisms: anonymous
broadcast, read-write registers, or registers supplemented with additional
shared-memory objects. We show that a system with anonymous broad-
cast can simulate a system of shared-memory objects if and only if the
objects satisfy a property we call idemdicence; this result holds regardless
of whether either system is synchronous or asynchronous. Conversely, the
key to simulating anonymous broadcast in anonymous shared memory
is the ability to count: broadcast can be simulated by an asynchronous
shared-memory system that uses only counters, but registers by them-
selves are not enough. We further examine the relative power of different
types and sizes of bounded counters and conclude with a non-robustness
result.

1 Introduction

Consider a minimal reliable distributed system, perhaps a collection of particu-
larly cheap wireless sensor nodes. The processes execute the same code, because
it is too costly to program them individually. They lack identities, because iden-
tities require customization beyond the capabilities of mass production. And
they communicate only by broadcast, because broadcast presupposes no infras-
tructure. Where fancier systems provide specialized roles, randomization, point-
to-point routing, or sophisticated synchronization primitives, this system is just
a big bag of deterministic clones shouting at one another. The processes’ only
saving grace is that their uniformity makes them absolutely reliable—no mis-
placed sense of individuality will tempt any of them to Byzantine behaviour,
no obscure undebugged path through their common code will cause a crash,
and no glitch in their nonexistent network will lose any messages. The processes
may also have distinct inputs, which saves them from complete solipsism, even
though processes with the same input cannot tell themselves apart. What can
such a system do?



Although anonymous systems have been studied before (see Section 1.1),
much of the work has focused on systems where processes communicate with
one another by passing point-to-point messages or by accessing shared read-
write registers. In this paper, we start with simple broadcast systems, where
processes transmit messages to all of the processes (including themselves), which
are delivered serially but with no return addresses. We characterize the power
of such systems by showing what classes of shared-memory objects they can
simulate. In Section 3, we show that such a system can simulate a shared object
if and only if the object can always return the same response whenever it is
accessed twice in a row by identical operations, a property we call idemdicence;
examples of such idemdicent objects include read-write registers, counters (with
separate increment and read operations), and any object for which any operation
that modifies the state returns only ack.

This characterization does not depend on whether either the underlying
broadcast system or the simulated shared-memory system is synchronous or
asynchronous. The equivalence of synchrony and asynchrony is partially the re-
sult of the lack of failures, because in an asynchronous system we can just wait
until every process has taken a step before moving on to the next simulated syn-
chonous round, but it also depends on the model’s primitives providing enough
power that detecting this condition is possible.

Characterizing the power of broadcast systems in terms of what shared-
memory objects they can simulate leads us to consider the closely related ques-
tion of what power is provided by different kinds of shared-memory objects. We
show in Section 4 that counters of sufficient size relative to the number of pro-
cesses, n, are enough to simulate an anonymous broadcast model, even if no other
objects are available, which in turn means that they can simulate any reliable
anonymous shared-memory system with idemdicent objects. In contrast, read-
write registers by themselves cannot simulate broadcast, because they cannot
distinguish between different numbers of processes with the same input value,
while broadcasts can.

This leads us to consider further the relative power of different sizes of coun-
ters in an anonymous system. We show in Section 5 that mod-m counters are
inherently limited if the number of processes, n, exceeds m by more than two,
although they become more powerful when n = m + 1 if read-write registers are
also available. Although these results hint at a hierarchy of increasingly pow-
erful anonymous shared-memory objects, any such hierarchy is not robust [11,
12]; we show in Section 6 that mod-m counters with different values of m can
simulate more objects together than they can alone. Previous non-robustness
results typically use rather unusual object types, designed specifically for the
non-robustness proofs (see [8] for a survey). The result given here is the first to
use natural objects.

1.1 Related Work

Some early impossibility results in message-passing systems assumed that pro-
cesses were anonymous [1]. This assumption makes symmetry-based arguments



possible: all processes behave identically, so they cannot solve problems that re-
quire symmetry to be broken. A wide range of these results are surveyed in [8].
Typically, they assume that the underlying communication network is symmetric
(often a ring or regular graph); our broadcast model is a complete graph. Some
work has been done on characterizing the problems that are solvable in anony-
mous message-passing systems, depending on the initial knowledge of processes
(see, for example, [4, 5, 15]).

With randomization, processes can choose identities at random from a large
range, which solves the naming problem with high probability. Unfortunately,
Buhrman et al. [6] show that no protocol allows processes to detect whether they
have solved this problem in an asynchronous shared-memory model providing
only read-write registers. Surprisingly, they show that wait-free consensus can
nonetheless be solved in this model. The upper bound for consensus has since
been extended to an anonymous model with infinitely many processes by Aspnes,
Shah, and Shah [2].

Attiya, Gorbach and Moran [3] give a systematic study of the power of asyn-
chronous, failure-free anonymous shared-memory systems that are equipped with
read-write registers only. They characterize the agreement tasks that can be
solved in this model if the number of processes is unknown. Drulă has shown
the characterization is the same if the number of processes is known [7]. In par-
ticular, consensus is solvable, assuming the shared registers can be initialized.
If they cannot, consensus is unsolvable [13]. Attiya et al. also give complexity
lower bounds for solving consensus in their model.

The robustness question has been extensively studied in non-anonymous sys-
tems. It was first addressed by Jayanti [11, 12]. See [8] for a discussion of previous
work on robustness.

2 Models

We consider anonymous models of distributed systems, where each process exe-
cutes the same algorithm. Processes do not have identifiers, but they may begin
with input values (depending on the problem being solved). We assume algo-
rithms are deterministic and that systems are reliable (i.e. failures do not occur).
Let n ≥ 2 denote the number of processes in the system.

We assume throughout that the value of n is known to all processes. This
assumption can be relaxed in some models even if new processes can join the sys-
tem. In a shared-memory model with unbounded counters, it is easy to maintain
the number of processes by having a process increment a size counter when it first
joins the system. In a broadcast model, a new process can start by broadcast-
ing an arrival message. Processes keep track of the number of arrival messages
they have received and respond to each one by broadcasting this number. Pro-
cesses use the largest number they have received as their current value for size.
Algorithms will work correctly when started after this number has stabilized.

In the asynchronous broadcast model, each process may execute a
broadcast(msg) command at any time. This command sends a copy of the mes-
sage msg to each process in the system. The message is eventually delivered to



all processes (including the process that sent it), but the delivery time may be
different for different recipients and can be arbitrarily large. Thus, broadcasted
messages are not globally ordered: they may arrive in different orders at different
recipients.

A synchronous broadcast model is similar, but assumes that every process
broadcasts one message per round, and that this message is received by all
processes before the next round begins.

We also consider an anonymous shared-memory model, where processes can
communicate with one another by accessing shared data structures, called ob-
jects. A process may invoke an operation on an object, and at some later time
it will receive a response from the object. We assume that objects are lineariz-
able [10], so that each operation performed on an object appears to take place
instantaneously at some time between the operation’s invocation and response
(even though the object may in fact be accessed concurrently by several pro-
cesses). The type of an object specifies what operations may be performed on
it. Each object type has a set of possible states. We assume that a programmer
may initialize a shared object to any state. An operation may change the state
of the object and then return a result to the invoking process that may depend
on the old state of the object. A step of an execution specifies an operation, the
process that performs this operation, the object on which it is performed, and
the result returned by the operation.

A read-write register is an example of an object. It has a read operation that
returns the state of the object without changing the state. It also supports write
operations that return ack and set the state of the object to a specified value.

Another example of an object is an (unbounded) counter. It has state set
N and supports two operations: read, which returns the current state without
changing it, and increment, which adds 1 to the current state and returns ack.

There are many ways to define a bounded counter, i.e., one that uses a
bounded amount of space. For any positive integer m, a mod-m counter has
state set {0, 1, 2, . . . , m − 1} and an increment changes the state from x to
(x + 1) mod m. A threshold-m counter has state set {0, 1, 2, . . . , m}. An incre-
ment adds 1 to the current state provided it is less than m and otherwise leaves
it unchanged. A read of a mod-m or threshold-m counter returns the current
state without changing it. An m-valued counter also has state set {0, 1, 2, . . . , m}
and increment behaves the same as for a threshold-m counter. However, the be-
haviour of the read operation becomes unpredictable after m increments: in
state m, a read operation may nondeterministically return any of the values
0, 1, 2, . . . , m−1, or may even fail to terminate. Note that both mod-m counters
and threshold-(m−1) counters are implementations of m-valued counters. Also,
for m′ > m, an m′-valued counter is an implementation of an m-valued counter.

In an asynchronous shared-memory system, processes run at arbitrarily vary-
ing speeds, and each operation on an object is completed in a finite but un-
bounded time. The scheduler is required to be fair in that it allocates an oppor-
tunity for each process to take a step infinitely often. In a synchronous shared-
memory system, processes run at the same speed; the computation proceeds in
rounds. During each round, each process can perform one access to shared mem-



ory. Several processes may access the same object during a round, but the order
in which those accesses are linearized is determined by an adversarial scheduler.

An example of a synchronous shared-memory system is the anonymous AR-
BITRARY PRAM. This is a CRCW PRAM model where all processes run the
same code and the adversary chooses which of any set of simultaneous writes
succeeds. It is equivalent to a synchronous shared-memory model in which all
writes in a given round are linearized before all reads. PRAM models have been
studied extensively for non-anonymous systems (e.g. [14]).

3 When Broadcast Can Simulate Shared Memory

In this section, we characterize the types of shared-memory systems that can
be simulated by the broadcast model in the setting of failure-free, anonymous
systems. We also consider the functions that can be computed in this model.

Definition 1. An operation on a shared object is called idemdicent4 if, for every
starting state, two consecutive invocations of the operation on an object (with the
same arguments) can return identical answers to the processes that invoked the
operations.

It follows by induction that any number of repetitions of the same idemdicent
operation on an object can all return the same result. Idempotent operations are
idemdicent operations that leave the object in the same state whether they
are applied once or many times consecutively. Reads and writes are idempotent
operations. Increment operations for the various counters defined in Section 2 are
idemdicent, but are not idempotent. In fact, any operation that always returns
ack is idemdicent.

An object is called idemdicent if every operation that can be performed on the
object is idemdicent. Similarly, an object is called idempotent if every operation
that can be performed on the object is idempotent. Examples of idempotent
objects include registers, sticky bits, snapshots and resettable consensus objects.

Theorem 2. A n-process asynchronous broadcast system can simulate an n-
process synchronous shared-memory system that uses only idemdicent objects.

Proof. Each process simulates a different process and maintains a local copy of
the state of each simulated shared object. We now describe how a process P
simulates the execution of the rth round of the shared-memory computation.
Suppose P wants to perform an operation op on object X . It broadcasts the
message (r, X, op). (If a process does not wish to perform a shared-memory
operation during the round, it can broadcast the message (r, nil, nil) instead.)
Then, P waits until it has received n messages of the form (r, ∗, ∗), including the
message it broadcast.

Process P orders all of the messages in lexicographic order and uses this as
the order in which the round’s shared-memory operations are linearized. Process

4 From Latin idem same + dicens -entis present participle of dicere say, by analogy
with idempotent.



P simulates this sequence of operations on its local copies of the shared objects to
update the states of the objects and to determine the result of its own operation
during that round. All identical operations on an object are grouped together in
the lexicographic ordering, so they all return the same result, since the objects
are idemdicent. This is the property that allows P to determine the result of
its own operation if several processes perform the same operation during the
round. ⊓⊔

Since a synchronous execution is possible in an asynchronous system, an
asynchronous shared-memory system with only idemdicent objects can be sim-
ulated by a synchronous system with the same set of objects and, hence, by
the asynchronous broadcast model. However, even an asynchronous system with
one non-idemdicent object cannot be simulated by a synchronous broadcast sys-
tem nor, hence, by an asynchronous broadcast system. The difficulty is that a
non-idemdicent object can be used to break symmetry.

Theorem 3. A synchronous broadcast system cannot simulate an asynchronous
shared-memory system if any of the shared objects are non-idemdicent.

Proof. Let X be an object that is not idemdicent. Consider the k-election prob-
lem, where processes receive no input, and exactly k processes must output 1
while the remaining processes output 0. We shall show that it is possible to
solve k-election for some k, where 0 < k < n, using X , but that there is no such
election algorithm using broadcasts. The claim follows from these two facts.

Initialize object X to a state q where the next two invocations of some opera-
tion op will return different results r and r′. The election algorithm requires each
process to perform op on X . Those processes that receive the result r output 1,
and all others output 0. Let k be the number of operations that return r if op
is performed n times on X , starting from state q. Clearly, this algorithm solves
k-election. Furthermore, k > 0 since the first operation will return r, and k < n
since the second operation will return r′ 6= r.

In a synchronous broadcast system, where processes receive no input, all
processes will execute the same sequence of steps and be in identical states
at the end of each round. Thus, k-election is impossible in such a system if
0 < k < n. ⊓⊔

A function of n inputs is called symmetric if the function value does not
change when the n inputs are permuted. We say an anonymous system com-
putes a symmetric function of n inputs if each process begins with one input
and eventually outputs the value of the function evaluated at those inputs. (It
does not make sense to talk about computing non-symmetric functions in an
anonymous system, since there is no ordering of the processes.)

Proposition 4. Every symmetric function can be computed in the asynchronous
broadcast model.

Proof. Any symmetric function can be computed as follows. Each process broad-
casts its input value. When a process has received n messages, it orders the n
input values arbitrarily and computes the function at those values. ⊓⊔



4 When Counters Can Simulate Broadcast

In this section, we consider conditions under which unbounded and various types
of bounded counters can be used to simulate broadcast. In the following section,
we consider when different types of bounded counters can be used to simulate
one another, which will show that some cannot be used to simulate broadcast.

We begin by proving that an asynchronous shared-memory system with mod-
n counters can be used to simulate a synchronous broadcast system. Unbounded
counters can simulate mod-n counters (and hence synchronous broadcast). More-
over, since counters are idemdicent, an asynchronous shared-memory system
with counters can be simulated by an asynchronous broadcast system. Hence,
shared-memory systems with mod-n counters, shared-memory systems with un-
bounded counters, and atomic broadcast systems are equivalent in power.

Theorem 5. An n-process asynchronous shared-memory system with mod-n
counters or unbounded counters can simulate the n-process synchronous broad-
cast system.

Proof. The idea is to have each of the n asynchronous processes simulate a dif-
ferent synchronous process and have a mod-n counter for each possible message
that can be sent in a given round. Each process that wants to send a mes-
sage that round increments the corresponding counter. Another mod-n counter,
WriteCounter, is used to keep track of how many processes have finished this
first phase. After all processes have finished the first phase, they all read the
message counters to find out which messages were sent that round. One addi-
tional mod-n counter, ReadCounter, is used to keep track of how many processes
have finished the second phase. Simulation of the next round can begin when all
processes have finished the second phase.

Let d denote the number of different possible messages that can be sent. The
shared counter M [i] corresponds to the i-th possible message (say, in lexico-
graphic order) that can be sent in the current round. For i = 1, . . . , d, the local
variables x0,i and x1,i, are used by a process to store the value of M [i] in the most
recent even- and odd-numbered round, respectively. The variables x0,1, . . . , x0,d

are initialized to 0 at the beginning of the simulation. WriteCounter and
ReadCounter are also initialized to 0.

The simulation of each round is carried out in two phases. In phase 1, a
process that wants to broadcast the i-th possible message increments M [i] and
then increments WriteCounter. A process that does not want to broadcast in
this round just increments WriteCounter. In either case, each process repeatedly
reads WriteCounter until it has value 0, at which point it begins phase 2. Note
that WriteCounter will have value 0 whenever a new round begins, because
each of the n processes will increment it exactly once each round.

In phase 2, each process reads the values from M [1], . . . , M [d] and stores them
in its local variables xr,1, . . . , xr,d, where r is the parity of the current round.
From these values and the values of x1−r,1, . . . , x1−r,d, the process can determine
the number of occurrences of each possible message that were supposed to be sent
during that round. Specifically, the number of occurrences of the i-th possible



message is xr,i− x1−r,i mod n, except when this is the message that the process
sent and xr,i = x1−r,i. In this one exceptional case, the number of occurrences of
the i-th possible message is n rather than 0. Once the process knows the set of
messages that were sent that round, it can simulate the rest of the round by doing
any necessary local computation. Finally, the process increments ReadCounter
and then repeatedly reads it until it has value 0. At this point, the process can
begin simulation of the next phase.

Since an unbounded counter can be used to directly simulate a mod-n counter
by taking the result of every read modulo n, the simulation will also work for
unbounded counters. However, the values in the counters can get increasing large
as the simulation of the execution proceeds.

The number of counters used by this algorithm is Θ(d). If d is very large
(or unbounded), the space complexity of this algorithm is poor. The number of
counters can be improved to Θ(n) by simulating the construction of a trie data
structure [9] over the messages transmitted by the processes; up to 4n counters
are used to transmit the trie level by level, with each group of 4 used to count
the number of 0 children and 1 children of each node constructed so far.

In terms of messages, processes broadcast their messages one bit per round
and wait until all other messages are finished before proceeding to their next
message. However, it does not suffice to count the number of 0’s and 1’s sent
during each of the rounds. For example, it is necessary to distinguish between
when messages 00 and 11 are sent and when messages 01 and 10 are sent.

Each process uses the basic algorithm described above to broadcast the first
bit of its message. Once processes know the first k bits of all messages that are k
or more bits in length, they determine the next bit of each message or whether
the message is complete. Four counters (M [0], M [1], WriteCounter, and Read-
Counter) are allocated for each distinct k-bit prefix that has been seen. Since
all processes have seen the same k-bit prefixes, they can agree on this alloca-
tion without any communication with one another. If a process has a message
s1s2 . . . sℓ, where ℓ > k, it participates in an execution of the basic algorithm
described above to broadcast sk+1, using the four counters assigned to the prefix
s1s2 . . . sk. Each process also participates in executions of the basic algorithms
for the other k-bit prefixes that have been seen, but does not send messages in
them. This procedure to broadcast one more bit of the input of a message is
continued until no process has these k bits as a proper prefix of its message.
Because counters are reused for different bits of the messages, the number of
counters needed is at most 4n. ⊓⊔

A similar algorithm can be used to simulate the n-process synchronous broad-
cast system using threshold-n or (n + 1)-valued counters, provided the counters
support a decrement operation or a reset operation. Decrement changes the state
of such a counter from x ∈ {1, . . . , n} to x − 1. Decrement leaves a threshold-n
counter in state 0 unchanged. In an (n + 1)-valued counter, when decrement is
performed in state 0 or n + 1, the new state is n + 1. Reset changes the state
of a counter to 0. The only exception is that an (n + 1)-valued counter in state
n + 1 does not change state. Both decrement and reset always return ack.



Theorem 6. An n-process asynchronous shared-memory system with threshold-
n or (n+1)-valued counters that also support a decrement or reset operation can
simulate the n-process synchronous broadcast system.

Proof. In this simulation, there is an additional counter, ResetCounter, and
each round has a third phase. ReadCounter and ResetCounter are initialized to
n. All other counters are initialized to 0.

In phase 1 of a round, a process that wants to broadcast the i-th possible
message increments M [i], then decrements or resets ReadCounter, and, finally
increments WriteCounter. A process that does not want to broadcast in this
round does not increment M [i] for any i. In either case, each process then repeat-
edly reads WriteCounter until it has value n. Note that when WriteCounter
first has value n, ReadCounter will have value 0.

In phase 2, each process first decrements or resets ResetCounter. Next, it
reads the values from M [1], . . . , M [d] to obtain the number of occurrences of
each possible message that were supposed to be sent during that round. Then
it can simulate any necessary local computation. Finally, the process incre-
ments ReadCounter and then repeatedly reads it until it has value n. When
ReadCounter first has value n, ResetCounter has value 0.

In phase 3, each process first decrements or resets WriteCounter. If it in-
cremented M [i] during phase 1, then it now decrements or resets it. Finally, the
process increments ResetCounter and then repeatedly reads it until it has value
n. When ResetCounter first has value n, WriteCounter has value 0.

The space complexity of this algorithm can be changed from Θ(d) to Θ(n)
as described in the proof of Theorem 5. ⊓⊔

5 When Counters Can Simulate Other Counters

We now consider the relationship between different types of bounded counters. A
consequence of these results is that the asynchronous broadcast model is strictly
stronger than some shared-memory models.

Definition 7. Let m be a positive integer. An object is called m-idempotent if it
is idemdicent and, for any initial state and for any operation op, the object state
that results from applying op m + 1 times is identical to the state that results
from applying op once.

If an object is m-idempotent, then, by induction, it is km-idempotent for
any positive integer k. Any idempotent object (e.g. a read-write register) is 1-
idempotent. A mod-m counter is m-idempotent. An m-idempotent object has
the property that the actions of m+1 clones (i.e. processes behaving identically)
are indistinguishable from the actions of one process.

Lemma 8 (Cloning Lemma). Consider an algorithm for n > m processes
that uses only m-idempotent objects. Let γ be an execution of the algorithm in
which processes P1, . . . , Pm take no steps. Let P /∈ {P1, . . . , Pm}. Let γ′ be the
execution that is constructed from γ by inserting, after each step by P , a sequence



of steps in which each of processes P1, . . . , Pm applies the same operation as P to
the same object and gets the same result. If processes P1, . . . , Pm have the same
input as P , then γ′ is a legal execution and no process outside {P1, . . . , Pm} can
distinguish γ from γ′.

Proof. (Sketch) The state of the object that results from performing one oper-
ation is the same as the one that results from performing that operation m + 1
times. Also, the response to each of those m+1 repetitions of the operation will
be the same, since the object is idemdicent. Notice that Pi has the same input
as P , and Pi is performing the same sequence of steps in γ′ as P and receiving
the same sequence of responses. Since the system is anonymous, this is a correct
execution of Pi’s code. ⊓⊔

The n-ary threshold-2 function is a binary function of n inputs whose value
is 1 if and only if at least two of its inputs are 1.

Proposition 9. Let m be a positive integer and let m ≤ n − 2. The n-ary
threshold-2 function cannot be computed in an n-process synchronous shared-
memory system if all shared objects are m-idempotent.

Proof. Suppose there is an algorithm that computes the n-ary threshold-2 func-
tion in the shared-memory system. Let P1, . . . , Pn be the processes of the system.
Suppose the input to process Pn is 1, and the inputs to all other processes are
0. Let γ be an execution of the algorithm where processes P1, . . . , Pm take no
steps and all other processes run normally. (This is not a legal execution in a
failure-free synchronous model, but we can still imagine running the algorithm
in this way.)

Consider the execution α obtained by inserting into γ steps of P1, . . . , Pm

right after each step of Pm+1, as described in Lemma 8. This results in a legal
execution of the algorithm where all processes must output 0.

Consider another execution, β, where the inputs of P1, . . . , Pm are 1 instead,
obtained from γ by inserting steps by processes P1, . . . , Pm after each step of
Pn, as described in Lemma 8. This results in a legal execution as well, but all
processes must output 1.

Processes outside the set {P1, . . . , Pm} cannot distinguish between α and γ,
or between β and γ, so those processes must output the same result in both α
and β, a contradiction. ⊓⊔

Since the n-ary threshold-2 function is symmetric, it is computable in the
asynchronous broadcast model, by Proposition 4. However, by Proposition 9,
for n − 2 ≥ m ≥ 1, it cannot be computed in a synchronous (or asynchronous)
shared-memory system, all of whose shared objects are m-idempotent. This im-
plies that the n-process asynchronous broadcast model is strictly stronger than
these shared-memory systems. In particular, it is stronger than the anonymous
ARBITRARY PRAM and shared-memory systems with only read-write registers
and mod-m counters for m ≤ n− 2.

Corollary 10. For 1 ≤ m ≤ n − 2 and t ≥ 2, a threshold-t counter cannot
be simulated using registers and mod-m counters in an n-process synchronous
shared-memory system.



Proof. The n-ary threshold-2 function can be computed using a threshold-t ob-
ject in an n-process synchronous system. The threshold-t object is initialized to
0. In the first round, each process with input 1 increments the threshold-t object.
In the second round, all processes read the threshold-t object. They output 0 if
their result is 0 or 1 and output 1 otherwise.

Since registers and mod-m counters are m-idempotent, it follows from Propo-
sition 9 that the n-ary threshold-2 function cannot be computed in an n-process
shared-memory system. ⊓⊔

A similar result is true for simulating m-valued counters.

Proposition 11. If 1 ≤ n ≤ m− 1, than an m-valued counter cannot be simu-
lated in an shared-memory system of n or more processes using only mod-(n−1)
counters and read-write registers.

Proof. Suppose there was such a simulation. Let E be an execution of this sim-
ulation where the m′-valued counter is initialized to the value 0, and process
P performs an increment on the m-valued counter and then performs a read
operation. The simulated read operation must return the value 1.

Since (n−1)-counters and read-write registers are (n−1)-idempotent, Lemma
8, the Cloning Lemma, implies that there is a legal execution E′ using n-processes
which cannot be distinguished from E by P . Thus, P ’s read must return the
value 1 in E′. However, there are n increments that have completed before P ’s
read begins, so P ’s read should output n in E′. Notice that no non-deterministic
behaviour can occur in the m-valued counter since n ≤ m− 1. ⊓⊔

Since an n-process broadcast system can simulate an m-valued counter, for
any m, it follows that an n-process shared-memory system with mod-(n − 1)
counters and read-write registers cannot simulate an n-process broadcast system.

The requirement in Proposition 11 that n ≤ m − 1 is necessary: In an n-
process shared-memory system, it is possible to simulate an n-valued counter
using only mod-(n− 1) counters and read-write registers.

Proposition 12. It is possible to simulate an (m + 1)-valued counter in an
n-process shared-memory system with one mod-m counter and one read-write
register.

Proof. Consider the following implementation of an (m+1)-valued counter from
a mod-m counter C and a register R. Assume C and R are both initialized to
0. The variables x and y are local variables.

Increment

increment C
write 1 to R

end Increment

Read

y ← R
x← C
if y = 0 then return 0
elsif x = 0 then return m
else return x

end Read



Linearize all Increment operations whose accesses to C occur before the
first write to R in the execution at the first write to R (in an arbitrary order).
Linearize all remaining Increment operations when they access C.

Linearize any Read that reads 0 in R at the moment it reads R. Since
no Increments are linearized before this, the Read is correct to return 0.
Linearize each other Read when it reads counter C. If at most m Increments

are linearized before the Read, the result returned is clearly correct. If more
than m Increments are linearized before the Read, the Read is allowed to
return any result whatsoever. ⊓⊔

The following result shows that the read-write register is essential for the
simulation in Proposition 12.

Proposition 13. It is impossible to simulate an n-valued counter in an n-
process shared-memory system using only mod-(n− 1) counters.

Proof. Suppose there was such a simulation. Consider an execution where n− 1
clones each perform an Increment operation, using a round-robin schedule.
After each complete round of n − 1 steps, all shared mod-(n − 1) counters will
be in the same state as they were initially. So if the one remaining process P
performs a Read after all the Increments are complete, it will not be able to
distinguish this execution from the one where P runs by itself from the initial
state. In the constructed execution, P must return n−1, but in the solo execution,
it must return 0. This is a contradiction. ⊓⊔

6 Counter Examples Demonstrating Non-robustness

This section proves that the reliable anonymous shared-memory model is not
robust. Specifically, we show how to implement a 6-valued counter from mod-2
counters and mod-3 counters. Then we apply Proposition 11, which says that a
6-valued counter cannot be implemented from either only mod-2 counters and
read-write registers or only mod-3 counters and read-write registers.

Let m = lcm(m1, . . . , mr). We give a construction of an m-valued counter
from the set of object types {mod-m1 counter, . . . , mod-mr counter}. We shall
make use of the following theorem, which is proved in introductory number
theory textbooks (see, for example, Theorem 5.4.2 in [16]).

Theorem 14 (Generalized Chinese Remainder Theorem). The system
of equations x ≡ bj (mod mj) for 1 ≤ j ≤ r has a solution for x if and only if
bj ≡ bk (mod gcd(mj , mk)) for all j 6= k. If a solution exists, it is unique modulo
lcm(m1, m2, . . . , mr).

Proposition 15. Let m1, . . . , mr be positive integers. Let m = lcm(m1, . . . , mr).
For any number of processes, there is an implementation of an m-valued counter
from {mod-m1 counter, . . . ,mod-mr counter}.



Proof. Let q = 2m/m1 + 1. The implementation uses a shared array A[1..q, 1..r]
of base objects. The base object A[i, j] is a mod-mj counter, initialized to 0.
The array B[1..q, 1..r] is a private variable used to store the results of reading
A. (We assume the m-valued counter is initialized to 0. To implement a counter
initialized to the value v, one could simply initialize A[i, j] to v mod mj , and
the proof of correctness would be identical.)

The implementation is given in pseudocode below. A process Increments

the m-valued counter by incrementing each counter in A. A process Reads

the m-valued counter by repeatedly reading the entire array A (in the opposite
order) until the array appears consistent (i.e. the array looks as it would if
no Increments were in progress). We shall linearize each operation when it
accesses an element in the middle row of A, and show that each Read operation
reliably computes (and outputs) the number of times that element has been
incremented. Note that the second part of the loop’s exit condition guarantees
that the result to be returned by the last line of the Read operation exists and
is unique, by Theorem 14.

Increment

for i← q downto 1
for j ← r downto 1

increment A[i, j]
end for

end for
end Increment

Read

loop
for i← 1..q

for j ← 1..r
B[i, j]← A[i, j]

end for
end for
exit when B[i, j] ≡ B[1, j] (mod mj) ∀i, j and

B[1, j] ≡ B[1, k] (mod gcd(mj , mk)) ∀j 6= k
end loop
return the value x ∈ {0, . . . , m− 1} that satisfies

x ≡ B[1, j] (mod mj) for all j
end Read

Consider any execution of this implementation where there are at most m−1
Increments. After sufficiently many steps, all Increments on the m-valued
counter will be complete (due to the fairness of the scheduler). Let vfinal be the
number of increment operations on the m-valued counter that have occurred at
that time. The collection of reads performed by any iteration of the main loop of
the Read algorithm that begins afterwards will get the response vfinal mod mj

from each mod-mj counter, and this will be a consistent collection of reads. Thus,
every operation must eventually terminate. If more than m − 1 Increments

occur in the execution, Reads need not terminate.
Let s = m/m1 + 1. Ordinarily, we linearize each operation when it last

accesses A[s, 1]. However, if there is a time T when A[q, r] is incremented for the
mth time, then all Increments in progress at T that have not been linearized
before T are linearized at T (with the Increments preceding the Reads).
Each operation that starts after T can be linearized at any moment during its
execution. Note that m Increments are linearized at or before T , so any Read

that is linearized at or after T is allowed to return an arbitrary response.



Consider any Read operation R that is linearized before T . Let x be the
value R returns. We shall show that this return value is consistent with the
linearization. Let ai,j ∈ {0, . . . , m− 1} be the number of times A[i, j] was incre-
mented before R read it for the last time. Then ai,j ≡ x(modmj) for all i and j.
Because Increments and Reads access the base objects in the opposite order,
ai,j ≤ ai,j+1 and ai,r ≤ ai+1,1. From the exit condition of the main loop in the
Read algorithm, we also know that ai,j ≡ a1,j (mod mj). We shall show that
x = as,1, thereby proving that the result of R is consistent with the linearization.

We first prove by cases that, for i ≥ 1, ai+1,1 ≥ min(x, ai,1 + m1).
Case I (ai+1,1 = ai,1): Since ai,1 ≤ ai,2 ≤ · · · ≤ ai,r ≤ ai+1,1 = ai,1, we have

ai,1 = ai,2 = · · · = ai,r = ai+1,1. Thus, for all j, ai+1,1 = ai,j ≡ a1,j (mod mj).
By the uniqueness claim of Theorem 14, ai+1,1 = x ≥ min(x, ai,1 + m1).

Case II (ai+1,1 > ai,1): Since ai+1,1 ≡ ai,1 (mod m1), it must be the case
that ai+1,1 ≥ ai,1 + m1 ≥ min(x, ai,1 + m1).

It follows by induction that ai,1 ≥ min(x, a1,1 + (i− 1)m1). Thus, as,1 ≥ x,
since s was chosen so that (s− 1)m1 = m > x.

We now give a symmetric proof to establish that as,1 ≤ x. We can prove by
cases that, for i < q, ai,1 ≤ max(x, ai+1,1 −m1).

Case I (ai,1 = ai+1,1): Since ai,1 ≤ ai,2 ≤ · · · ≤ ai,r ≤ ai+1,1 = ai,1, we have
ai,1 = ai,2 = · · · = ai,r. Thus, for all j, ai,1 = ai,j ≡ a1,j (mod mj). By the
uniqueness claim of Theorem 14, ai,1 = x ≤ max(x, ai+1,1 −m1).

Case II (ai,1 < ai+1,1): Since ai,1 ≡ ai+1,1 (mod m1), it must be the case
that ai,1 ≤ ai+1,1 −m1 ≤ max(x, ai+1,1 −m1).

It follows by induction that ai,1 ≤ max(x, aq,1 − (q − i)m1). Thus we have
as,1 ≤ x, since s was chosen so that (q − s)m1 = m and aq,1 − (q − s)m1 =
aq,1−m < 0 ≤ x. So we have shown that x = as,1, and this completes the proof
of correctness for the implementation of the m-valued counter. ⊓⊔

Theorem 16. The reliable, anonymous model of shared memory is non-robust.
That is, there exist three object types A, B, and C such that an object of type A
cannot be implemented from only read-write registers and objects of type B and
an object of type A cannot be implemented from only read-write registers and
objects of type C, but an object of type A can be implemented from objects of
types B and C.

Proof. Let A be a 6-valued counter, B be a mod-3 counter and C be a mod-2
counter. In a 4-process shared-memory system, an object of type A cannot be
implemented from read-write registers and objects of type B, by Proposition 11.
Similarly an object of type A cannot be implemented from read-write registers
and objects of type C. However, by Proposition 15, an object of type A can be
implemented using objects of type B and C. ⊓⊔

Acknowledgements

James Aspnes was supported in part by NSF grants CCR-0098078 and CNS-
0305258. Faith Fich was supported by Sun Microsystems. Faith Fich and Eric
Ruppert were supported by the Natural Sciences and Engineering Research
Council of Canada.



References

1. Dana Angluin. Local and global properties in networks of processors. In Pro-

ceedings of the 12th ACM Symposium on Theory of Computing, pages 82–93, 1980.
2. James Aspnes, Gauri Shah, and Jatin Shah. Wait-free consensus with infinite

arrivals. In Proceedings of the 34th ACM Symposium on Theory of Computing,
pages 524–533, 2002.

3. Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally
anonymous asynchronous shared memory systems. Information and Computation,
173(2), pages 162–183, March 2002.

4. Paolo Boldi and Sebastiano Vigna. Computing anonymously with arbitrary
knowledge. In Proceedings of the 18th ACM Symposium on Principles of Distributed

Computing, pages 173–179, 1999.
5. Paolo Boldi and Sebastiano Vigna. An effective characterization of com-

putability in anonymous networks. In Distributed Computing, 15th International

Conference, volume 2180 of LNCS, pages 33–47, 2001.
6. Harry Buhrman, Alessandro Panconesi, Riccardo Silvestri, and Paul

Vitanyi. On the importance of having an identity or, is consensus really universal?
In Distributed Computing, 14th International Conference, volume 1914 of LNCS,
pages 134–148, 2000.

7. Catalin Drulă. The totally anonymous shared memory model in which the
number of processes is known. Personal communication.

8. Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed
computing. Distributed Computing, 16(2-3), pages 121–163, September 2003.

9. Edward Fredkin. Trie memory. Communications of the ACM, 3(9), August
1960.

10. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Languages

and Systems, 12(3), pages 463–492, July 1990.
11. Prasad Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4), pages

592–614, July 1997.
12. Prasad Jayanti. Solvability of consensus: Composition breaks down for nonde-

terministic types. SIAM Journal on Computing, 28(3), pages 782–797, September
1998.

13. Prasad Jayanti and Sam Toueg. Wakeup under read/write atomicity. In
Distributed Algorithms, 4th International Workshop, volume 486 of LNCS, pages
277–288, 1990.

14. John H. Reif, ed. Synthesis of Parallel Algorithms. Morgan Kaufmann, 1993.
15. Naoshi Sakamoto. Comparison of initial conditions for distributed algorithms on

anonymous networks. In Proceedings of the 18th ACM Symposium on Principles

of Distributed Computing, pages 173–179, 1999.
16. Harold N. Shapiro. Introduction to the Theory of Numbers. John Wiley and

Sons, 1983.


