
A Modular Measure of Competitiveness for Distributed AlgorithmsJames Aspnes� Orli WaartsyThe tool of competitive analysis has long been used todeal with nondeterminism in the form of unpredictable re-quest sequences in on-line settings. The performance mea-sure of an algorithm is its competitive ratio, the supremumover all possible request sequences of the ratio of the algo-rithm's cost to the cost of an optimal algorithm. This mea-sure is often more practical than worst-case analysis, since itmeasures the ability of an algorithm to adapt to easy inputsas well as its ability to tolerate di�cult ones.In an asynchronous distributed setting, in addition to theunknown input (the sequence of future user requests), thereis the unknown schedule (the timing of events in the systemsuch as the arrival of messages in a message-passing model orthe completion of low-level operations in a shared-memorymodel). Much of the work that has applied competitiveanalysis to distributed problems has the on-line and opti-mal algorithms compete only on the same input, generallyhiding the details of the schedule in a worst-case assump-tion applied only to the on-line algorithm. More recently,the competitive latency model of Ajtai, Aspnes, Dwork, andWaarts [1], which measures how quickly an algorithm can�nish tasks that start at speci�ed times, has taken the ap-proach of applying the same input and schedule to boththe on-line and the optimal algorithms. This model has anadvantage over its predecessors in situations where changesin the schedule have as big an impact on performance aschanges in the input. In retrospect, this approach can alsobe viewed as an intermediate step leading to the approachadopted in this paper, in which the on-line and the optimalalgorithms face the same schedule but may have di�erentinputs.We de�ne a new measure of competitive performance fordistributed algorithms, called competitive throughput, thatmeasures the number of tasks that an algorithm can carryout with a �xed amount of work, without specifying thestarting times of tasks. We maintain the split between userrequests (the input) and system behavior (the schedule), butreverse the traditional approach by assuming a worst-caseinput and a competitive schedule. That is, we will assume�Yale University. Supported by NSF grants CCR-9410228 andCCR-9415410. E-Mail: aspnes@cs.yale.eduyU. C. Berkeley. Supported in part by NSF postdoctoral fellowshipDMS-9407652. E-Mail: waarts@cs.berkeley.edu

that both the on-line and the optimal algorithms must dealwith the same pattern of failures and asynchrony, but thatthe user requests given to the on-line algorithm are chosento minimize its performance while the requests given to theoptimal algorithm are chosen to maximize its performance.The above features of our model allow a modular con-struction of competitive algorithms. In e�ect, once we �x aschedule, we are doing worst-case analysis with respect toinputs, so we get the same modularity properties of standardworst-case analysis.One di�culty remains. Traditional competitive analysisappears to forbid modularity: if A is an algorithm that usesa subroutine B, the fact that B is competitive says noth-ing at all about A's competitiveness, since A must competeagainst algorithms that do not use B.We overcome this problem by de�ning a notion of relativecompetitiveness such that if A is a k-relative-competitive al-gorithm that calls an l-competitive subroutine B, then thecombined algorithm A � B is kl-competitive (the Composi-tion Theorem). The essential idea (omitting some impor-tant technical details) is that for any choice of B the ratiodone(A �B)=done(B) of tasks completed by A �B to taskscompleted by B should be proportional to the same ratio foran optimal A�. But since an optimal A� might not call B, weinstead consider two independent executions of optimal algo-rithms, one of A� and one of an optimal B� that implementsthe same object as B. If for every choice of B, done(A �B)=done(B) is proportional to done(A�)= done(B�), thenwe say that A is throughput-competitive relative to the ob-ject implemented by B. Intuitively, our Composition The-orem follows simply by multiplying out ratios; in practice,some care is needed to deal with short schedules and otherpathological cases.To illustrate the usefulness of our measure we take as atest case the collect primitive, in which each of a group ofn processes must obtain the values of n registers. We �rstshow that any collect algorithm with certain natural prop-erties can be extended to a throughput-competitive imple-mentation of a slightly stronger primitive, a write-collect.This result can be applied, for example, to the latency-competitive collect of [1] to obtain a throughput-competitivewrite-collect. We then use this write-collect primitive, to-gether with our Composition Theorem, to derive competi-tive versions of many well-known shared-memory algorithms.References[1] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. In 33rdFOCS, pp. 401{411, 1994.


