A Modular Measure of Competitiveness for Distributed Algorithms

James Aspnes*

The tool of competitive analysis has long been used to
deal with nondeterminism in the form of unpredictable re-
quest sequences in on-line settings. The performance mea-
sure of an algorithm is its competitive ratio, the supremum
over all possible request sequences of the ratio of the algo-
rithm’s cost to the cost of an optimal algorithm. This mea-
sure is often more practical than worst-case analysis, since it
measures the ability of an algorithm to adapt to easy inputs
as well as its ability to tolerate difficult ones.

In an asynchronous distributed setting, in addition to the
unknown input (the sequence of future user requests), there
is the unknown schedule (the timing of events in the system
such as the arrival of messages in a message-passing model or
the completion of low-level operations in a shared-memory
model). Much of the work that has applied competitive
analysis to distributed problems has the on-line and opti-
mal algorithms compete only on the same input, generally
hiding the details of the schedule in a worst-case assump-
tion applied only to the on-line algorithm. More recently,
the competitive latency model of Ajtai, Aspnes, Dwork, and
Waarts [1], which measures how quickly an algorithm can
finish tasks that start at specified times, has taken the ap-
proach of applying the same input and schedule to both
the on-line and the optimal algorithms. This model has an
advantage over its predecessors in situations where changes
in the schedule have as big an impact on performance as
changes in the input. In retrospect, this approach can also
be viewed as an intermediate step leading to the approach
adopted in this paper, in which the on-line and the optimal
algorithms face the same schedule but may have different
inputs.

We define a new measure of competitive performance for
distributed algorithms, called competitive throughput, that
measures the number of tasks that an algorithm can carry
out with a fixed amount of work, without specifying the
starting times of tasks. We maintain the split between user
requests (the input) and system behavior (the schedule), but
reverse the traditional approach by assuming a worst-case
input and a competitive schedule. That is, we will assume

*Yale University. Supported by NSF grants CCR-9410228 and
CCR-9415410. E-Mail: aspnes@cs.yale.edu

fu. c. Berkeley. Supported in part by NSF postdoctoral fellowship
DMS-9407652. E-Mail: waarts@cs.berkeley.edu

Orli Waarts’

that both the on-line and the optimal algorithms must deal
with the same pattern of failures and asynchrony, but that
the user requests given to the on-line algorithm are chosen
to minimize its performance while the requests given to the
optimal algorithm are chosen to maximize its performance.

The above features of our model allow a modular con-
struction of competitive algorithms. In effect, once we fix a
schedule, we are doing worst-case analysis with respect to
inputs, so we get the same modularity properties of standard
worst-case analysis.

One difficulty remains. Traditional competitive analysis
appears to forbid modularity: if A is an algorithm that uses
a subroutine B, the fact that B is competitive says noth-
ing at all about A’s competitiveness, since A must compete
against algorithms that do not use B.

We overcome this problem by defining a notion of relative
competitiveness such that if A is a k-relative-competitive al-
gorithm that calls an l-competitive subroutine B, then the
combined algorithm A o B is ki-competitive (the Composi-
tion Theorem). The essential idea (omitting some impor-
tant technical details) is that for any choice of B the ratio
done(A o B)/ done(B) of tasks completed by Ao B to tasks
completed by B should be proportional to the same ratio for
an optimal A*. But since an optimal A* might not call B, we
instead consider two independent executions of optimal algo-
rithms, one of A* and one of an optimal B* that implements
the same object as B. If for every choice of B, done(A o
B)/done(B) is proportional to done(A*)/done(B*), then
we say that A is throughput-competitive relative to the ob-
ject implemented by B. Intuitively, our Composition The-
orem follows simply by multiplying out ratios; in practice,
some care is needed to deal with short schedules and other
pathological cases.

To illustrate the usefulness of our measure we take as a
test case the collect primitive, in which each of a group of
n processes must obtain the values of n registers. We first
show that any collect algorithm with certain natural prop-
erties can be extended to a throughput-competitive imple-
mentation of a slightly stronger primitive, a write-collect.
This result can be applied, for example, to the latency-
competitive collect of [1] to obtain a throughput-competitive
write-collect. We then use this write-collect primitive, to-
gether with our Composition Theorem, to derive competi-
tive versions of many well-known shared-memory algorithms.

References

[1] M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. In 33rd
FOCS, pp. 401-411, 1994.



