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Abstract

In the collect problem [32], n processors in a shared-memory sys-
tem must each learn the values of n registers. We give a randomized
algorithm that solves the collect problem in O(n log® n) total read and
write operations with high probability, even if timing is under the con-
trol of a content-oblivious adversary (a slight weakening of the usual
adaptive adversary). This improves on both the trivial upper bound
of O(n?) steps and the best previously known bound of O(n®/? logn)
steps, and is close to the lower bound of Q(nlogn) steps. Furthermore,
we show how this algorithm can be used to obtain a multi-use coopera-
tive collect protocol that is O(log3 n)-competitive in the latency model
of Ajtai et al.[3] and 0(711/210g3/2 n)-competitive in the throughput
model of Aspnes and Waarts [10]; in both cases the competitive ratios
are within a polylogarithmic factor of optimal.

1 Introduction

Rumor spreading. The simplest problem we will consider is the follow-
ing: each of n people knows a rumor. At each point in time, an adversary
chooses one of the n people and hands him or her a telephone. The only
restriction on the adversary’s choice is that he cannot choose a person who
already knows all n rumors (intuitively, we assume that such a person goes
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off to do something else). The person chosen by the adversary may call up
any one other person (possibly choosing the other person using randomiza-
tion) and will learn all the rumors that the other person currently knows.
The process continues until all participants know all of the rumors. Our goal
is to minimize the total number of steps (i.e., the total number of telephone
calls).

One can think of this problem as an asynchronous version of the well-
known gossip problem [24]. In the gossip problem, n persons wish to dis-
tribute n rumors among themselves; however, which persons communicate
at each time is fixed in advance by the designer of the algorithm. By con-
trast, in our problem, the choice of who receives information at each time is
under the control of an adversary. Furthermore, the algorithm used by each
process to choose where it will look for more information can only make that
choice based on the information obtained so far.

The collect problem. The rumor-spreading problem above is closely re-
lated to the collect problem [32]. In the collect problem, each of n processes
in a shared-memory system possesses some piece of information, which it
stores in one of a set of single-writer multi-reader atomic registers. We
would like each of the processes to learn the values of all of the others while
performing as few total read and write operations as possible. Again, we
assume that timing is under the control of an adversary scheduler, which has
near-total knowledge of all events in the system, and which may start and
stop processes at will. The essential difference between the rumor-spreading
problem above and the collect problem is that in the collect problem the op-
erations of choosing someone to read, reading his or her values, and adding
them to one’s own register do not take place as a single atomic action.
The description above is of the simplest version of the collect problem, in
which all values are present at the start and each process gathers the values
only once. For this version of the problem, the naive solution is to have each
of the n processors read each of the n registers directly, for a total cost of
n? operations. However, the naive solution is not the best possible, as pro-
cessors can learn values indirectly from other processors, thus sharing the
work of reading the registers. Indeed, Saks, Shavit, and Woll [32] describe
a collect algorithm that finishes quickly when most processors are running
concurrently, and Ajtai et al. [3] observed that the Certified Write-All al-
gorithm of Anderson and Woll [5] could be modified in a straightforward
way to solve the collect problem in O(n?’/2 log n) total operations. This is



a substantial improvement on an upper bound of n?, but still far from the
best known lower bound of Q(nlogn) [3].

Repeated collects. The collect problem is motivated by its frequent ap-
pearance in other algorithms. Many algorithms in the wait-free shared-
memory model [1,2,4,6,7,8,9,12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 27, 25,
26, 28, 29, 30, 34] have an underlying structure in which processes repeat-
edly collect values using the cooperative collect primitive. In the cooperative
collect primitive, first abstracted by Saks, Shavit, and Woll [32], processes
perform the collect operation — an operation in which each process learns
the values of a set of n registers, with the guarantee that each value learned
is fresh: it was present in the register at some point during the collect. In
a sense the cooperative collect primitive is a multi-use version of the simple
collect problem, with the added difficulty of guaranteeing freshness.

Interestingly, most of these algorithms (which include nearly all algo-
rithms in the wait-free shared-memory literature for consensus, snapshots,
coin flipping, bounded round numbers, timestamps, and multi-writer regis-
ters) use the naive algorithm for performing collects in which each processor
reads every register directly, at a cost of n reads per collect.! One reason
(beyond the simplicity of the naive algorithm) may be that if one consid-
ers the performance of collect algorithms in traditional worst-case terms,
the naive algorithm appears to be optimal: since the adversary can always
choose to halt all but one of the processors, that lone processor running in
isolation cannot carry out a collect without reading all the other processor’s
registers.

Competitive collect algorithms The apparent optimality of the naive
algorithm for repeated collects is surprising given the superior performance
of other algorithms for the one-time collect problem. Indeed, one would
expect that an algorithm that solved the one-time problem quickly could
be extended to an algorithm that would give better performances in many
circumstances. Ajtai et al. [3] provided a tool, known as latency compet-
itiveness, that can be used to show the superiority of more sophisticated
algorithms. In their model the performance of a distributed algorithm is

1132, 31] present collect algorithms that do not follow the pattern of the naive algorithm.
Both works, however, consider models that involve considerably stronger assumptions that
either the standard wait-free shared memory model or the slightly weaker model considered
here.



not measured in absolute terms against the worst possible schedule, but in-
stead is measured on each schedule relative to the performance of another
distributed algorithm chosen to be optimal for that schedule. In order to
have good latency competitiveness, an algorithm must not only perform ac-
ceptably in hard situations (for collect, this is generally when there is little
or no concurrency) but must also perform well in easy situations. More de-
tails of the latency competitiveness measure, and of the related throughput
competitiveness measure [10], can be found in Sections 4.1 and 4.2.

1.1 Our results

We describe (Section 2) an algorithm for the rumor-spreading game which
requires only O(nlog2 n) steps with high probability, slightly more than the
lower bound of Q(nlogn). Based on this algorithm, we construct (Sec-
tion 3) a randomized algorithm for the collect problem that requires only
O(nlog® n) steps with high probability; the extra O(logn) factor comes
from the technique we use to simulate an atomic transfer of information
from one processor’s register to another’s. This is the first solution to the
problem that comes within a polylogarithmic factor of the lower bound
of Q(nlogn). Furthermore, we show (Section 4) that our algorithm can
be extended in a natural way to yield an implementation of the coopera-
tive collect primitive that is O(log3 n)-competitive in the latency model and
O(y/nlog®/? n)-competitive in the throughput model. Both of these ratios
are also within a polylogarithmic factor of the best known lower bounds, and
substantially improve on the best previously known ratios of O(y/nlogn) [3]
and O(n®/*logn) [10].

1.2 The model

All of our results are carried out in a model where the algorithm is allowed
to generate a random value and write it out as a single atomic operation.
This assumption appears frequently in early work on consensus; it is the
“weak model” of Abrahamson [1] and was used in the consensus paper of
Chor, Israeli, and Li [19]. In general, the weak model in its various incar-
nations permits much better algorithms (e.g., [11, 18]) for such problems as
consensus than the best known algorithms in the more traditional “strong
model”. The assumption that the adversary cannot see coin-flips before they
are written is justified by an assumption that in a real system failures, page
faults, and similar disastrous forms of asynchrony are likely to be affected



by where each processor is reading and writing values but not by what values
are being read or written.

It is not clear whether this assumption can be removed while still per-
mitting an O(nlog®n) solution to the collect problem.

2 Spreading rumors

Recall from the introduction that in the rumor-spreading problem a pro-
cessor may choose what processor it will read, read that processor’s state,
and add the information thus obtained to its own visible state as a single
atomic operation. The algorithm we analyze in this case is deceptively sim-
ple: when a processor a is chosen to move by the adversary, it reads from a
processor b chosen uniformly at random from the set of all n processors. (It
is possible that b = a.) We will refer to one of these atomic operations as a
move.

Intuitively it seems unlikely that this is the best algorithm. For example,
if @ has obtained the information from n» — 1 processors, it is clear that
a should examine the sole processor whose information @ does not already
possess. Also if b = a then no information can possibly be gained. But this
algorithm has the great advantage that it is impossible for the adversary to
bias a’s selection of b. This makes it much easier to analyze the performance
of this algorithm than it otherwise might be.

Some notation: in the following, we will use K for the set of rumors
possessed by processor P at time {. We will say that a processor P knows a
set of rumors S at time ¢t when S C K. The effect of P reading @ at time
t is to set Kﬁ_l to KI'U KtQ.

Let us look at some set of rumors 5 and consider how they spread through
the processors. For each .5, we will divide moves into two classes:

¢ Moves by processors that already know 5. We will call these moves
unproductive (with respect to 5).

¢ Moves by processors that do not already know 5. We will call these
moves productive (again, with respect to .5).

Where it will not cause confusion we will omit a specific reference to 5.
Note however that a move might be unproductive with respect to some 5
but productive with respect to a different 5.



The following lemma shows that, with high probability, the information
known by any single processor spreads to all of the processors after only
O(nlogn) productive moves:

Lemma 1 Fiz a starting time s and let S = K. Let T be the number
of productive moves after s before every processor knows S and let k be a
positive constant. Then

1

Pr[T > knlnn] < 3

Proof: If r processors know .5 prior to a productive call, then the probabil-
ity that r 4+ 1 processors know S after the call is 7/n. Thus the total waiting
time 7T is given by the sum of a set of independent, geometrically distributed

random variables T1,75,...,T,_1 with expectations n,n/2,...,n/(n — 1).
This gives a total expected time of n Z?:_ll % which is approximately n In n.

However, we wish to establish a stronger claim, by bounding the tail of this
sum’s distribution. We do this by using moment generating functions. Let
t > 2n — 2 and define d and ¢ by

n t—n+1

d= .
n—1 t—n+2

and ¢=1Ind.

The lower bound on ¢ ensures that d > 1 and so ¢ > 0. Because ¢ > 0 we
have by Markov’s inequality that

T
Pr[T > 1] = Pr[e? > €] < E[et |
ec
Since the T; are independent
n—1 n—1
E[eCT] = E[H eCT"] = H E[eCT"].

We can evaluate E[eT?] directly. Let p = i/n and ¢ = 1 — i/n. Because
qe® = qd < 1 we get,

Ty — - 7—1_cj — c - c\Jj — pec — pd
Ele] pZ:q e = pe Z(qe e e P
71=1 7=0



Thus
1 )
PrlT >t < — -
=< ==
dtizlid—l—n—dn
(n—1)!7”i:[1 1
dt—ntl b id+n—dn’

Because 1 < d < n/(n —1) we have that when 1 < i < n,

1 < n—1 < 1
id+n—dn in+n(n—1)—n? -1

Hence
(n—1)! 1 1
Pr[T >t < . .
Tz s di=ntl d+n—dn (n—2)!
B n—1
At (d 4 —dn)
let s=t—n+ 1. Then
PI’[TZt]S%
n—dn-1)

Let A =s/(nlnn). Then

-1 -1 Anlnn 1\ %
PT >4 < " (" ) (” ) (s+1)
n n 5
< ne(Anlnn 4+ 1).

Now let t = knlnn for k some positive constant. Then & > A > k — 1.
Assuming that n is large enough that n? > e(knlnn + 1) we conclude

Pr[T > knlnn] < py— (1)



What Lemma 1 tells us is that with high probability, after knlnn pro-
ductive moves K will spread to all of the processors. Thereafter any further
moves must be unproductive moves. So if 3knInn moves are performed, at
least % of them are unproductive — in other words, most of these 3knlnn
moves are made by processors that know K. That this intuition is true
simultaneously for all P with high probability is captured in the following
lemma:

Lemma 2 Let s be a time and let t = s + 3knlnn. For each processor P
and time t', let Vt, be the set of processors () for which IxQ D KP. (Thus
V. will consist of all processors that know after an interval of 3knlnn steps
everything that P knew at the beginning.) For any set of processors A, define

w(A) to be the number of moves made by processors in A between s and t.
Then

P
Pr[AP w(Vy") < 2knlnn] < -

Proof: The proof works by showing an upper bound on the number of
moves not done by processors in V. Let V;I' be the complement of V'
Since any processor in V' does not know K! at time ¢, it cannot have

known KT at any time before ¢, and thus all of its moves prior to ¢ are
productive moves with respect to K. Using Lemma 1 we get

Pr[w(ﬁ) > knlnn] < 1/n%72,

Thus:
Pr[3P w(Vl) < 2kninn] < ZPI’ (VP < 2knlnn]
= nPr[w(VtP) > knlnn]
1
< 4

Because it is likely that V. and VtQ both do at least % of the work, it
is likely that these sets overlap for any P and (), i.e. that the information
known by any pair of processors at time s is known to a single processor at
time s + 3knlnn:

Corollary 3 Using the notation of Lemma 2,
PiEP,Q VI n Ve = 0] < 1/n*,



Proof: Suppose w(V,]F) > 2knlnn and w(V®) > 2knlnn Then
w(V?) < knlnn and so V¥ ¢ V2 implying that V' NV,? # (. By Lemma 2
the probability that the supposition does not hold is at most 1/n*~*. The
result follows. ]

In particular, if at time s there is some set A of r processors that be-
tween them know all the rumors (i.e., Upes K O Up KL), then at time
s+ 3knlnn there will be a set of [r/2] processors that between them know
all the rumors. Initially there are n processors that between them know all
the rumors. Therefore after at most 1 4 logy n intervals of length 3knlInn
there will be a single processor that knows all of the rumors, i.e. one that
has completed its task.

The adversary cannot move a processor that knows everything, so all
moves made after a processor has completed are necessarily made by pro-
cessors that have not completed. So applying Lemma 1 shows that after
knlnn additional moves every processor will know everything with high
probability. In summary we have the following;:

Theorem 4 Letn be at least 3, let k be some constant, and let the adversary
and processors behave as described earlier in this section. Let ¢ = 3(log, e +
1) = 7.32---. Then the probability that there is a processor that does not
know every rumor after cknln?n moves is at most nkl—_5

Proof: Start with (1+log, n) intervals of length 3kn In n. During each one
of these intervals, the size of the smallest set of processors that collectively
know all the rumors halves, except for a “failure case” whose probability is
at most nk1—4 (from Corollary 3). If no failures occur, at the end of these
(1+logy n)(3knlnn) steps some single processor knows all the rumors. The
probability that the rest of the processors fail to learn all the rumors after

an additional knlnn steps is at most —— by Lemma 1.
n

Summing up the all the steps gives 4knlnn + 3log, eknIn®n, which is
less than cknIn? n since n > 3. Summing up the probabilities of failure gives
(1 + log, n)nkl—_4 + nkl—_g), which is less than n - nk1—4 = nkl—_g), again provided

n > 3. [ |

Note that the requirement that n» be at least 3 is not very confining; if
n is two or less each processor can complete its collect with a single read.



3 The collect problem

In the rumor-spreading problem we assumed that all of the knowledge of
any particular processor was available to any other processor that wished to
read it. In the collect problem this is not the case; the adversary can stop
a processor in between reading new information from another processor’s
register and writing that information to its own register. Furthermore, we
allow the adversary to stop a processor between making a random choice of
which register to read and the actual read operation. (This rule corresponds
to an assumption that not all reads are equal; some might involve cache
misses, network delays, and so forth.) However, as mentioned in Section 1.2,
we will permit a processor to make a random choice and write the result of
this choice to its own register as an atomic operation. (This rule corresponds
to an assumption that the timing of a write is not affected by the value being
written.)

Overall, the approach will be similar to that taken for the rumor-
spreading problem. But it is no longer enough for each processor to simply
keep reading randomly selected registers. An adversary strategy that de-
feats this simple algorithm is to make one of the registers a “poison pill”:
any processor that attempts to read this register will be halted. Since on
average only one read out of every n would attempt to read the poisoned
register, close to n? reads would be made before the adversary would be
forced to let some processor actually swallow the poison pill.

We will avoid this problem by having each processor use the following
algorithm, which we call “Follow the Bodies.” The essential idea is that
before attempting to read a register, a processor will leave a note saying
where it is going;? poison pills can thus be detected easily by the trail of
corpses leading in their direction. The distance that a processor will pursue
this trail will be Alnn, where A is constant chosen to guarantee that the
processor reaches its target with high probability.

In the pseudocode given below, we assume that each processor stores in
its output register both the set of values 5 it has collected so far and its
successor, the processor it selected to read from most recently.

o While some values are unknown:

— Set p to be a random processor, and write out p as our successor.
(We will call this the selection step).

2Tt is here that we use the assumption that we can flip a coin and write the outcome
atomically.

10



— Repeat Alnn times:

* Read the register of p. Set S to be the union of S and the
values field. Set p to the successor field.
* Write out the new 5.

We would like to prove an analogue of Lemma 2 for this more sophis-
ticated algorithm. Let us fix a starting time s. For each processor P and
time ¢ > s, define U/ recursively as follows. Let UF = {P}. If at time ¢, a
processor () chooses a processor in U}, then Ut]_jl_1 = UFP U {Q}; otherwise
Ut]_jl_1 = U}". Note that the sets U} are built up by exactly the same random
process as the sets V;¥' defined in Lemma 1, and so we can use Lemma 1
to show a high-probability bound on how many times the selection step can
be executed by a processor not already in U. This bound translates into a
bound on the number of operations because the number of operations exe-
cuted by any processor is at most 2AInn + 1 times the number of times it
executes the body of the outer loop, i.e., the number of times the selection
step is executed.

However, it is not enough to show that many processors will be in UF’;
we must also show that these processors will eventually follow the trail of
successor fields to obtain K. To show this fact we view UF as a rooted
tree, whose root is the original node P. As each new node a is added to UF
it must select one of the processors b already in U”’; in this case we draw an
edge between a and b. Notice that (conditioning on the fact that a selects a
processor already in UP) the processor b is chosen uniformly from the nodes
already in UF. In Section 3.1 we investigate the random variable M., which
is defined to be the depth of a tree containing z + 1 nodes generated in
precisely this fashion. We prove (equation (10)):

Lemma 5 Let A > 2, then

1
A A—A—1
Intuitively, the depth of the tree is likely to be bounded by the logarithm
of its size because on average the ¢-th node to be added to the tree will choose
as a parent the (¢/2)-th node. The importance of bounding the depth of the
tree is that it gives an immediate bound on the length of a trail that any
processor in UF must follow to learn K

Pr[M,_y > Alnz] <

Lemma 6 Suppose that the depth of the UT tree does not exceed Nnn. Let
Q) be a processor that has completed the inner loop following its first selection
of a processor in UT. Then Q knows KT,

11



Proof: The result follows by induction on the size of UF. If @ is a pro-
cessor newly added to UP, either Q successfully follows a chain of successor
edges until it reaches P, or at some point it follows an edge leaving some
processor R that is not an edge in U”. But then R must have chosen a new
stuccessor after its entry into U and thus must have completed its inner
loop following its entry into UF. It follows by the induction hypothesis that
R knows KT, and thus @ learns it when it reads R’s register. [ |

Now we have the following extension of lemma 2.

Lemma 7 Let the powers of the adversary and the algorithms of the pro-
cessors be as defined earlier in this section. Fix a starting time s, let
t = s+ 3(knlnn + n)(2\Inn + 1), and define Vi'' as the set of proces-
sors that know KT at time t and w(A) to be the total number of operations
executed by processors in A between s and t. Then

1 1

P
Pr[3P w(Vy) <2(knlnn+n)(2AInn + 1)] < i + 2

Proof: We use an argument similar to that used for Lemma 2. Sup-
pose that w(VF) > (knlnn + n)(2AInn + 1). Then by Lemma 1 after
(knlnn)(2XInn+ 1) operations every processor in V,'’ is in UF. So by Lem-
mas 5 and 6 after the remaining n(2AInn + 1) operations all n of them will
have followed their trails back and read the information. The probability of
these events not occuring for some P is the value given in the statement of
the lemma. ]

This lemma can be used in exactly the same way as in Section 2 to prove
the following theorem:

Theorem 8 Let k, A be constants, k > 1, A > 2, and let the adversary and
processors behave as described earlier in this section. Assume that n > 3
and let ¢ = 37. Then the probability that the cooperative collect is incomplete

after cA\kn In® n moves is at most nk1—5 + = }_A_S.

Proof: The argument is essentially the same as used for Theorem 4. The
resulting cost is given by

3(knln+n)(2A1Inn 4+ 1)(logyn + 1)

which is at most 37kAn In® n under the assumptions (needed for the lemmas)
that £ > 1 and A > 2, and the further assumption that n > 3 > e (implying
In®n > 1In*n > Inn). |

12



In particular if we take & = A > 9 we can combine the terms in the
probability bound to get as a special case that the probability that the co-
operative collect is incomplete after ck?nIn®n moves is at most nk2—5 (where

¢ =37 as in the theorem).

3.1 Proof of Lemma 5

In this section we investigate the expected depth of a rooted tree which is
built by adjoining each new vertex to one of the existing vertices chosen at
random. We will show that with high probability the depth of the tree of ¢
vertices is at most O(log1).

Let T; be a random variable whose value is a rooted tree with ¢« + 1 ver-
tices, including the root vertex. So Ty consists of the root vertex only. Let
T;+1 be defined by uniformly selecting one of the ¢ + 1 vertices in T; and
attaching a new vertex to the selected vertex.

Define random variables D; to be the depth of the ¢th vertex, where the
root has depth —1, a vertex adjacent to the root has depth 0 and so on. Let
M; be the depth of the tree T}, so

M; = max D;.
i<

Now define indicator variables for i > 0, d > —1,

Xid:{ 1 ifD;=d

0 otherwise

Let ;4 = PI’[DZ' = d] = PI’[XZ'd = 1] = E[de]
From the construction of the tree we have for ¢ > 1 and d > 0

1 i—1
PriXig=1]=-> Xj41.
(s
Taking expectations we get
1 i—1
E[X:d] = H > EIX 1]
j=0

So the a;4 are defined by the recurrence equation

Lsitasgy ifi>landd >0
Tid = 1 ifi=0and d=—1 (2)
0 otherwise.

13



From (2) we can derive two further recurrence equations, for ¢ > 1,d > 0

71— 1 1
Tid = o Ti-id + STi-td-1 (3)

and ;4 = H Z 1_[l (4)

0<iy <in <. ig<i j=1 4

Now we can use (3) to find the expectation of D;, since

E[DZ] = Zdwld = Zd(

1
Ti14 + 962 1d—1

1 o0
d—1)xi_14-1+ N D wistd-
1

] 1 1
= . E[Di—l] + = E[Di—l] +--1

{2 {2 {2

Since E[Dg] = —1 we get

7
1 .
E[D;] = Z - <lIn: (5)
i=2/
This shows that in a tree with r vertices the expected depth of any particular
vertex is at most In 7, which suggests that the expected depth of the entire
tree is also of the order of Inr. To prove this we will need to get an upper
bound on z;4.
By comparing the identity

:

d
1—1 1 . . .
(Z —.) = tx;4d! + terms involving squares. (6)

i=1

|
—
[SEg N

d —1 1—1 —1 d 1
) DRI

11=112=1 1q=175=1 "J

1

with (4) we see that

Hence

(CEY)"  ami- o
¢-d! - ¢-d!

259 <

14



In fact we can show that as i — oo, 2,4 — In? i/(id!). That is, the D,
are asymptotically Poisson distributed with parameter Ini.
Let h = d/Ini. Then using Stirling’s formula we have

(1+lni)! (@)d(H%)dSQ(%)deh

d! h d! d!
Qthd (%)d (2)51 < ¢hehi=Inh)Ini
\ 4T
1
B h—h—1 (8)

assuming that 7 > 3. Let & > 2. By combining (7) and (8) we obtain

Tig < provided ¢ > 3 and d > kln¢ (9)

pary s
Suppose My > d for some t and d. If there is a node with depth bigger
than d there must be a node of depth exactly d. Thus using (2) we have
that
PI’[Mt Z d] S ZPI’[DZ = d] = ind = (t + 1)$t-|—1 d+1-
i<t i<t

So by applying (9) we can conclude since k > 2

1
PrlMi—y 2 klnt] < oy (10)

In particular if £ > 9 we have that klnk — &k — 12>k so

1

Pr[M;_y > klnt] < "

for k> 9. (11)

4 Repeated collects

In this section we consider an extension of the algorithm from Section 3,
which implements the cooperative collect primitive. For this primitive, a
processor must not only be able to collect a set of values that are initially
present in the registers; it must also be able to repeatedly carry out collect
operations that gather n new values that are guaranteed to be fresh in the
sense that they were present in the registers at some time during the collect
operation.

15



Our algorithm ensures freshness by a simple timestamp scheme. Upon
starting a collect a processor writes out a new timestamp. Timestamps
spread through the processor’s registers in parallel to register values. When
a processor reads a value directly from its original register, it tags that value
by the most recent timestamp it has from each of the other processors. Thus
if a processor sees a value tagged with its own most recent timestamp, it
can be sure that that value was present in the registers after the processor
started its most recent collect, i.e. that the value is fresh.

The algorithm can be summarized as follows. Below, 5 tracks the set
of values (together with their tags) known to the processor. The array T
lists each processor’s most recent timestamps. Both .5, T, and the current
successor are periodically written to the processor’s output register.

e Choose a new timestamp 7 and set our entry in T to 7.
e While some values are unknown:

— Set p to be a random processor, write out p as our successor and
T as our list of known timestamps.

— Repeat Alnn times:

* Read the register of p. Set S to be the union of S and the
values field. Update T to include the most recent timestamps
for each processor. Set p to the successor field.

+ Write out the new S and T.

e Return S.

We can characterize the performance of this algorithm by describing its
collective latency [3], an upper bound on the amount of work needed to
complete all collects in progress at some time ¢:

Theorem 9 Fiz a starting time s. Let k, A, n, and ¢ be as in Theorem 8.
Fach process carries out a certain number of steps between s and the time
at which it completes the collect it was working on at time s. Let T be the
sum over all processors of these numbers. Then

1 1
Pr[T > 2cAknIn®n] < 2 (nk—5 + n/\ln/\—/\—?)) . (12)
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Proof: Divide the steps contributing to 7" into two classes: (i) steps taken
by processors that do not yet know timestamps corresponding to all of the
collects in progress at time s; and (ii) steps taken by processes that know all
n of these timestamps. To bound the number of steps in class (i), observe
that the behavior of the algorithm in spreading the timestamps during these
steps is equivalent to the behavior of the algorithm in Section 3. Similarly,
steps in class (ii) correspond to an execution of the algorithm in Section 3
when we consider the spread of values tagged by all n current timestamps.
Thus the total time for both classes of steps is bounded by twice the bound
from Theorem 8, except for a case whose probability is at most twice the
probability from Theorem 8. [ |

It is important to note that the probability bound given in the above
theorem does not depend on the state of the protocol at time s, though
obviously if many collects are nearly finished at time s, the collective latency
will in fact be lower.

For some applications it is more convenient to have a bound on the
expected collective latency:

Corollary 10 The expected value of T as defined in Theorem 9 1is
O(nlog® n).

Proof: Fix constants k, A large enough that the probability on the right-
hand side of (12) is bounded above by some constant p. Then for each
m the probability that T exceeds m - 2¢Aknln®n is at most p™, and thus
E[T] < ;—)26/\1671 In®n = O(nlog® n). |

Having a bound on the collective latency of our repeated-collect algo-
rithm is important because it allows us to show that the algorithm is com-
petitive against other distributed algorithms. The competitive ratio that we
obtain depends on the particular competitive model chosen; there are two
natural possibilities for the collect problem, described in the following two
sections.

4.1 Latency competitiveness

The competitive latency model of Ajtai et al. [3] is a mechanism for ap-
plying the technique of competitive analysis, originally developed to deal
with the unknown sequences of user inputs in on-line algorithms [33], to
unknown patterns of system behavior as found in fault-tolerant distributed

17



Figure 1: Latency model. New high-level operations (ovals) start at times
specified by the scheduler (vertical bars). Scheduler also specifies timing of
low-level operations (small circles). Cost to algorithm is number of low-level
operations actually performed (filled circles).

Figure 2: Throughput model. New high-level operations (ovals) start as
soon as previous operations end. Scheduler controls only timing of low-
level operations (filled circles). Payoff to algorithm is number of high-level
operations completed.

algorithms. In the context of the repeated collect problem, it is assumed
that the adversary controls the execution of an algorithm by generating
(possibly in response to the algorithm’s behavior) a schedule that specifies
when collects start and when each processor is allowed to take a step (see
Figure 1. A processor halts when it finishes a collect; it is not charged for
opportunities to take a step in between finishing one collect and starting
another (intuitively, we imagine that it is off doing something else). The
compeltitive latency of a candidate algorithm is the least constant k, if any,
that guarantees that the expected total number of operations carried out
by the candidate on a given schedule ¢ is at most k£ times the cost of an
optimal distributed algorithm (called the champion by [3]) running on the
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same schedule.

Ajtai et al. show that if an algorithm has a maximum collective latency
of L at all times, then its competitive ratio in the latency model is at most
L/n 4+ 1. Unfortunately, this result is stated only for deterministic algo-
rithms, and in any case the upper bound on the collective latency of our
algorithm is only a high-probability guarantee and not absolute.

However, as we show below, the proof in [3] of the relationship between
collective latency and competitive latency does not really depend on these
details, and works equally well to bound the expected latency competitive-
ness of a randomized algorithm given a bound on the expected collective
latency.

Theorem 11 The expected competitive latency of the repeated collect algo-
rithm is O(log® n).

Proof: The proofis essentially identical to the proof in [3], except that an
absolute bound L on the total work done to finish any collects in progress at
any given time must be replaced by a bound on the expected work. We will
assume without loss of generality that the adversary has chosen some fixed
strategy, and that all expectations and probabilities are conditioned on the
adversary following this strategy.

In [3] it is shown that any schedule can be divided into a sequence of
intervals Iy, I, ... Iy such that:

1. In the optimal champion algorithm, at least n operations are per-
formed during each interval except the last.

2. In the candidate algorithm, at most n operations are performed during
I; (where j < k) as part of collects that start during /;. (Additional
work may be done during /; to finish collects that started earlier, but
this work will be charged to earlier intervals as described below.)

3. In the last interval Iy, all algorithms perform the same number of
operations m < n as part of collects starting in Ij.

Note that with a randomized candidate algorithm, k, m, and the end-
points of the intervals are all random variables that depend on the candidate
algorithm’s random choices and the adversary’s response to them. So in or-
der to use the above facts to show an L/n + 1 ratio for the competitive
latency, we must be very careful about issues of dependence.
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Let X; be the indicator variable for the event that % is greater than j,
i.e., for the event that [; is an interval in which the champion does at least
n work. Then the cost of the champion algorithm is at least n3_; X; + m,
where m is the random variable corresponding to the work done in the last
interval [j,.

To bound the cost of the candidate, consider the total work performed
as part of collects starting in some interval I; where j < k (l.e., X; = 1).
At most n work is performed as part of these collects during /;. From
Theorem 9, the expected additional work done by these collects after the
end of I; is L = O(nlog®n). This expected value is conditioned on the fact
that X; = 1, but it is not otherwise affected by the fact that X; = 1 since
the determination that X; = 1 occurs before the end of the interval /;. On
the other hand, if X; = 0, no work is done after I; on behalf of collects
starting in /;. So in either case we have that the expected work done as
part of collects starting in [;, conditioned on Xj, is at most (n 4 L)X;. In
addition, there will be a cost of m for work done in the last interval Ip.

Summing over all j and taking expectations then shows that the expected
work of the champion is at least n E[3"; X;]+ E[m] while the expected work
of the candidate is at most (n + L) E[>_; X;] + E[m]. Since E[m] is at most
n, we can absorb it into the additive constant and the ratio between the
remaining terms, giving the competitive latency, is (n + L)/n = L/n + 1.

For the Follow-the-Bodies algorithm, I = O(nlog3 n), so the competitive
latency L/n + 1is O(log® n) as claimed. |

Since the lower bound on the cost of the champion is a function only of
the structure of the schedule, the theorem holds even against an adaptive
off-line adversary [14], which is allowed to choose the champion algorithm
after seeing a complete execution of the candidate.

4.2 Throughput competitiveness

More recently, Aspnes and Waarts [10] have proposed a different measure
for the competitive performance of a distributed algorithm. This measure,
which they call the competitive throughput, removes the adversary control
over the starting times of collects; instead, both the candidate and the cham-
pion try to complete as many collects as possible in the time available (see
Figure 2). It also distinguishes between the schedule (the timing of events in
the system), which is shared between a candidate algorithm and the cham-
pion it is competing against, and the input (the specification of what tasks to
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perform), which is assumed to be worst-case for the candidate and best-case
for the champion. (In analyzing just the cooperative collect primitive, the
input is irrelevant since the cooperative collect algorithm can only perform
one type of task). The throughput competitiveness is a bound on the ratio
of the number of high-level tasks (e.g., collects) completed by the champion
to the number of high-level tasks completed by the candidate.

The motivation for these changes from the earlier latency model is that
they permit competitive algorithms to be constructed modularly; they allow
the competitive ratio of a subroutine and a function that calls it to be
computed separately, with the competitive ratio of the combined algorithm
simply being the product of the ratios of its components.

Unfortunately, the throughput model does not permit as good a compet-
itive ratio for cooperative collect as the latency model: Aspnes and Waarts
give a lower bound of (/n). However, it is an indication of the merits of
our algorithm that (with a slight modification) it comes very close to this
bound. Again, the key property is its low collective latency. By having
each processor alternate between running one step of our algorithm and one
step of the naive algorithm that simply reads all registers directly, we get
an algorithm whose collective latency is still O(nlog® n) and which guaran-
tees to finish any single processor’s collect in at most 2n work done by that
processor. In [10] it is shown that any algorithm with a collective latency
of L and an absolute bound of 2n operations on any single collect will have
a competitive ratio of at most 4v/L + 2n; as with the competitive latency
bound, this bound is stated only for deterministic algorithms, but with a bit
of tinkering its proof can be made to apply to our algorithm as well. The
result is:

Theorem 12 The expected competitive throughput of the repeated col-
lect algorithm, modified so that no collect takes more than 2n steps, is

O(n'/?10g? n).

Proof: The proof is a straightforward modification of the proof given for
deterministic algorithms in [10]. We will give the outline of that proof below
(much of which is taken from [10]), indicating where it must be modified to
deal with a randomized algorithm. As in the proof of Theorem 11, we will
assume without loss of generality that the adversary has chosen some fixed
strategy, and that all expectations and probabilities are conditioned on the
adversary using this strategy.

The key idea is to define a potential function 7T called the fractional
throughput. The fractional throughput is the sum of two terms for each
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process that can be thought of as measuring how much each step uses up of
the bound L of the collective latency and of the bound 2n on the process’s
own maximum cost per collect.

The potential function is given in two parts corresponding to these two
different bounds. Write C,(t) for the first part (the fractional collective
throughput) charged to a process p at time ¢. Set C,(0) = 0. Suppose some
process ¢ (possibly equal to p) performs a step at time ¢ as part of a collect
operation C'. Then C)(t) = C,(t — 1)+ L-&W if at least one of the following
holds:

1. p is performing a collect operation that started no earlier than C
started;

2. This step of ¢ is the last step it performs before p starts a new collect
operation; or

3. This step of ¢ is the first step it performs after the last collect com-
pleted by p.

If none of these conditions hold, then C,(t) = Cp(t — 1).

Write P,(¢) for the second part (the fractional private throughput). This
term is defined to be the number of steps carried out by p up to and including
time ¢, divided by 2n.

The fractional throughput T(t) is given by >, $(Cy(t) + P,(t)). In [10]
it is shown that:

1. For a deterministic algorithm with collective latency L, at least T'(t)—n
collect operations have finished by t.

2. In any interval during which n steps are carried out by m processes,
T rises by at least % + 4(Lm7—|—22n)' (Sketch of proof: each of the n steps
contributes % to P, for some p; and for each of the roughly m?/2
pairs of not necessarily distinct active processors p and ¢, each step
contributes L-&W to either (', or C;. These contributions do not de-
pend on the behavior of the algorithm but only on the definitions of

P, and C,, and so are not affected by using a randomized algorithm.)

3. No algorithm completes more than m collects in any interval in which
n steps are carried out by m processes. (Proof: at most m processes
finish collects during the interval since finishing a collect requires at
least one operation; but no process finishes two consecutive collects
during the interval because at least n reads are needed between them.)
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The last two facts are then used to show that the ratio between the rise in

T between the start and end of the execution and the number of collects

completed by a champion algorithm is at least 1 \/Ll-|-ﬁ’ which implies the

full claim for deterministic algorithms using the relation between T and the
number of completed collects given by the first fact. Since the bound on
the ratio between T and the champion’s payofl does not depend on having a
deterministic candidate algorithm, we can still use it. But it is not immediate
that we can still use T — n as a lower bound on the expected number of
collects completed by a randomized algorithm.

It is necessary to look closely at the proof that 7" — n is a lower bound
on the number of collects. In [10] it is shown that T, = £(C, 4 P,) rises by
at most 1 during any single collect operation carried out by p. We will show
that the expected increase in £(C)+ P,) during any single collect is at most
1, provided we are using a candidate algorithm whose expected collective
latency is bounded by L.

Let 5% be the starting time of p’s k-th collect. For a randomized al-
gorithm 5% is a random variable, and we will set it to infinity if p starts
fewer than k collects. We would like to show that T,(Sk41) — T,(5k) < 1,
conditioned on S being finite. To do so, observe first that P, (which counts
the number of steps taken by p, divided by 2n) rises by at most 1 during
any single collect, because no collect operation takes more than 2n steps.
To show a bound on the rise in C,, note that there are three categories of
steps that can increase ', by L-&W:

1. All steps that a process ¢ (possibly equal to p) performs between 9
and Si41 as part of a collect that started before Sj. There is at
most one such collect for each ¢ and the expected total work required
for these collects is at most L. (Note that conditioning on S being
finite does not affect this bound, because the fact that Sy is finite is
determined before the starting time S, and the bound depends only
on events after S%.)

2. The last step that each process ¢ performs before Si. There are at
most n such steps (one for each process).

3. The first step, if any, that each process ¢ peforms between the time at
which p finishes the collect starting at S; and the time S;1q. Again,
there are at most n such steps.

Summing over all three categories gives at most L 4+ 2n steps on average,
each of which raises C), by L-&W Thus the expected increase in €, is at
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most 1, and since 7}, is the average of (), and P,, the expected value of
Tp(Sk+1) — Tp(Sk) is also at most 1.

The bound on the increase in 7}, is conditioned on S being finite. If
Sk is infinite, p performs no k-th collect, and T,(Sk41) — Lp(S%) = 0. If we
let X be the indicator variable for the event that p starts its k-th collect,
the conditional expectation E[T),(Sk+1) — T,( k)| Xk] is at most X. Taking
expectations of both sides gives E[T,(Sk+1) — T(5k)] < E[X]. Summing
over all k£ on both sides thus shows that the expected value of E[T,(c0)]
is a lower bound on the expected number of collects started by p, and a
second summation shows E[7'(c0)] is a lower bound on the expected number
of collects started by all processes. But we know from [10] that 7'(oc0) is

at least 4\/Ll-|-ﬁ times the number of collects completed by the champion

in any schedule, so E[T(c0)] is at least 4\/Ll_|_ﬁ times the expected num-

ber of collects completed by the champion. Thus the expected competitive
throughput of an algorithm with expected collective latency L is at most
4L + 2n.

For the modified Follow-the-Bodies algorithms, L = O(nlog® n), so the
expected competitive throughput is O(nl/2 log?/? n). [
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