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This paper presents a novel implementation of a snapshot object for n processes, with O(log2 b logn) step

complexity for update operations and O(log b) step complexity for scan operations, where b is the number

of updates. The algorithm uses only reads and writes.
For polynomially many updates, this is an exponential improvement on previous snapshot algorithms,

which have linear step complexity. It overcomes the existing Ω(n) lower bound on step complexity by having

the step complexity depend on the number of updates. The key to this implementation is the construction
of a new object consisting of a pair of max registers that supports a scan operation.
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1. INTRODUCTION

An atomic snapshot object [Afek et al. 1993; Anderson 1993; Aspnes and Herlihy 1990] is
a fundamental data structure for shared memory computation. It allows each process to
update individual components of a shared array and to scan the entire array so that these
operations seem to take effect atomically.

Atomic snapshots provide a crucial tool for many shared-memory algorithms, as they
simplify coordination between processes. A typical example is a generalized counter, which
supports a read operation that returns the value of the object and an operation that adds
an arbitrary positive or negative integer to its value. With atomic snapshots, each process
can store its “contribution” (the sum of the amounts by which it has incremented and
decremented the value of the generalized counter) in a component that only it can update.
Using a scan, a process gets an instantaneous view of all the contributions, which it sums
to obtain the value of the counter.

Recently, it was shown that a counter, which only allows updates that add one to the
counter value, can be implemented with polylogarithmic (in n) step complexity using only
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reads and writes, assuming the number of increments is polynomial (in n) [Aspnes et al.
2012a]. This is indeed the case for many applications of a counter. The construction is
based on an implementation of a bounded max register. It extends to other concurrent
data structures, provided that they can be represented by monotone circuits. However, it
critically depends on the facts that the value of the counter is monotonically increasing and
that all increment operations have the same effect. Therefore, the construction cannot be
used to implement a generalized counter or an atomic snapshot.

In this paper, we present a linearizable implementation of atomic snapshots with O(log n)
step complexity for scan and O(log3 n) step complexity for update, as long as the number
of update operations that are performed is polynomial in n. Instead of having a process
directly read a linear number of registers to perform an operation, our implementation
allows processes performing scans and updates to cooperate to reduce the cost exponen-
tially, provided the snapshot object is only updated polynomially many times. This implies
implementations with polylogarithmic step complexity using only reads and writes for a
wide variety of shared-memory objects, including generalized counters, when they are
updated only a polynomial number of times. Many important applications, such as task
allocation [Alistarh et al. 2014], renaming [Borowsky and Gafni 1993], approximate agree-
ment [Attiya et al. 1994], and randomized consensus [Aspnes and Censor 2009] use objects
satisfying this restriction.

The key technical development behind our results is the definition and implementation of
a linearizable 2-component max array, a new data structure consisting of two components,
each of which is a max register that may be updated independently, and which supports
a MaxScan operation that returns the values of both components. The pairs (x0, x1) and
(y0, y1) returned by different MaxScans are always comparable in the sense that either x0 ≤
y0 and x1 ≤ y1 or y0 ≤ x0 and y1 ≤ x1. The implementation of the 2-component max
array is based on inserting copies of the second component at all levels of a tree of registers
implementing the first component using the construction of Aspnes et al. [2012a].

The 2-component max array is exactly the tool we need to coordinate the recursive
construction of atomic snapshots. We use a binary tree of 2-component max arrays to
manage the combination of increasingly wide snapshots of parts of an array of n values.
The max registers store increasing indices into a table of partial snapshot values. The scan of
a max array is used to guarantee that the two halves of a partial snapshot are consistent with
each other. By requiring updaters to propagate their new values up the tree, we amortize
the cost of constructing an updated snapshot of all n components across the updates that
modify it. This allows a process to obtain a precomputed snapshot in a sublinear number
of steps. Note that our implementation uses registers that can store Θ(n) values. Sublinear
step complexity for scan is impossible only using objects that can store O(1) values, since
the output of a scan consists of n values.

It has been shown [Aspnes et al. 2012b] that collect objects and, hence, snapshot objects
have Ω(min(log b, n)) step complexity, where b is the number of updates performed. This
indicates that our implementation is close to optimal.

A survey of implementations of atomic snapshot objects using only reads and writes, as
well as lower bounds, appears in [Fich 2005]. The best previously-known algorithms for
atomic snapshots using only reads and writes [Attiya and Fouren 2001; Inoue et al. 1994]
have Θ(n) step complexity for both updates and scans. An interesting implementation of
atomic snapshots using f -arrays takes one step for a scan and Θ(log n) steps for an update,
but it uses CAS or LL/SC objects [Jayanti 2002]. All of these implementations use objects
that store Ω(n) values.

LL/SC objects storing w words can be implemented from single-word LL/SC objects [An-
derson and Moir 1995] or CAS objects [Jayanti and Petrovic 2005] so that each implemented
operation takes O(w) steps. Likewise, a register storing w words can be implemented from
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single-word registers using indirection so that each implemented read or write takes O(w)
steps.

Atomic snapshots that take one step for an update and Θ(n) steps for a scan have been
implemented using CAS or LL/SC objects [Jayanti 2005; Riany et al. 2001].

There is an Ω(n) lower bound on the step complexity of implementing an atomic snap-
shot from historyless objects (such as registers and swap objects) and resettable consensus
objects [Jayanti et al. 2000], without any bound on the size of the objects used for the im-
plementation. However, the proof uses executions that are exponentially long as a function
of n.

2. MODEL AND PRELIMINARIES

Consider a deterministic asynchronous shared-memory system comprised of n processes,
which communicate through shared registers that support read and write of arbitrarily
large values. We assume that any number of processes can fail by crashing.

An implementation of a shared object in this system provides a representation of the
object using shared registers and an algorithm for each type of operation supported by the
object. The implementation is linearizable [Herlihy and Wing 1990] if, for every execution,
there is a total order of all completed operations and a subset of the uncompleted operations
in the execution that satisfies the sequential specifications of the object and is consistent
with the real-time ordering of these operations (i.e. if an operation is completed before
another operation begins, then the former operation occurs earlier in the total order).

There are a number of different shared objects we consider. A counter, r, supports two
operations, Read(r) and Increment(r). If r is a generalized counter, then it also supports
Add(r, v), where v ∈ Z, i.e. it allows the value of r to be atomically changed by an arbitrary
integer, instead of simply being incremented by 1.

An atomic snapshot object consists of a finite array of m components. Update(r, i, v) sets
the value of component i of snapshot object r to v. Scan(r) atomically reads the values
of all m components. In a single-writer snapshot object, the number of components, m, is
equal to the number processes, n, and only process i can update component i.

A max register, r, is an object that supports two operations, ReadMax(r), which returns
the value of r, and WriteMax(r, v), which sets the value of r to v ∈ N, if its value was less
than v. Thus, a ReadMax(r) operation returns the largest value of v in any WriteMax(r, v)
operation that is linearized before it. For any positive integer k, a bounded max register
with range k is a max register whose values are restricted to {0, . . . , k − 1}. We say that it
has type MaxRegk.

A 2-component max array consists of a pair of bounded max registers, with an atomic
operation that returns the values of both of them and operations that update each of them.
Specifically, an object, r, of type MaxArrayk×h supports three linearizable operations:

— MaxUpdate0(r, v), which sets the value of the first component of r to v ∈ {0, . . . , k − 1} if
its value is less than v,

— MaxUpdate1(r, v) sets the value of the second component of r to v ∈ {0, . . . , h − 1} if its
value is less than v, and

— MaxScan(r), which returns the value of r, i.e. it returns a pair (v, v′) such that v and v′ are,
respectively, the largest values in any MaxUpdate0(r, v) and MaxUpdate1(r, v′) operations
that are linearized before it.

The results of two MaxScan(r) operations in a linearizable execution are never incomparable
under the componentwise ≤ partial order, i.e., it is never the case that u < v and u′ > v′,
for any pair of MaxScan operations returning (u, u′) and (v, v′).
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Algorithm 1 An implementation of a MaxRegk object, for k > 1

Shared data:
switch: a single bit multi-writer register, initially 0
left: a MaxRegm object, where m is typically dk/2e, initially 0,
right: a MaxRegk−m object, initially 0

1: WriteMax(r, v):
2: if v < m
3: if r.switch = 0
4: WriteMax(r.left, v)
5: else
6: WriteMax(r.right, v −m)
7: r.switch← 1

8: ReadMax(r):
9: if r.switch = 0
10: return ReadMax(r.left)
11: else
12: return ReadMax(r.right) + m

A b-limited-use object limits the total number of update operations (e.g. Increment, Add,
or Update) that can be applied to it during an execution to at most b. Operations that do
not change the value of the object can be applied an unlimited number of times.

The step complexity of an operation in an implementation of an object is the worst-case
number of accesses to shared memory by a process while performing a single instance of
the operation.

3. IMPLEMENTING A 2-COMPONENT MAX ARRAY

We begin with a description of the implementation of a MaxRegk object from registers [Asp-
nes et al. 2012a], since our implementation of a MaxArrayk×h object is based on it. The
smallest max register, the trivial MaxReg1 object, requires no reads or writes and uses no
space: WriteMax(r, 0) does nothing and ReadMax(r) simply returns 0. To get larger max
registers, smaller ones are combined recursively.

Pseudocode for the implementation of a basic MaxRegk object, r, with range k appears
in Algorithm 1. It consists of a single bit register, r.switch, and two smaller max registers,
r.left, with range m < k and r.right, with range k −m. When r.switch = 0, the value of r
is the value of r.left; when r.switch = 1, the value of r is m plus the value of r.right. This
gives a simple recursive algorithm for ReadMax. If v ≥ m, a process performs WriteMax(r, v)
by recursively calling WriteMax(r.right, v −m) and then setting r.switch to 1. Otherwise, it
first checks that r.switch = 0 and, if so, recursively calls WriteMax(r.left, v). If r.switch = 1,
the value of r is already at least m, so no recursive call is needed. When m = dk/2e at each
step of the recursion, the construction results in a balanced tree of depth dlog2 ke. Both
ReadMax and WriteMax then have O(log k) step complexity.

As observed by Aspnes et al. [2012a], it is also possible to use an unbalanced tree to make
the cost of each operation depend on the value written or read, giving a cost of O(log v) to
read or write v. We will show that a similar strategy works for max arrays.

Next, we turn attention to the implementation of a MaxArray2×2 object, r. Suppose
we use two MaxReg2 objects, r0 and r1, one storing the value of each component. Then
MaxUpdate0(r, v) can be performed by performing WriteMax(r0, v) and MaxUpdate1(r, v) can
be performed by performing WriteMax(r1, v). However, it is incorrect to perform MaxScan(r)
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by simply collecting the values of both components, i.e., by performing ReadMax(r0) followed
by ReadMax(r1). For example, consider an execution in which processes p and p′ each perform
MaxScan(r) by performing ReadMax(r0) followed by ReadMax(r1), interleaved with an update
to the first component and an update to the second component, both performed by process
q. If the execution occurs as in Figure 1, p returns (0,1) and p′ returns (1,0), which are
incomparable. Thus, it is impossible to linearize both their operations.

p: ReadMax(r0) ReadMax(r1)
p′: ReadMax(r0) ReadMax(r1)
q: MaxUpdate0(r, 1) MaxUpdate1(r, 1)

Fig. 1. An execution of an incorrect implementation of a MaxArray2×2 object

However, if the only possible values are 0 and 1, there is a correct implementation of
MaxScan(r) that is only slightly more complicated: When a process obtains (0,0) from a
collect, it can return (0,0) and its operation can be linearized at its first step. Similarly, a
process that obtains (1,1) can return (1,1) and be linearized at its last step. If a process
obtains either (0,1) or (1,0), it can return the pair of values resulting from performing
ReadMax(r0) and ReadMax(r1) again. Since the value of each component is nondecreasing,
its second collect will either return (1,1) or the same pair as its first collect. In the latter case,
we have an identical double collect [Afek et al. 1993], and the operation can be linearized
between the two collects.

More generally, if r is a MaxArrayk×h object, then MaxScan(r) can be performed by
repeatedly performing ReadMax(r0) followed by ReadMax(r1) until the result is either (0,0),
(k, h), or the same pair twice in a row. Unfortunately, the worst case step complexity of
this implementation is Θ((k + h)(log k + log h)), since the value of the first component can
change k − 1 times and the value of the second component can change h− 1 times.

The challenge in implementing a significantly faster MaxArrayk×h object is to ensure
that, in each execution, all pairs returned by the MaxScan operations are comparable. Our
approach is to make the MaxScan operations be responsible for this coordination. For the
first component, we use the same binary tree as in the preceding implementation of a
MaxRegk object. In addition, we insert a MaxRegh object for the second component at every
node in the tree. The MaxRegh object at the root of the tree corresponds to the second
component, while the copies at the rest of the nodes are used for coordination.

Formally, our implementation of a MaxArrayk×h object r is recursive. When k = 1,
we use a single MaxRegh object, r.second. MaxScan(r) returns (0, x), where x is the re-
sult of performing ReadMax(r.second). MaxUpdate1(r, v) performs WriteMax on this object.
MaxUpdate0(r, v) does nothing.

When k > 1, r consists of a MaxArraym×h object r.left, a MaxArray(k−m)×h object r.right,

a binary register r.switch, and a MaxRegh object r.second. In the simplest case, m = dk/2e,
but the value of m can be adjusted, as with max registers, to make the cost of max array
operations depend on the stored values.

Pseudocode is presented in Algorithm 2.
To perform MaxUpdate0(r, v), a process uses the algorithm for WriteMax, ignoring

MaxRegh objects. To perform MaxUpdate1(r, v), a process simply performs WriteMax on
the MaxRegh object at the root of the tree, ignoring the rest of the MaxRegh objects at other
nodes of the tree.

The MaxScan operation obtains the value of the first component by traversing a path
from the root to a leaf, as in ReadMax. The second component is obtained from the MaxRegh
object at this leaf. A subtle helping mechanism propagates values of the second component
down the path in the tree, while it is being traversed. Specifically, a process performing
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Algorithm 2 An implementation of a MaxArrayk×h object for k > 1

Shared data for a MaxArrayk×h object r:
switch: a 1-bit multi-writer register, initially 0
left: a MaxArraym×h object, where m is typically dk/2e,

initially (0,0)
right: a MaxArray(k−m)×h object, initially (0,0)
second: a MaxRegh object, initially 0

1: MaxUpdate0(r, v): // write to the first component of a MaxArrayk×h object r
2: if v < m
3: if r.switch = 0
4: MaxUpdate0(r.left, v)
5: else
6: MaxUpdate0(r.right, v −m)
7: r.switch← 1

8: MaxUpdate1(r, v): // write to the second component of a MaxArrayk×h object r
9: WriteMax(r.second, v)

10: MaxScan(r): // for a MaxArrayk×h object r
11: x← ReadMax(r.second)
12: if r.switch = 0
13: WriteMax(r.left.second, x)
14: return MaxScan(r.left)
15: else
16: x← ReadMax(r.second)
17: WriteMax(r.right.second, x)
18: return MaxScan(r.right) + (m, 0)

MaxScan(r) begins by performing ReadMax on the MaxRegh object at the root of the tree.
If the switch bit at the root of the tree is 0, it updates the MaxRegh object at the left child
of the root with the value it obtained from the MaxRegh object at the root and recursively
performs MaxScan on the left subtree. If the bit at the root of the tree is 1, it repeats the
ReadMax on the MaxRegh object at the root of the tree and updates the MaxRegh object
at the right child of the root with the value it receives. In this case, it then recursively
performs MaxScan on the right subtree and adds m to the first component of the result. It
is important that, at each internal node, the ReadMax of second is performed before switch
is read. Together with the fact that the value of second is nondecreasing, this ensures that
the result of the ReadMax by a process that goes to the left subtree is never larger than the
result of the second ReadMax by a process that goes to the right subtree.

Note that a MaxArrayk×1 object is essentially a MaxRegk object: WriteMax is identical to
MaxUpdate0 and ReadMaxcan be obtained from MaxScan by deleting lines 11, 13, 16, and 17
and changing (m, 0) to m on line 18.

3.1. Linearizability of Algorithm 2

We show that our implementation is linearizable. We do this by showing that, in any
execution, the pairs returned by MaxScan(r) operations are comparable under componen-
twise ≤ and use this total ordering to linearize these operations. Then we linearize the
MaxUpdate0(r, v) and MaxUpdate1(r, v) operations in a consistent manner before, after, and
between them. We begin with some technical lemmas.
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Lemma 3.1. For any execution, if v is the value of the local variable x the first time
WriteMax(r.right.second, x) is performed on line 17, then, at all points in the execution,
r.left.second ≤ v.

Proof. Consider the MaxScan(r) operation op that first performs
WriteMax(r.right.second, x) on line 17. Prior to this step, op read r.switch = 1 on
Line 12 and then received some value v when it performed ReadMax(r.second) on Line 16.

The value of r.left.second is initially 0 and is changed only when a MaxScan(r) operation
op′ performs WriteMax(r.left.second, x) on Line 13 and r.left.second < x. The value of x at
this step is the value v′ that op′ obtained by performing ReadMax(r.second) on Line 11, prior
to reading r.switch = 0 on Line 12.

Since r.switch only changes from 0 to 1, the ReadMax(r.second) by op′ on Line 11 occurred
before the ReadMax(r.second) by op on line 16. Since r.second is a max register, v′ ≤ v.
Thus, at all points in the execution, r.left.second ≤ v.

Lemma 3.2. Let v be the value of the second component of the pair returned by a
MaxScan(r) operation. Then the value of r.second is at least v when the operation returns.

Proof. By induction on the range, k, of the first component. If r is a MaxArray1×h
object, then the second component returned by a MaxScan(r) operation is the result of
ReadMax(r.second), which is the value of r.second.

Now let r be a MaxArrayk×h object, where k > 1. Suppose the claim is true for r.left and
r.right.

There are two cases. If r.switch = 0, then the second component of the pair returned
by a MaxScan(r) operation on Line 14 is the second component of the pair returned by
MaxScan(r.left), which, by the induction hypothesis, is at most the value of r.left.second.
Otherwise, r.switch = 1 and the second component of the pair returned by a MaxScan(r)
operation on Line 18 is the second component of the pair returned by MaxScan(r.right),
which, by the induction hypothesis, is at most the value of r.right.second.

Whenever WriteMax(r.left.second, x) is performed on Line 13 or
WriteMax(r.right.second, x) is performed on Line 17, the value of x is the result of a
preceding ReadMax(r.second) operation. Since r.second is a max register, its value never
decreases, so r.left.second, r.right.second ≤ r.second.

Lemma 3.3. Let v be the value of the second component of the pair returned by a
MaxScan(r) operation. Then the value of r.second is at most v when the operation is
invoked.

Proof. By induction on the range, k, of the first component. If k = 1, and r is a
MaxArray1×h object, then the second component returned by a MaxScan(r) operation is
the result of ReadMax(r.second). Then the claim follows from the fact that the value of the
MaxRegh object r.second does not decrease.

Now let r be a MaxArrayk×h object, where k > 1. Suppose the claim is true for r.left and
r.right. Let v′ be the value of r.second when a MaxScan(r) operation op′ is invoked. Then
the value of x immediately after op′ performs ReadMax(r.second) on Line 11 is at least v′.

If op′ performs WriteMax(r.left.second, x) on Line 13, then the value of r.left.second will be
at least v′ when op′ invokes MaxScan(r.left) on Line 14. Then, by the induction hypothesis,
the second component of the pair returned by this operation (and, hence by MaxScan(r)) is
at least v′.

Otherwise, on Line 16, op′ sets x to the result of ReadMax(r.second), which is still at
least v′. Then op′ performs WriteMax(r.right.second, x) on Line 17. Hence, the value of
r.right.second will be at least v′ when op′ invokes MaxScan(r.right) on Line 18. By the
induction hypothesis, the second component of the pair returned by this operation (and,
hence by MaxScan(r)) is at least v′.
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Theorem 3.4. The MaxArrayk×h implementation in Algorithm 2 is linearizable.

Proof. By induction on the range, k, of the first component. The linearizability of the
MaxArray1×h implementation follows immediately from the linearizability of the MaxRegh
object that represents it.

Now let k > 1. Suppose that 1 ≤ m < k, r.left is a linearizable MaxArraym×h object,
and r.right is a linearizable MaxArray(k−m)×h object. We will show that r is a linearizable
MaxArrayk×h object.

Consider any execution and let (x0, x1) and (x′0, x
′
1) be the pairs returned by two

MaxScan(r) operations op and op′. If both are the result of MaxScan(r.left) on Line 14,
then, by the induction hypothesis, they can be ordered in a consistent manner. The same is
true if both are (m, 0) plus the result of MaxScan(r.right) on Line 18. Otherwise, one of the
pairs, say (x0, x1), is the result of MaxScan(r.left) on Line 14 and (x′0, x

′
1) is equal to (m, 0)

plus the result of MaxScan(r.right) on Line 18.
The only instruction that updates the first component of r.left is MaxUpdate0(r.left, v) on

Line 4. By the test on Line 2, v < m. Hence x0 < m. Initially, r.right = 0, so, by Line 18,
x′0 ≥ m. Thus x0 < x′0.

By Lemma 3.2, x1 ≤ r.left.second. Let v be the value of x the first time during the
execution that WriteMax(r.right.second, x) is performed on Line 17. Then, by Lemma 3.1,
r.left.second ≤ v.

Since r.right.second is a MaxRegh object, which never decreases in value, r.right.second ≥ v
when op′ invokes Line 18. By Lemma 3.3, x′1 ≥ v. Hence x1 ≤ x′1 and op is linearized before
op′.

The only step performed by a MaxUpdate1(r, v) operation is WriteMax(r.second, v) on
Line 9. It follows from Lemmas 3.2 and 3.3 that it can be linearized among the MaxScan(r)
operations.

Provided r.switch = 0, the MaxUpdate0(r, v) operations with v < m can be linearized
where the MaxUpdate0(r.left, v) operations on Line 4 are linearized, which, by the induction
hypothesis, can be linearized among the MaxScan(r.left) operations. When r.switch = 1, the
MaxUpdate0(r, v) operations with v < m have no effect and they can be linearized when
they return.

Similarly, each MaxUpdate0(r, v) operation with v ≥ m performs a MaxUpdate0(r.right, v−
m) operation on Line 6. By the induction hypothesis, these operations can be linearized
among the MaxScan(r.right) operations, each of which corresponds to a MaxScan(r) oper-
ation that reads r.switch = 1 on Line 12. The MaxScan(r.right) operations all occur after
r.switch becomes 1. Any MaxUpdate0(r, v) operation with v ≥ m that performs Line 6 when
r.switch = 0 can be linearized when r.switch is changed to 1, which occurs at or before it
performs Line 7.

3.2. Step complexity

Our MaxArrayk×h implementation has step complexity that is polylogarithmic in h and k.

Lemma 3.5. For the MaxArrayk×h implementation in Algorithm 2, using a balanced tree
for both the max array and the embedded max registers, the step complexity of MaxUpdate0 is
O(log k), the step complexity of MaxUpdate1 is O(log h), and the step complexity of MaxScan
is O(log k log h).

Proof. A MaxUpdate1(r, v) operation performs one WriteMax operation on a MaxRegh
object, which has step complexity O(log h). A MaxUpdate0(r, v) operation accesses the bi-
nary register r.switch once and performs one MaxUpdate0(r′, v′) operation, where r′ is a
MaxArraym×h object or a MaxArray(k−m)×h object, and m = dk/2e. If T (k) is the step

complexity of MaxUpdate0(r, v) for a MaxArrayk×h object r, it follows that T (1) = 0 and
T (k) = T (dk/2e) + 1. Hence T (k) is O(log k).
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A MaxScan(r) operation reads r.switch once, performs at most two ReadMax(r.second)
operations, each taking O(log h) steps, performs one MaxUpdate1(r′, v′) operation, which
also takes O(log h) steps, and performs one MaxScan(r′) operation, where m = dk/2e and
r′ is a MaxArraym×h object or a MaxArray(k−m)×h object. If Th(k) is the step complexity
of a MaxScan operation on a MaxArrayk×h object, then

Th(k) = Th(dk/2e) + O(log h).

Since Th(1) is O(log h), it follows that Th(k) is O(log k log h).

The structure of the proof suggests an alternative interpretation of the cost: each
MaxUpdate0(v) operation traverses a path through the tree corresponding to the bits in
v, performing O(1) register and max register operations for each node; so does a MaxScan
operation returning (−, v). Because the correctness of the max array implementation does
not depend on the structure of the tree, we can replace the balanced tree with an unbalanced
tree (as described by Aspnes et al. [2012a]) where each value v is encoded by a string of
O(log v) bits. This requires traversing O(log v) nodes to perform a WriteMax1(v) or ReadMax
returning (−, v). By similarly using an unbalanced-tree implementation of a max register
at each node, we get a cost of O(log v1 log v2) for any operation on a max array that leaves
it in state (v1, v2).

It is worth noting that, while this construction allows the cost of the max array to adapt
to the size of the stored values, it is still necessary for the values to be bounded in order
to avoid starvation by slow readers. Later (in Section 6), we show that for the particular
application of building snapshots, we can overcome this limitation by combining a fast (but
limited-use) implementation of a snapshot based on bounded max registers with a standard,
unlimited-use snapshot, obtaining a graceful increase in the cost of a snapshot over time
that eventually converges to the cost of a standard snapshot.

It is also worth noting that by modifying the algorithm, it is possible to swap the step com-
plexities of the MaxUpdate and MaxScan operations: instead of paying O(log b) for MaxUpdate
and O(log2 b) for MaxScan on a max array of size b× b, we can pay O(log2 b) for MaxUpdate
and only O(log b) for MaxScan. This may improve the complexity of algorithms that perform
MaxScan operations more often.

The basic idea is that the MaxUpdate operations now do the work of coordinating the
pairs. The new MaxArrayb×b object r′ consists of r and a MaxRegb2 object, view, that holds
the current view stored in r. We can use a max register to store an ordered pair in {0, b−1}×
{0, b− 1} by extending the component-wise partial order on {0, b− 1}×{0, b− 1} to a total
order, for example, lexicographically. To perform MaxScan(r′), a process simply performs
ReadMax(view) and is linearized at the same point. To perform MaxUpdatei(r′, v), a process
performs MaxUpdatei(r, v) followed by v′ ← MaxScan(r) and then WriteMax(view, v′). A
MaxUpdatei(r′, v) operation is linearized at the first point following its invocation at which
view contains a pair whose value is at least v in component i. This implies that any ω(log b)
lower bound on the step complexity of a 2-component max array has to allow a trade-off
between the step complexities of the MaxScan and MaxUpdate operations.

For c > 2, our 2-component max array implementation easily extends to a c-component
max array in a recursive manner, by having r.second be a (c − 1)-component max array,
instead of a max register, and having r.left and r.right be c-component max arrays, instead
of 2-component max arrays. Then the complexity of MaxUpdatei is i+O(log ki), where ki is

the range of component i, and the complexity of MaxScan is O(
∏c−1

i=0 log ki).

4. SINGLE-WRITER SNAPSHOTS FROM 2-COMPONENT MAX ARRAYS

Recall that a single-writer snapshot has one component per process and only process i can
update component i. We build a (b − 1)-limited-use single-writer snapshot object from
MaxArrayb×b objects, registers, and a MaxRegb object. An example of our implementation,
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Fig. 2. A limited-use single-writer snapshot object shared by 3 processes. Grayed values correspond to an
update operation in progress. Sequences outside the view arrays represent entries of the seq arrays from the
proof of correctness. Not all array locations are shown.

with an Update(3, s) operation in progress, is depicted in Figure 2. We use a strict, balanced,
binary tree with n leaves, one for each process. Each leaf leafi has an array, leafi.view,
of b registers, which contains the sequence of values that have been used for updates to
component i. The initial value of component i is stored in leafi.view[0]. Each process i has
a local variable, counti, which is nondecreasing and persistent (i.e. its value is maintained
across invocations, rather than re-initialized each invocation), that is used as a pointer (or
index) into leafi.view.

Similarly, each internal node, u, has an array, viewu, of b registers, each containing a
partial snapshot of the components corresponding to the leaves in the subtree rooted at u.
The concatenation of leafi.view[0] for all leaves, leafi, in the subtree rooted at an internal
node u, is stored in u.view[0]. For each (leaf or internal) node u in the tree, we keep track
of the number of Update operations performed by processes whose leaves are in the subtree
rooted at u. This number is used as a pointer (or index) into u.view. The pointer associated
with the root is stored in the max register root.mr. The pointer associated each other node
is stored in one component of the 2-component max array, ma, contained in its parent. This
pointer is stored in component 0 if the node is the left child of its parent and in component
1 if the node is the right child of its parent. Having the pointers associated with each pair
of siblings stored in a 2-component max array at their parent guarantees that pairs of views
(and eventually the entire view) seen by different processes are comparable.

Pseudocode for our implementation is given in Algorithm 3.
To perform a Scan, a process simply takes the result of a ReadMax of the MaxRegb stored

at the root and uses it to index the array at the root. The step complexity of Scan is
dominated by the step complexity of ReadMax, which is O(log b).

When a process updates its component of the snapshot object, it writes the new value to
the first empty location in the array at its leaf and increases the value of the pointer held
in its leaf to point to the location of this new value. Then it propagates this new value up
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the tree, combining partial snapshots. Specifically, at an internal node, a process performs
a MaxScan of ma, the 2-component max array containing the pointers held at its children,
and reads the array elements to which they point to obtain a partial snapshot. Its new
pointer is the sum of the two pointers held at its children. The process stores the partial
snapshot at the location in the array to which it points. The 2-component max arrays ensure
linearizability. Since each MaxScan operation takes O(log2 b) steps and the tree has O(log n)
height, the step complexity of Update is O(log2 b log n).

The resulting algorithm is similar to the lattice agreement procedure of Inoue et al. [1994],
except that we use MaxScan in place of double collects and we allow processes to update
their values more than once.

The length of the array at a node is one greater than the total number of updates that
can be performed by processes whose components are in the subtree rooted at that node.
The pointer to this array is initially 0 and its maximum value is one less than the length
of the array. Thus, if the arrays at a pair of siblings have length k and h, respectively, a
MaxArrayk×h object can be used to store the pointers held by those nodes.

The size of each register in an array is the sum of the maximum sizes of the components
in the partial snapshot it stores. This may be impractical, unless it is possible to represent
the important information in a partial snapshot in a condensed manner. For example, a
generalized counter can be implemented using a single-writer snapshot in which component
i contains the sum of the values process i has added to the counter. Then each partial
snapshot stored in a register (in an array) can be replaced by the sum of its components.
The upper bound on the number of Add operations that can be performed by each process
in the generalized counter is the number of times that process can update its component in
the single-writer snapshot. This construction is similar to the f -array of Jayanti [2002] for
efficient computation of aggregate functions (such as max and sum) of the elements of an
array. Because the pointers are nondecreasing, we can use 2-component max arrays instead
of the more powerful primitives used in that paper.

4.1. Linearizability of Algorithm 3

Now we show that our implementation is linearizable. A Scan operation is linearized when
it performs ReadMax(root.mr) on Line 20. If ptr = d when an Update operation performs
Line 16 with u = root, then the Update operation is linearized the first time any process
performs WriteMax(root.mr, ptr) on Line 18 with ptr ≥ d. The Update operation performs
Line 18 with ptr = d before it returns, so its linearization point occurs before it returns.
The following lemma shows that its linearization point occurs after it begins.

Lemma 4.1. If d is the index stored at root.mr when an Update operation begins, then
ptr > d when the operation perform WriteMax(root.mr, ptr) on Line 18.

Proof. We also prove that, when an Update operation tries to update a pointer stored
in a component of a MaxArray to ptr on Line 8 or 10, ptr is greater than the index stored
at the component when the Update began.

The proof is by induction. The claim is true for a pointer held at a leaf. This is because
only one process updates the pointer, it is intially 0, and counti is incremented on Line 2
before it is assigned to ptr on Line 4.

Suppose the claim is true for a pointer held at a non-root node. The pointer held at its
sibling never decreases. Since ptr is the sum of these two indices, the claim is true at the
parent of this node, whether or not it is the root.

Now, we prove that our linearization satisfies the specifications of a snapshot object.
For the purpose of the proof, we introduce an auxiliary array, seq[0..b− 1], stored at each

node. We imagine that, when Line 4 is performed, leafi.seq[ptr] ← ptr is performed at the
same time and, when Line 15 is performed, u.seq[ptr]← u.left.seq[lptr] · u.right.seq[rptr] is

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12

Algorithm 3 An implementation of a (b − 1)-limited-use single-writer snapshot object s,
code for process i.

Shared data:
leafj , for j ∈ {0, . . . , n− 1}:

the leaf node corresponding to process j, with field:
view[0..b− 1]: an array, each of whose entries contains a value of component j

view[0] contains the initial value of component j
root: the root of the tree
Each internal node has the fields:
left: the left child of the node in the tree
right: the right child of the node in the tree
view[0..b− 1]: an array, each of whose entries contains a partial snapshot

of the components with leaves in the subtree rooted at this node
view[0] contains the concatenation of the initial values of these components

ma: a MaxArrayb×b object, initially (0,0)
The root also has the field:
mr: a MaxRegb object, initially 0
Each non-root node also has the field:
parent: the parent of the node in the tree

Persistent local data: counti, initially 0.

1: Update(s, i, v)
2: counti ← counti + 1
3: u← leafi
4: ptr ← counti
5: u.view[ptr]← v
6: repeat
7: if u = u.parent.left
8: MaxUpdate0(u.parent.ma, ptr)
9: if u = u.parent.right
10: MaxUpdate1(u.parent.ma, ptr)
11: u← u.parent
12: (lptr, rptr)← MaxScan(u.ma)
13: lview ← u.left.view[lptr]
14: rview ← u.right.view[rptr]
15: ptr ← lptr + rptr // concatenate the views from the left and right
16: u.view[ptr]← lview · rview
17: until u = root
18: WriteMax(root.mr, ptr)

19: Scan(s)
20: ptr ← ReadMax(root.mr)
21: return root.view[ptr]
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performed at the same time. Thus, each element of u.seq is a sequence of pointers, one into
the array at each leaf of the subtree rooted at u. The following invariants are maintained:

— ptr is the sum of the elements in the sequence u.seq[ptr],
— if ptr ≤ ptr′, then each component of u.seq[ptr] is less than or equal to the corresponding

component of u.seq[ptr′], and
— the j -th component of u.view[ptr] is equal to the element of view in the j -th leaf

of the subtree rooted at node u pointed to by the j -th component of u.seq[ptr], i.e.
(u.view[ptr])j = `.view[(u.seq[ptr])j ], where ` is the j -th leaf of the subtree rooted at node
u.

The second of these follows inductively from Line 12 and the fact that u.ma is a linearizable
max array.

Consider an Update operation by process i that is linearized when process j performs
Line 18. Suppose that ptr = c when process j performs Line 18 and suppose that ptr = d
when the Update operation by process i performs Line 18. By the definition of the lin-
earization points, c ≥ d. Hence (root.seq[c])i ≥ (root.seq[d])i. Only process i modifies the
pointer at leafi (setting it to counti) and its operation is linearized before it returns, so
(root.seq[c])i ≤ counti ≤ (root.seq[d])i. Therefore (root.seq[c])i = (root.seq[d])i = counti.
Similarly, any other Update operation that is linearized after this Update operation by pro-
cess i is linearized, but before any other Update operation by process i is linearized, has
(root.seq[ptr])i = counti when it performs Line 18.

Consider any linearized Scan operation op. Suppose that root.seq[ptr] = (f0, . . . , fn−1)
when it performs Line 20. Then root.view[f ] = (v0, . . . , vn−1) is the view it returns, where
f = f0 + · · · + fn−1 and vj = leafj .view[fj ] for j = 0, . . . , n − 1. We need to show that
vj is the value written by process j in its last Update operation, opj , linearized before op.
Suppose that ptr = c when opj is linearized. From the preceding paragraph, it follows that
(root.seq[f ])j = (root.seq[c])j = countj . Since every Update by process j sets countj to a
new value on Line 2, opj updated component j with value vj in leafj .view[countj ]. Similarly,
if there is no Update operation by process j that is linearized before op, countj = 0 and
vj = leafj .view[0] is the initial value of component j.

Thus, we have proved:

Theorem 4.2. The (b− 1)-limited-use single-writer snapshot implementation in Algo-
rithm 3 is linearizable.

4.2. Step Complexity

Lemma 4.3. For the (b − 1)-limited-use single-writer snapshot implementation in Al-
gorithm 3, the step complexity of Scan is O(log b) and the step complexity of Update is
O(log2 b log n).

Proof. A Scan operation performs one ReadMax on a MaxRegb object and reads one
entry from the array root.view. Hence it has step complexity O(log b).

An Update operation performs at most dlog2 ne iterations, one for each ancestor of leafi.
In each iteration, there is one MaxUpdate operation and one MaxScan operation applied to
a MaxArrayb×b object and a constant number of accesses to entries of view arrays. Finally,
one WriteMax operation is performed on the MaxRegb at root. This implies the claimed step

complexity of O(log2 b log n).

For simplicity, we have been assuming that the max array at each node has range b,
which gives a fixed cost for each max array operation. Because the correctness of the
snapshot does not depend on the implementation of the max array, using unbalanced max
arrays instead gives O(log2 s log n) cost for each snapshot operation, where s is the number
of updates that are linearized before the operation.
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Many objects can be implemented from single-writer snapshot objects so that each of
their operations uses only O(1) snapshot operations. In addition to generalized counters
(and counters), this is true for any object that only supports read operations, which do
not change the state of the object, and update operations, which do not return a value,
provided that each pair of update operations either commutes or one overwrites the other
[Anderson and Moir 1993; Aspnes and Herlihy 1990]. Combining such an implementation
with our implementation of a single-writer snapshot object gives an implementation of the
object from registers in which each operation has O(log3 n) step complexity, provided only
a polynomial number of operations are performed.

5. MULTI-WRITER SNAPSHOTS

The previous section considered a single-writer snapshot object, in which each component
can only be updated by a single process. Here, we extend this to implement a c-component
multi-writer snapshot object, s′, where each component can be updated by every process.
This is done by using a single-writer snapshot object, s, and having each process record its
own updates to each multi-writer component along with a timestamp. When these records
are scanned, the value for each multi-writer component is the value written with the largest
timestamp. The local function CombineScan(c, view) takes a view resulting from a scan and
returns a vector of c pairs, one for each component j, containing the largest timestamp that
any process has used to update component j, together with its associated value. Pseudocode
for our implementation is given in Algorithm 4.

We use a (b − 1)-limited-use max register to implement the generation of a timestamp.
The step complexity to perform GetTS is O(log b). To ensure that two different processes
don’t ever get the same timestamp, we multiply the result by n and then add the process id.
Equivalently, we could append the process id to the end of the timestamp. Both approaches
enable the process that generated a specific timestamp to be easily computed from the
value of the timestamp (by taking the remainder when dividing by n or 2dlog2 ne, respec-
tively). This timestamp implementation is linearizable, with GetTS operations linearized in
increasing order of the timestamps they return.

Theorem 5.1. The (b−1)-limited-use multi-writer snapshot implementation in Algo-
rithm 4 is linearizable. The step complexity of MW-Scan(s) is O(log b) and the step complexity
of MW-Update(s, j, v) is O(log2 b log n).

Proof. The step complexity of MW-Scan(s′) is the same as that of Scan(s), and the step
complexity of MW-Update(s′, j, v) is the sum of the step complexities of GetTS(timestamp)
and Update(s, i, recordi).

We linearize MW-Scan(s′) when it performs Scan(s) on Line 5. Consider an instance op
of MW-Update(s′, j, v) by process i that uses timestamp t. If no other process i′ performs an
Update on Line 3 with recordi′ [j].ts > t before op performs Line 3, we linearize op when it
performs Line 3. Otherwise, we linearize op at the first such step by any process i′. If multiple
MW-Update operations are linearized at the same step, they are ordered by their timestamps.
Since GetTS operations can be linearized in increasing order of the timestamps they return,
op is always linearized after it performs Line 2. Since every operation is linearized after it
begins and before it returns, the order of non-overlapping operations is preserved.

Note that, for each component j, if an instance of MW-Update(s′, j, v) with timestamp t
completes before an instance of MW-Update(s′, j, v′) with timestamp t′ begins, then t < t′.
Our choice of linearization points ensures that MW-Update operations on component j are
linearized in order of their timestamps. Since MW-Update operations are linearized at Update
steps, it follows that the largest timestamp for component j in the view produced by a Scan
was the result of the Update performed by the latest MW-Update operation on component j
linearized before that Scan. Thus, if (v0, . . . , vc−1) is the view returned by an instance op of
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Algorithm 4 An implementation of a (b−1)-limited-use c-component multi-writer snapshot
object s′, code for process i.

Shared data:
s: a single-writer snapshot object,

each component is an array of c pairs (val,ts),
each pair is initialized to (−, 0)

timestamp: a (b− 1)-limited-use max register
Persistent local data:

recordi[0..c− 1]: an array of pairs (val,ts),
each is initialized to (−, 0)

1: MW-Update(s′, j, v)
2: recordi[j]← (v, GetTS(timestamp))
3: Update(s, i, recordi)

4: MW-Scan(s′)
5: result← CombineScan(c, Scan(s))
6: return(result0.val, . . . , resultc−1.val)

7: CombineScan(c, view)
8: for 0 ≤ j < c do // find pair with largest timestamp for component j
9: k ← max{viewk[j].ts | 0 ≤ k < n} rem n
10: resultj ← viewk[j]
11: return result

12: GetTS(timestamp)
13: t← 1 + ReadMax(timestamp)
14: WriteMax(timestamp, t)
15: return(nt + i)

MW-Scan(s′), then, for each component j, the last MW-Update(s′, j, v) operation linearized
before op has v = vj . Therefore, the linearization satisfies the specifications of a multi-
writer snapshot object.

6. UNLIMITED-USE SNAPSHOTS

We can build an unlimited-use snapshot object that behaves like the limited-use snapshot
object as long as its operations are not too expensive, and falls back to a snapshot object
with linear step complexity otherwise. The construction uses a switch bit to choose between
the two objects. As long as the switch bit is 0, all operations use the limited-use snapshot
object. Once the switch is set to 1, new operations use the linear-complexity snapshot
object, while first reading the limited-use snapshot object and copying any old values from
it. The switch gets set by Update operations when they observe that the number of Update
operations that have been performed has reached some threshold T , which will be specified
as part of the complexity analysis.

Algorithm 5 is an implementation of an unlimited-use single-writer snapshot object.
It uses a (T + n − 1)-limited-use single-writer snapshot object, LimitedSnapshot, and
an unlimited-use single-writer snapshot object, LinearSnapshot, with linear step com-
plexity. The code uses the number of Update operations that have been performed on
LimitedSnapshot to decide when to switch. This can be obtained from the MaxReg at its
root. The switch is changed from 0 to 1 when this quantity reaches T .
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Algorithm 5 An implementation of an unlimited-use single-writer snapshot object, s, code
for process i

Shared data:
switch: a 1-bit multi-writer register, initially 0
LimitedSnapshot: a (T + n− 1)-limited-use single-writer snapshot object

each component is a pair (val, ts), initialized to (−, 0)
LinearSnapshot: a snapshot object with linear step complexity

each component is an array of n pairs (val, ts), initialized to (−, 0)
Persistent local data:

counti, initially 0
valuei, initially −

1: Update(s, i, v):
2: counti ← counti + 1
3: valuei ← v
4: if switch
5: view ← Scan(LimitedSnapshot)
6: viewi ← (v, counti)
7: Update(LinearSnapshot, i, view)
8: else
9: Update(LimitedSnapshot, i, (v, counti))
10: if at least T Updates have been performed then switch← 1
11: Scan(s)

12: Scan(s):
13: view ← Scan(LimitedSnapshot)
14: if switch
15: view ← Scan(LimitedSnapshot)
16: viewi ← (valuei, counti)
17: Update(LinearSnapshot, i, view)
18: views← CombineScan(n, Scan(LinearSnapshot))
19: return (view0.val, . . . , viewn−1.val)

When the switch is 1, a process i performing Update(s, i, v) first scans LimitedSnapshot
and propagates the information from all components j 6= i, together with its new value, v,
and sequence number for component i, to LinearSnapshot. This is used to ensure that up-
dates performed on LimitedSnapshot just prior to when the switch changed will not be lost.
A process that performs Scan(s) and sees that the switch is 1 also scans LimitedSnapshot
and propagates the information from all components j 6= i, together with the last value and
sequence number it used for updating component i of s, to LinearSnapshot. Then it scans
LinearSnapshot and uses the information it receives to determine the most recent value
for each component.

The i -th component of LimitedSnapshot stores the pair (valuei, counti) containing the
last value with which process i performed an Update and a sequence number, which is the
number of Update operations process i has performed. Since counti is nondecreasing, the
sequence number stored in the i -th component fo LimitedSnapshot is also nondecreas-
ing. When any process performs Scan(LimitedSnapshot), we say that it sees this pair in
component i.

The i -th component of LinearSnapshot stores an array of such pairs. The i -th entry
of this array is (valuei, counti). The j -th entry of this array, for j 6= i, is the pair process
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i saw in component j when it last performed Scan(LimitedSnapshot). If V iews is the
result when a process performs Scan(LinearSnapshot), we say that the process sees the
pair (v, c) in component i if V iewsj [i] = (v, c) for some process j.

Observation 1. The sequence number in each array entry j in each component i of
LinearSnapshot is nondecreasing.

Proof. Component i of LinearSnapshot changes when process i performs
Update(LinearSnapshot, i, view) on Line 7 or 17. Prior to this, process i sets view to the
result of Scan(LimitedSnapshot) on Line 5 or 15 and then sets viewi.ts to counti on Line 6
or 16. Since counti is nondecreasing, entry i in component i is nondecreasing. If j 6= i, then
entry j in component i is also nondecreasing, because component j of LimitedSnapshot is
nondecreasing.

Lemma 6.1. The unlimited-use single-writer snapshot implementation in Algorithm 5
is linearizable.

Proof. Consider any execution. We will first give linearization points for all Scan and
Update operations peformed on the unlimited use snapshot object s. Then we will show that,
for each component, i, each Scan(s) operation returns the value of the last Update operation
on s by process i that was linearized before it. Since LimitedSnapshot and LinearSnapshot
are linearizable objects, we treat all Scan and Update operations peformed on them as if
they occur atomically.

All Scan(s) operations that see switch = 1 are linearized when they perform
Scan(LinearSnapshot) on Line 18. All Scan(s) operations that return on Line 24 are lin-
earized when they perform Scan(LimitedSnapshot) on Line 13.

Now consider an Update(s, i, v) operation Ui by process i. Suppose it assigns value c to
counti on Line 2. If switch = 0 on Line 4, it performs Update(LimitedSnapshot, i, (v, c)) on
Line 9, followed by Scan(s) on Line 11. The latter begins with Scan(LimitedSnapshot) on
Line 13 in which process i sees (v, c) in component i. This is because it is the only process
that can update component i of LimitedSnapshot.

If switch = 1 on Line 4, Ui performs Update(LinearSnapshot, i, view) with viewi =
(v, c) on Line 7, instead. Next it performs Scan(s) on Line 11, which performs
Update(LinearSnapshot, i, view) with viewi = (v, c) followed by Scan(LinearSnapshot)
on Line 18. Note that process i sees (v, c) in component i, since it is the only process that
can update component i of LinearSnapshot.

In both cases, we linearize Ui immediately before the first linearized Scan(s) operation
(by any process) that sees (v, c) in component i. Note that this happens before Ui completes.
Also, it cannot happen until after Ui performs an Update operation on LimitedSnapshot
or LinearSnapshot on Line 7 or Line 9. Therefore, each operation is linearized within its
execution interval and the order of non-overlapping operations is preserved.

Let S be a Scan(s) operation that returns value v in component i. Then, from the
code, it saw (v, c) in component i during a Scan(LimitedSnapshot) on Line 13 or
a Scan(LinearSnapshot) on Line 18, for some sequence number c. By definition, the
Update(s, i, v) operation , Ui, with counti = c is linearized before S.

First, suppose that S is linearized when it performed Line 13. Then switch = 0 when
it performed Line 14. Consider any Update operation U ′i on s by process i that is lin-
earized before S. It is linearized after performing Line 7 or Line 9, which is after it read
switch on Line 4. Thus switch = 0 when U ′i performed Line 4. Hence, U ′i called Update
on LimitedSnapshot on Line 9. When S performs Scan(LimitedSnapshot) on Line 13,
the pair , (v, c), it sees in component i is from the last preceding Update operation on
LimitedSnapshot by process i, which is performed during the last preceding Update oper-
ation on s by process i. Hence, Ui is the last Update operation linearized before S that is
performed on s by process i.
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Now suppose that S is linearized when it performs Scan(LinearSnapshot) on Line 18. If S
is performed by process i, then, on Line 17, it performed Update(LinearSnapshot, i, view)
with viewi = (valuei, counti). Since component i has not been updated with a timestamp
greater than counti, S returns valuei, which is the value of the last Update operation lin-
earized before S that is performed on s by process i.

Otherwise, S is performed by some other process j 6= i. Let U ′i be the last Update
operation on s by process i that is linearized before S, let v′ be the value with which
it updates s, and let c′ be the value U ′i assigns to counti on Line 2. If U ′i performed
Update(LinearSnapshot, i, view) on Line 7, then S sees (v′, c′) in component i. This is
because U ′i performed Line 7 before it was linearized and S was linearized when it performed
Scan(LinearSnapshot) on Line 18, which is after U ′i was linearized. In this case, S returns
v′ in component i and U ′i = Ui.

If not, U ′i performed Update(LimitedSnapshot, i, (v′, c′)) on Line 9 after reading switch =
0 on Line 4. Thus, every Update operation on s by process i that occurred before U ′i read
switch = 0 on Line 4 and performed an Update to LimitedSnapshot on Line 9.

If S performed Scan(LimitedSnapshot) on Line 15 after U ′i performed Line 9, then S
saw (v′, c′) in component i and performed Update(LinearSnapshot, j, view) with viewi =
(v′, c′) on Line 17. After performing Scan(LinearSnapshot) on Line 18, V iewsj [i] = (v′, c′),
since process j is the only process that can update component j of LinearSnapshot. Thus
S sees (v′, c′) in component i and returns v′ in component i. Therefore U ′i = Ui.

Finally, suppose that S performed Scan(LimitedSnapshot) on Line 15 before U ′i per-
formed Line 9. Since U ′i is linearized before S, some Scan(s) , S′, linearized at or before
S saw (v′, c′) in component i. This happened when S′ performed Scan(LimitedSnapshot)
on Line 13 or Line 15 or when it performed Scan(LinearSnapshot) on Line 18.

If S′ saw (v′, c′) when it performed Scan(LimitedSnapshot) on Line 13, U ′i must have
previously performed Update(LimitedSnapshot) on Line 9. Since this occurred after S per-
formed Line 15, which occurred after S read switch = 1 on Line 14, S′ read switch = 1
on Line 14 at its next step. Then S′ performed Scan(LimitedSnapshot) again on Line 15.
Since all updates to component i of LimitedSnapshot are performed by process i using suc-
cessively larger sequence numbers, the sequence number S′ saw when it performed Line 15
is at least c′. It cannot be larger than c′: Otherwise another update by process i would be
linearized after U ′i and before S′, and, hence, before S. This contradicts the choice of U ′i .
Therefore, in this case, S′ also saw (v′, c′) when it performed Line 15.

If S′ saw (v′, c′) in component i when it performed Scan(LimitedSnapshot) on Line 15,
it next performed an Update to LinearSnapshot on Line 17 with viewi = (v′, c′) and,
hence, saw (v′, c′) in component i when it performed Scan(LinearSnapshot) on Line 18.
Thus, no matter when S′ first saw (v′, c′) in component i, it saw (v′, c′) in component i,
when it performed Scan(LinearSnapshot) on Line 18.

S cannot have seen any pair with larger sequence number in component i: Otherwise,
another update by process i would be linearized between U ′i and S, contradicting the choice
of U ′i . Since S and S′ are linearized when they performed Line 18 and S′ is linearized at
or before S, it follows from Observation 1 that S also saw (v′, c′) in component i when it
performed Scan(LinearSnapshot) on Line 18. Therefore, S returns v′ in component i and
U ′i = Ui.

In all cases, component i of the result of a Scan operation on s is the value of the last
Update operation on s performed by process i that is linearized before the Scan.

The number of steps required by any operation on our unlimited-use single-writer snap-
shot object in Figure 5 depends on the choice of the threshold T .

Theorem 6.2. If T = O(2
√

n/ logn), then the step complexity of every Scan and Update
operation is O(n). Each Scan operation has O(log(T +n)) step complexity and each Update
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operation has O(log2(T + n) log n) step complexity, provided that it completes before T
Update operations have begun.

Proof. When fewer than T Update operations have begun, fewer than T Update op-
erations have been performed on LimitedSnapshot, so switch = 0. While switch = 0, each
Scan operation just performs a Scan on the (T + n− 1)-limited-use single-writer snapshot
object LimitedSnapshot, which has O(log(T + n)) step complexity. Furthermore, while
switch = 0, each Update operation performs an Update and a Scan on LimitedSnapshot,
plus a constant number of additional steps, so it has O(log2(T + n) log n) step complexity.

Both of these are O(n), since T = O(2
√

n/ logn).
Each Scan and Update operation accesses LimitedSnapshot and LinearSnapshot at

most a constant number of times, so it has O(n) step complexity.

Using balanced max arrays, Theorem 6.2 allows T to be tuned to optimize the trade-off
between minimizing the cost of each operation before T is reached and delaying the time at
which the algorithm switches to the more expensive O(n)-step snapshot. This sudden jump
in complexity can be ameliorated to some extent by using unbalanced max arrays instead.
In this case, after s updates, the cost of a max array operation is either O(log2 s log n) when
s ≤ T or O(n) when s > t. Because of the upper bound on T , this cannot eliminate the
discontinuity, but it can allow for adaptive behavior over an exponentially long sequence of
updates before resorting to the linear-time backup object.

6.1. An Unlimited-use Multi-writer Snapshot Object

A combination of the constructions used in Algorithms 4 and 5 can be used to obtain an
unlimited-use c-component multi-writer snapshot object with O(n) step complexity that
has substantially smaller step complexity when it has not been updated too many times.
The idea is to have a switch choose between our limited-use single-writer snapshot im-
plementation, LimitedSnapshot, and an unlimited-use single-writer snapshot implementa-
tion, LinearSnapshot, with O(n) step complexity, both using the same timestamp object,
implemented from a (T + n − 1)-limited-use max register. Processes carry values from
LimitedSnapshot to LinearSnapshot when the switch is on. However, if its last update to
a component has a larger timestamp than those recorded in LimitedSnapshot, a process
uses that instead. Pseudocode for our implementation is presented in Algorithm 6. The
proof of correctness is similar to the proof for Algorithm 5.

7. DISCUSSION

This paper gives linearizable implementations of a snapshot object with O(log3 n) step com-
plexity, as long as the number of update operations is at most polynomial in the number
of processes, n. This is an exponential improvement over the best previously known algo-
rithms, which have step complexity linear in n. In addition, we showed how to combine
our implementations with existing, unlimited-use implementations so that an unlimited
number of update operations can be performed, with the step complexity growing grace-
fully from O(log3 n) for the first polynomially-many operations, to the O(n) complexity of
previously-known snapshot implementations after exponentially-many operations.

The key component of our implementations is a new object, the bounded 2-component
max array. Improved implementations of it would imply corresponding improvements to
our snapshot implementations. Therefore, improved implementations or lower bounds on
the tradeoff between the step complexities of MaxScan and MaxUpdate would be interesting.

At the end of Section 3, we briefly explained how to obtain a bounded c-component max
array for c > 2. As with snapshots, an unbounded c-component max array implementation
can be constructed from our bounded implementation and an unbounded implementation
based on a single-writer snapshot object, by having processes carry values from the former
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Algorithm 6 An implementation of an unlimited-use c-component multi-writer snapshot
object, s, code for process i

Shared data:
switch: a 1-bit multi-writer register, initially 0
LimitedSnapshot: a (T + n− 1)-limited-use n-component single-writer snapshot object

each component is an array of c pairs (val, ts), initialized to (−, 0)
LinearSnapshot: a single-writer snapshot object with linear step complexity

each component is an array of c pairs (val, ts), initialized to (−, 0)
timestamp: a (T + n− 1)-limited-use max register

Persistent local data:
record[0..c− 1]: an array of pairs (val,ts),

each is initialized to (−, 0)

1: MW-Update(s, j, v):
2: record[j]← (v, GetTS(timestamp))
3: if switch
4: view ← CombineScan(c, Scan(LimitedSnapshot))
5: for 0 ≤ j < c do
6: if record[j].ts > viewj .ts then viewj ← record[j]
7: Update(LinearSnapshot, i, view)
8: else
9: Update(LimitedSnapshot, i, record)
10: if at least T Update operations have been performed then switch← 1
11: MW-Scan(s)

12: MW-Scan(s):
13: view ← CombineScan(c, Scan(LimitedSnapshot))
14: if switch
15: view′ ← CombineScan(c, Scan(LimitedSnapshot))
16: view ← CombineScan(c, Scan(LinearSnapshot))
17: for 0 ≤ j < c do
18: if view′j .ts > viewj .ts then viewj ← view′j
19: Update(LinearSnapshot, i, view)
20: return (view0.val, . . . , viewc−1.val)

implementation to the latter when the switch is on. Are more efficient implementations
possible?

Our constructions use multi-writer registers. A very intriguing question is to extend them
to obtain a snapshot object with O(n) step complexity using only single-writer registers,
improving on the O(n log n) best previously-known upper bound [Attiya and Rachman
1998].

Finally, like many previous implementations of snapshot objects, our implementations of
snapshot objects use registers that can store Θ(n) values. It would be interesting to obtain
implementations in which each register contains only one value (or a small constant number
of values). This would require the result of a scan be represented implictly, rather than
explictly.
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