Erratum: Limited-Use Atomic Snapshots with Polylogarithmic Step Complexity

JAMES ASPNES, Yale University
HAGIT ATTIYA, Technion
KEREN CENSOR-HILLEL, Technion
FAITH ELLEN, University of Toronto

1. THE ERROR AND ITS CORRECTION

An example of the error: Suppose that, from the initial configuration, process \(p_1 \) invokes a \texttt{MaxScan}(r) operation, \(op_1 \), gets 0 when it performs \texttt{ReadMax}(r.second) and assigns 0 to \(x \) in Line 11, and reads 0 from \(r.switch \) in Line 12. Then, let process \(p_2 \) invoke and complete a \texttt{MaxUpdate}_1(r, v_2) operation, \(op_2 \), with \(v_2 > 0 \). Afterwards, let process \(p_3 \) invoke a \texttt{MaxUpdate}_0(r, v_3) operation, \(op_3 \), with \(0 < v_3 < m \). Since \(op_2 \) finishes before \(op_3 \) begins, \(op_2 \) must be linearized before \(op_3 \). Therefore, any \texttt{MaxScan}(r) operation that returns \(v_3 \) for component 0 must return at least \(v_2 \) for component 1. Finally, let \(p_1 \) complete its invocation of \(op_1 \). Since \(p_1 \) accesses \(r.left \) only after \(op_3 \) has been completed, \(op_1 \) returns \(v_3 \) for component 0. Since \(p_1 \) sets \(x \) to 0 before \(op_2 \) starts, \(op_1 \) returns 0 for component 1. This means that the original implementation is not linearizable.

The error in the proof: The error is in the proof of Theorem 3.4. This proof shows that any two \texttt{MaxScan}(r) operations return comparable pairs of values, which implies that any two such operations can be linearized correctly with respect to each other and that any \texttt{MaxUpdate}_0(r, v) and \texttt{MaxUpdate}_1(r, v) operation can be linearized correctly with respect to any \texttt{MaxScan}(r) operation. However, the proof does not address the linearization of \texttt{MaxUpdate}_0(r, v) operations with respect to \texttt{MaxUpdate}_1(r, v) operations, which is exactly where the above example fails.

The correction: Forcing each \texttt{MaxUpdate}_0(r, v) to perform an embedded \texttt{MaxScan}(r) operation after its \texttt{WriteMax}(r.second, v) operation overcomes the problem described above. The corrected algorithm has a new line, 9.5, in which \texttt{MaxScan}(r) is invoked.

Linearizability: To show linearizability, first notice that Lemmas 3.1, 3.2 and 3.3 of the original proof remain intact. The first 6 paragraphs of the proof of Theorem 3.4 remain the same, showing that \texttt{MaxScan}(r) operations can be linearized correctly with respect to each other. Then, we modify the linearization of a \texttt{MaxUpdate}_1(r, v) operation so that it is linearized after its invocation and immediately before any (perhaps embedded) \texttt{MaxScan}(r) operation returns a value greater than or equal to \(v \) for component 1. Finally, \texttt{MaxUpdate}_0(r, v) operations are linearized correctly with respect to \texttt{MaxScan}(r) operations, which also implies that they are linearized correctly with respect to \texttt{MaxUpdate}_1(r, v) operations.

Step complexity: A \texttt{MaxUpdate}_1(r, v) operation now takes \(O(\log k \log h) \) steps instead of \(O(\log(h)) \), due to the embedded \texttt{MaxScan} operation on a \texttt{MaxArray}_{k \times h} object, which takes \(O(\log k \log h) \) steps.