
Brief Announcement: Object Oriented Consensus
Yehuda Afek

School of Computer Science, Tel-Aviv University

afek@tau.ac.il

James Aspnes

School of Computer Science, Yale University

james.aspnes@gmail.com

Edo Cohen

School of Computer Science, Tel-Aviv University

edocohen@tau.ac.il

Danny Vainstein

School of Computer Science, Tel-Aviv University

danvainstein@tau.ac.il

ABSTRACT
We suggest a template that reveals the structure of many consen-

sus algorithms as a generic procedure. The template builds on

a new object, vacillate-adopt-commit which is an extension of

the well known adopt-commit object. In addition we extend Asp-

nes’s conciliator object to a new object that we call a reconciliator .
The consensus algorithm template works in rounds of alternating

vacillate-adopt-commit and reconciliator operations. The vacillate-
adopt-commit object observes the processors’ preferences and sug-

gests a preference output with a measure of confidence (vacillate,
adopt or commit) on the preference. The reconciliator ensures termi-

nation, by providing new preferences for the processors. We show

how several key consensus algorithms exactly fit our template.

Here we demonstrate the decomposition of Ben-Or’s randomized

algorithm. The decomposition of the Phase King Byzantine and the

Paxos algorithm are given in the full paper [1]. We analyze and

compare our template based on vacillate-adopt-commit and recon-
ciliator objects to previous work [3, 5], suggesting a decomposition

of consensus based on adopt-commit and conciliator objects. We

claim that the three return values of vacillate-adopt-commit more

accurately describe existing algorithms.

KEYWORDS
Distributed Algorithms; Consensus; Adopt-Commit;

1 INTRODUCTION
The consensus problem, introduced by Lamport, Pease and Shostak

[6] resides at the heart of many distributed algorithms such as

leader election, database transaction handling, resource allocation,

ensuring storage replicas are mutually consistent and many more.

In the consensus protocol between n processors, each with an

input value, processors agree on a single common output which was

the input to one of them. While consensus is trivial in a non-faulty

synchronous environment, it is often more difficult in practice as

most distributed networks are asynchronous and must be resilient

to faults of various types.

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s).
PODC’17, , July 25–27, 2017, Washington, DC, USA.
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4992-5/17/07.
http://dx.doi.org/10.1145/3087801.3087867

Gafni [5] proposed the adopt-commit object, an object fulfilling

weaker guarantees than consensus, as a building block of consensus.

Aspnes [3] further provided a detailed decomposition of consensus

into adopt-commit and a complementary conciliator object which
together form a generic framework describing consensus. In this

work we extend these decompositions, into vacillate-adopt-commit
and reconciliator objects, which describe the core of many existing

consensus algorithms more accurately than the previous decompo-

sition.

The paper is structured as follows. In Section 3, the consensus

template is presented. In Section 4, we demonstrate how the de-

composition applies to Ben-Or’s consensus algorithm (in our full

paper [1] we further apply our decomposition to the Paxos and

Phase-King consensus algorithms). Section 5 explores the relation

between vacillate-adopt-commit and adopt-commit, showing the

latter is slightly weaker.

2 PRELIMINARIES
Consensus guarantees the following three properties: Validity -

The output value, u, was provided as an input to the object by some

processor. Termination - The output is returned within a finite

number of steps. Agreement - All processors invoking the object
receive the same output value u.

Adopt-commit is a weaker form of consensus which guarantees

validity and termination. The object supports a single operation,
adopt-commit(v) and returns some preferenceu with a level of confi-

dence, adopt or commit. The object does not guarantee agreement,
instead, adopt-commit holds the following guarantees: Coherence -
If some processor receives (commit ,v ), any other returned value

(with either commit or adopt) must have the same value v . Con-
vergence - If all processors invoke adopt-commit(v) with the same

value v , the object must return (commit ,v ) with the same value v
to all processors.

Vacillate-adopt-commit is an extension of adopt-commit which
supports a single operation, vacillate-adopt-commit(v) and returns

some preference u and a level of confidence, vacillate, adopt or
commit. As opposed to adopt-commit, vacillate-adopt-commit adds
a level of confidence and guarantees validity, termination and con-
vergence. Coherence is modified to suit three levels of confidence,

therefore, vacillate-adopt-commit guarantees coherence over adopt
& commit - If any processor receives (commit ,v ), then any other

returned value is either (commit ,v ) or (adopt ,v ) (with the same

value v). Coherence over vacillate & adopt - If no processor re-

ceived commit and some processor received (adopt ,u), then every

other processor receives either (adopt ,u) or (vacillate,w ) where
w may be any value.

https://doi.org/http://dx.doi.org/10.1145/3087801.3087867


The reconciliator object also supports a single operation, rec-
onciliator(v) and only returns a preference u. The object guarantees
that every value has a non-zero probability (that may depend on n,
the number of processors) to be returned to all processors. In the

Byzantine setting, the reconciliator guarantees to return the same

value to all processors eventually (i.e., if called sufficiently many

times).
1

3 THE GENERIC FORM OF CONSENSUS
The thesis of this paper is that many well known consensus al-

gorithms have the same basic structure consisting of two objects,

VAC2
that checks whether consensus has been reached or not and

reconciliator that shakes up the preferences of the processors in case
of a stalemate. We do not claim that this structure is necessarily

better than using AC and conciliators, but that it more accurately

reflects the existing structure of algorithms in the literature.

Informally, the generic consensus algorithms work in rounds. In

each round, first the VAC is invoked to observe the system state

and tell whether consensus has been reached. VAC returns to each

processor one of three possible outputs: (1) (commit, v) which
indicates that the system has reached an agreement on value v, (2)
(adopt, v) which indicates that it is possible that some processors

in the system have agreed on the value v, and (3) (vacillate, v)
indicating that the system is in an indecisive state.

If a processor receives (commit, v), it is guaranteed that no other

processor receives a vacillate value and all outputs return with the

same value, v. A processor receiving (adopt, v) is guaranteed that

any other processor either received a vacillate value or received the
same preference. Finally, if a processor receives (vacillate, v), the
only guarantee it has is that no other processor received a commit
value.

We note the key difference between the VAC and AC objects.

An adopt-commit object always returns a new value to be adopted

by a process, but this is not consistent with the structure of many

consensus protocols in the literature. Adding a third option, i.e.,

vacillate, accounts for situations where the algorithm does not force

a process to update its preference.

The question is how termination of the consensus can be guar-

anteed if the collection of preferences is balanced and the VAC

continually returns vacillate. For that purpose, the reconciliator
is used to give each vacillating processor a new preference with

a guarantee to provide a deciding set of preferences with some

probability. That is, whenever a processor receives a vacillate value
from the VAC object, the distributed reconciliator provides each
processor with an alternate preference such that eventually enough

processors will get the same preference leading to VAC eventually

observing agreement. Pseudocode for the consensus template is

given in Algorithm 1.

Note that INIT is a void function unless stated otherwise. Fur-

thermore, note that the operation, decide σ , is followed by a halt

1
We note that the reconciliator weakens Aspnes’ conciliator [3] definition in that it does
not require validity (i.e., that the reconciliator’s returned value equals some processor’s

input). This is due to the fact that if all (non-Byzantine) processors’ inputs are equal,

the VAC is defined such that no processor will, anyhow, reach the reconciliator.
2
Throughout the paper we abbreviate vacillate-adopt-commit as VAC and adopt-commit
as AC.

1 Consensus(v)
2 m ← 0

3 IN IT ()

4 while true do
5 m ←m + 1

6 (X ,σ ) ← VAC (v,m)

7 σ ′ ← reconciliator (σ ,m)

8 switch X do
9 case vacillate: v ← σ ′

10 case adopt: v ← σ

11 case commit: v ← σ and decide σ
12 endsw
13 end

Algorithm 1: Consensus Template

operation, that is, the processor will decide upon its value and

return. The argumentm is the phase of the consensus process.

Next we prove that the template indeed achieves consensus,

using the VAC and reconciliator properties.

Lemma 3.1. Algorithm 1 is a correct consensus algorithm.

Proof. Agreement and validity follow from VAC’s coherence
and validity respectively. Termination follows from the conver-
gence property of the reconciliator object. �

4 DECOMPOSING BEN-OR’S ALGORITHM
In this section we show how Ben-Or’s algorithm [4] can be de-

scribed using our consensus template. Throughout this section the

settings are asynchronous, message-passing model and the number

of tolerated crash failures, t , is strictly smaller than n/2. Algorithms

2 and 3 are the VAC’s and reconciliator’s implementations, Lemmas

4.1 and 4.2 prove the implementations correctness, i.e., that they

uphold the objects’ guarantees.

1 Reconciliator(X ,σ ,m)
2 return CoinFlip ()

Algorithm 2: Ben-Or’s reconciliator implementation

Lemma 4.1. Algorithm 2 is a correct reconciliator implementation.

Proof. Probabilistic convergence: For any given value v ,
P (all processors finish with v after the coin flip) ≥ 1

2
n > 0. �

Lemma 4.2. Algorithm 3 is a correct vacillate-adopt-commit im-
plementation.

Proof. The proof is similar to the Ben-Or algorithm correctness

proof found in the survey of Aspnes [2].

Validity, termination and convergence follow easily from the

implementation.

Coherence over commit and adopt, assume a process received

(commit ,v ). Therefore, it received more than t rati f y messages,

meaning a non-faulty processor sent out a rati f y message to all



1 VAC(v,m)
2 send ⟨1,v⟩ to all

3 wait to receive n − t ⟨1, ∗⟩ messages

4 if received more than n/2 ⟨1,v⟩ messages then
5 send ⟨2,v, rati f y⟩ to all

6 else
7 send ⟨2, ?⟩ to all

8 end
9 wait to receive n − t ⟨2, ∗⟩ messages

10 if received more than t ⟨2,v, rati f y⟩ messages then
11 return (commit ,v )

12 else if received a ⟨2,v, rati f y⟩ message then
13 return (adopt ,v )

14 else
15 return (vacillate,v )

16 end
Algorithm 3: Ben-Or’s vacillate-adopt-commit implementa-

tion

other processors - therefore it is enough to show that every 2 rati f y
messages have the same value, v (since then all processes received

atleast one rati f y message with the same value, v). Assume to-

wards contradiction that this isn’t the case - meaning messages

(2,v, rati f y) and (2,u, rati f y) where u , v had been sent. By the

first i f statement, this means there’s a processor that sent out both

u and v which is a contradiction.

Coherence over adopt and vacillate, since every 2 rati f y mes-

sages have the same value, v , coherence follows. �

5 VACILLATE-ADOPT-COMMIT VS
ADOPT-COMMIT

5.1 Adopt-Commit is Not Enough
The concept of decomposing consensus into separate objects is by

no means original and was formally presented in [5]. Later work

by Aspnes [3] described a framework of adopt-commit objects that
detect agreement, and conciliators that ensure agreement with some

probability. We argue that this decomposition breaches abstraction

responsibilities. The consensus algorithm may be viewed as an iter-

ative process which begins in some arbitrary state and terminates

with an agreement upon a valid value. Under this interpretation, the
framework of repetitive adopt-commit followed by conciliator fails
to distinguish between the phases of the consensus procedure in

which part of the participants have terminated and others have not.

Due to this limitation and the coherence constraint, the conciliator
must be aware of the global state of the consensus procedure in

order to ensure validity.
In order to make our argument more concrete, we demonstrate

how Ben-Or’s consensus algorithm cannot be described by a se-

quence of adopt-commit alternating with conciliator, while it is nat-
urally described as a sequence of repetitive vacillate-adopt-commit
followed by reconciliator.

To demonstrate the problem with formulating Ben-Or’s consen-

sus protocol using a series of adopt-commit and conciliator objects,

U = A−1;A0;C1;A1;C2;A2; . . .

(where A,C denote adopt-commit and conciliator objects respec-
tively), consider each round of Ben-Or’s algorithm [4]

3
. Let P be a

processor participating in the agreement process. P experiences one

of three possible outcomes: (1) not receiving any ratify message. (2)

receiving up to t ratify messages. (3) receiving more than t ratify
messages.

These outcomes correspond to vacillate, adopt, and commit, re-

spectively. Option 1 fits a processor which received vacillate as it

has no guarantees about other values received by other processors.

Option 2 corresponds to adopt under the VAC framework, since

by coherence, any processor that received (adopt ,v ) is guaranteed
that every other processor that received either vacillate or commit,
also received the value v . Option 3 corresponds to commit, since
any processor that received (commit ,v ) is guaranteed that all other
processors received either (commit ,v ) or (adopt ,v ).
However, using only adopt-commit objects is not enough in order

to describe these three options.

It might be tempting to assume that two consecutive adopt-
commit objects might resolve this entanglement as we have shown

that VAC may be implemented using two AC objects.
4
We ar-

gue this is not the case, that is, we claim that the sequence of

U = A−1;A
0

0
;A1

0
;C1;A

0

1
;A1

1
;C2; . . . also fails to describe Ben-Or’s

consensus protocol. In order to describe option (2) the first adopt-
commit must return adopt while the second returns commit. How-
ever, the decomposition framework described in [3] requires that

upon reception of commit the processor immediately decides on the

value received, whereas it is possible that in Ben-Or’s protocol such

a state is reached with value u but a final agreement is achieved

with value u ′ , u.

5.2 Relation Between Vacillate-Adopt-Commit
and Adopt-Commit

In addition to the former section, we demonstrate in the full version

of our paper [1] that one may easily simulate an adopt-commit
object using a VAC object. On the other hand, one may successfully

simulate VAC using two sequential calls to adopt-commit objects.
In our opinion this further shows an inherent difference between

the two objects.

REFERENCES
[1] Yehuda Afek, James Aspnes, Edo Cohen, and Danny Vainstein. Object oriented

consensus. In preparation, February 2017.

[2] James Aspnes. Randomized protocols for asynchronous consensus. Distributed
Computing, 16(2–3):165–175, September 2003.

[3] James Aspnes. A modular approach to shared-memory consensus, with applica-

tions to the probabilistic-write model. Distributed Computing, 25(2):179–188, May

2012.

[4] Michael Ben-Or. Another advantage of free choice: Completely asynchronous

agreement protocols (extended abstract). In Proceedings of the Second Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, August 17-19, 1983, pages 27–30, 1983.

[5] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony

and asynchrony. In Proceedings of the seventeenth annual ACM symposium on
Principles of distributed computing, pages 143–152. ACM, 1998.

[6] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the

presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

3
We note that our description follows the presentation of Ben-Or’s algorithm given in

the survey paper of Aspnes [2]

4
See [1] for detailed arguments.


	Abstract
	1 Introduction
	2 Preliminaries
	3 The Generic Form of Consensus
	4 Decomposing Ben-Or's Algorithm
	5 Vacillate-Adopt-Commit vs Adopt-Commit
	5.1 Adopt-Commit is Not Enough
	5.2 Relation Between Vacillate-Adopt-Commit and Adopt-Commit

	References

