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ABSTRACT
We define two new classes of shared-memory objects: rati-
fiers, which detect agreement, and conciliators, which en-
sure agreement with some probability. We show that con-
sensus can be solved by an alternating sequence of these ob-
jects, and observe that most known randomized consensus
algorithms have this structure.

We give a deterministicm-valued ratifier for an unbounded
number of processes that uses lgm+ Θ(log logm) space and
individual work. We also give a randomized conciliator
for any number of values in the probabilistic-write model
with n processes that guarantees agreement with constant
probability while using one multiwriter register, O(logn)
expected individual work, and Θ(n) expected total work.
Combining these objects gives a consensus protocol for the
probabilistic-write model that uses O(logn) individual work
and O(n logm) total work. No previous protocol in this
model uses sublinear individual work or linear total work
for constant m.

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Parallelism and concur-
rency

General Terms
Algorithms, Theory

Keywords
distributed computing, shared memory, consensus, random-
ization

1. INTRODUCTION
The consensus problem [26] is to devise a protocol so

that n processes, each with a private input, can agree on
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a single common output that is equal to some process’s in-
put. For asynchronous deterministic processes, consensus
is known to be impossible with a single crash failure in ei-
ther a message-passing [21] or shared-memory [25] model.
These impossibility results can be overcome using random-
ization [16], and can even tolerate up to n− 1 crash failures
in a shared-memory model [1]. There is a substantial litera-
ture on randomized consensus protocols that tolerate crash
failures; see [6] for a survey.

In this paper, we concentrate on wait-free [22] consensus
protocols in various shared-memory models with only atomic
registers as their base objects (see Section 2). Our goal is
to find efficient algorithms, that minimize both the total
number of operations carried out by all processes (the total
work Ttotal) and the maximum number of operations carried
out by any single process (the individual work Tindividual).

An important factor in determining the cost of consensus
is the strength of the adversary scheduler that determines
the interleaving of operations; this is an effect of what infor-
mation the adversary is allowed to use when choosing each
step. For an adaptive adversary, which can observe the en-
tire state of the system when choosing which process moves
next, optimal algorithms are known for both total expected
work [12] and individual expected work [8]. But for weaker
adversaries, finding tight bounds on expected work has re-
mained an open problem.

Recently, Attiya and Censor [11] have shown that any
randomized consensus protocol for 2-valued consensus toler-
ating f failures must fail to terminate after k(n − f) total
steps with probability at least 1

ck . This bound is very gen-
eral: it applies even with a very weak adversary that cannot
observe the process’s execution, and works even in a model
that allows global coins visible to all processes and O(1)-
cost snapshot operations. They also show that it is tight
for models with correlated local coins, using as a matching
upper bound the binary-consensus protocol of [13].

Unfortunately, it gives little insight into the expected cost
of consensus; the geometric series converges to Ω(n), a trivial
lower bound on total work. It also leaves open the possibil-
ity that any algorithm with uncorrelated local coins or that
allows more than two input values will necessarily be more
expensive.

The best currently known upper bounds on expected work
for weak adversaries in a asynchronous shared-memory model
without correlated coins are O(logn) expected individual
work (andO(n logn) expected total work) assuming a value-
oblivious adversary that cannot observe internal states
of processes or the contents of registers (but can see where



processes choose to read and write) [13]; and O(n log log n)
expected total work (with the same bound on individual
work) in the probabilistic-write model, where a process
can flip a coin and choose whether or not to execute a write
operation based on its outcome [19]. (We argue in Section 2
that this model is a special case of assuming a location-
oblivious adversary, one that cannot distinguish between
operations on different registers.)

The present work improves on previous upper bounds for
weak-adversary randomized consensus by giving a new fam-
ily of consensus protocols for the probabilistic-write model.
For 2-valued consensus, we obtain O(logn) expected indi-
vidual work and O(n) expected total work with a single
algorithm. This is the first weak-adversary consensus pro-
tocol with optimal total work, and demonstrates that the
Attiya-Censor lower bound is asymptotically tight for the
probabilistic-write model. For m-valued consensus, the in-
dividual work remains the same, but the total work rises
to O(n logm); there may still be room for improvement in
both this bound and the individual-work bound in both the
binary and m-valued cases.

Our algorithms are structured as classic Las Vegas style
randomized algorithms [15]: we explicitly separate the prob-
lems of producing agreement and detecting it into abstract
conciliator objects, which produce agreement with some
probability, and ratifier objects, which cause the processes
to decide only once agreement has been reached. This mod-
ular approach allows these tasks to be optimized separately,
with the expected cost of a consensus object built in this
fashion proportional to the sum of the cost of a conciliator
and ratifier. Furthermore, since a consensus object satisfies
the specifications for both classes of objects, a lower bound
on either conciliators or ratifiers will translate directly into
a lower bound on consensus. This may help in determining
the limits to weak-adversary consensus protocols.

Formal definitions of these objects, together with methods
for composing them, are given in Section 3. Generic algo-
rithms for consensus (that do not specify the details of their
component conciliators and ratifiers) are given in Section 4.

In Section 5, we give an implementation of a conciliator
for arbitrarily many values that produces agreement with
constant probability at the cost of O(logn) individual work
in the worst case and O(n) expected total work. (This dom-
inates the cost of the ratifier for binary consensus, hence our
binary-consensus bound.) The implementation is very sim-
ple, and uses only a single multi-writer register large enough
to hold one input value or a null value ⊥. We also show that
weak shared coins as defined in [9] can be turned into con-
ciliators. While this does not give any new results, it shows
how the conciliator+ratifier framework can be used to model
previous shared-memory consensus protocols.

In Section 6, we give a deterministic implementation of
an m-valued ratifier that uses dlgme+O(log logm) registers
and has the same individual work cost. For m-valued con-
sensus, the total work cost of the ratifier becomes dominant.
Though we have not fully resolved the cost of consensus in
weak-adversary models, we believe that our decomposition
of consensus into separate conciliation and ratification steps
is natural, and that the limitations of our current implemen-
tations hint at where further improvements would be needed
to obtain better bounds.

2. MODEL
We use the standard model for asynchronous shared mem-

ory: there are n processes that communicate by reading and
writing atomic registers, with the value returned by each
read equal to the last value written. Asynchrony is mod-
eled by interleaving. Each process that has not halted has
exactly one pending operation in each state; an execu-
tion, which consists of a sequence of operations and their
return values, is constructed by repeatedly applying pend-
ing operations. A partial execution is one in which not
all processes have halted. The choice of which pending op-
eration occurs in each state is determined by an adversary
scheduler, a function from partial executions to process ids.
We consider only wait-free protocols, where there are no
fairness conditions on executions.

Processes are randomized: they have access to local coins
that are not predictable by the adversary but also not visible
to other processes. Formally, we can think of the local coins
as probabilistic read-only objects private to each process, so
that executing a coin-flip is an operation.

The total work or total step complexity of an exe-
cution is the total number of operations it contains. The
individual work or individual step complexity is the
maximum number of operations carried out by any single
process. Local computation (including local coin-flip opera-
tions) is excluded from both measures.

2.1 Strong and weak adversaries
The strength of the adversary has a large effect on the

cost of randomized consensus. An adaptive or strong ad-
versary has no restrictions on its choice of which process
carries out the next operation. A weak adversary is any
adversary that is not strong. Typically this means that the
adversary’s knowledge is limited in some way; this can be
modeled by an equivalence relation on partial executions,
and requiring that the adversary choose the same process in
equivalent conditions.

Some examples of weak adversaries:

• Oblivious adversary. An oblivious adversary has no
knowledge of the execution and schedules processes in
a fixed order. Here two executions are equivalent if
they have the same length.

• Value-oblivious adversary. A value-oblivious ad-
versary cannot observe internal states of processes, the
contents of registers, or the values in pending write op-
erations, but it can distinguish between pending oper-
ations of different types (e.g., read vs. write) or to dif-
ferent locations. Value-oblivious adversaries of various
kinds are used by [13, 14, 18]. The useful property of
value-oblivious adversaries is that they allow the out-
come of a local coin-flip to be stockpiled in a register
as a pre-flipped global coin that is visible to all pro-
cesses but still not predictable by the adversary until
some process uses its value.

• Location-oblivious adversary. A location-oblivious
adversary cannot observe internal states of processes,
can observe the contents of memory and the values of
pending write operations, but cannot distinguish be-
tween pending write operations to different locations.
This allows for probabilistic writes as defined in the
“strong model” of [1] to represent the assumptions of



the Chor-Israeli-Li protocol [20] and as used more re-
cently by Cheung [19]. These are write operations that
take effect only with some probability, where the ad-
versary cannot choose whether to allow the write op-
eration based on the outcome of the coin-flip. In a
location-oblivious model, they can be implemented by
having a process randomly choose between writing to
the desired location or to some dummy location (cor-
responding to an omitted write).

For some of our results, we assume probabilistic writes,
which can be implemented using a location-oblivious adver-
sary as described above.

The practical justification for weak adversaries is that re-
alistic implementations of shared memory are not likely to
distinguish between operations with similar properties. This
is a very natural assumption for value-oblivious adversaries.
For location-oblivious adversaries, it may be less natural,
but it is still plausible if we assume that the relevant mem-
ory locations are all stored on the same page, and that the
main source of timing uncertainty lies in a page-based mem-
ory management system that treats all locations on the same
page as equivalent.

Other restrictions on the adversary have been used in the
consensus literature. These include requiring that the ad-
versary implement a quantum or priority-based scheduling
algorithm [2, 3, 27] or that the adversary include some ran-
dom jitter in its scheduling decisions [5]. We discuss impli-
cations of some of these assumptions for our framework in
Section 4.2.

3. DECOMPOSING CONSENSUS
Here we show how a consensus protocol can be decom-

posed into a collection of conciliators and ratifiers. This
provides an alternative to previous general frameworks for
implementing consensus, such as the rounds-based weak-
shared-coin framework of Aspnes and Herlihy [9].

Recall that a consensus protocol must satisfy three
properties:

• Validity. Every process’s output equals some pro-
cess’s input.

• Termination. Every process terminates with proba-
bility 1.

• Agreement. Every process outputs the same value.

A consensus object is a shared-memory object with a
single consensus operation, such that if each process ex-
ecutes this operation exactly with its input, the resulting
outputs satisfy the requirements for randomized consensus.

We are going to replace consensus objects by sequences of
objects satisfying weaker conditions. Like consensus objects,
these weaker objects will be one-shot objects in which each
process executes at most one operation on the object, and
we will expect inputs to be from the set of possible decision
values Σ. But the outputs will be annotated by a decision
bit that indicates whether the protocol should terminate
immediately or continue to the next object in the sequence:
an output of (1, v) means to decide v immediately, while an
output of (0, v) means to continue to the next object, using
v as input. We call an object annotated with a decision bit
in this way a deciding object.

These objects will generally satisfy only Las Vegas re-
quirements [15], where an object is not required to guarantee
agreement unless it returns a decision bit of 1. This requires
replacing agreement with a weaker notion of coherence,
which says only that non-deciders stick to any value chosen
by a decider.

• Coherence. If any process outputs (1, v), then no
process outputs (d, v′) for v′ 6= v.

A weak consensus object is an object that satisfies va-
lidity, termination, and coherence. Note that weak consen-
sus objects may be very weak indeed: an object that simply
copies its input to its output with decision bit 0 satisfies all
three properties. But we will use weak consensus objects as
a basis for building stronger objects.

3.1 Conciliators and ratifiers

3.1.1 Conciliators
A conciliator is a weak consensus object whose outputs

agree with constant probability, but that does not detect
when or if agreement occurs. Formally, it satisfies the addi-
tional requirement of probabilistic agreement:

• Probabilistic agreement. There is a fixed agree-
ment probability δ > 0 such that, for any adver-
sary strategy, the probability that all return values are
equal is at least δ.

A conciliator object may correspond to a weak shared coin
(with machinery added to ensure validity) or to the first-
mover-wins technique of Chor-Israel-Li-style protocols [19,
20]. We give examples of both types of constructions in Sec-
tion 5. Because conciliators are not expected to detect agree-
ment, our constructions will satisfy coherence vacuously, by
always returning a decision bit of 0.

3.1.2 Ratifiers
Actual decisions are produced by ratifiers, objects that

detect agreement. A ratifier is a weak consensus object that
satisfies the additional requirement of acceptance:

• Acceptance. If all inputs are equal to v, all outputs
are (1, v).

Because ratifiers are not required to produce agreement,
they can be implemented deterministically with low space
and work complexity. In Section 6, we give an implementa-
tion of an m-valued ratifier that uses O(logm) multiwriter
registers and O(logm) individual work. For binary consen-
sus, this reduces to 3 registers and at most 4 operations per
process.

3.2 Composing objects
Our consensus protocols will consist of an alternating se-

quence of ratifiers and conciliators. To define this formally,
it helps to have a notion of composing objects.

If X : A → B is a deciding object with inputs in A and
outputs in B and Y : B → B is a deciding object with inputs
and outputs in B, then their composition (X;Y ) : A → B
is a deciding object whose operation op(X;Y )(x) is given by
the code in Procedure Composition.

Informally, we perform opX first, and feed the result to
opY only if opX does not decide on its own. We can also



(d, v)← opX(x)1

if d = 1 then2

return (1, v)3

else4

return opY (v)5

end6

Procedure Composition(X,Y,x)

think of this rule as implementing an exception mechanism
where a decision by X immediately terminates the compos-
ite object without executing Y .

Note that in (X;Y ), X comes first. This is the reverse
of the usual rule for function composition. Note also that
because the output of (X;Y ) could be generated by either
X or Y , both must have the same output type, which must
also be equal to Y ’s input type.

It is easy to see that composition is associative: ((X;Y );Z)
has exactly the same behavior as (X; (Y ;Z)) for all ob-
jects X, Y , Z with appropriate types. We will generally
omit the parentheses and write (X;Y ;Z) in this case. Sim-
ilarly, we can define compositions (X1;X2; . . . ;Xk) for arbi-
trarily many objects, and even define infinite compositions
(X1;X2; . . . ) in the obvious way.

If P is some predicate on objects, we say that composi-
tion preserves P if P (X) and P (Y ) implies P (X;Y ). This
naturally extends by induction to longer finite compositions.

3.2.1 Composing weak consensus objects
The property of being a weak consensus object is pre-

served by composition.

Lemma 1. Validity is preserved by composition.

Proof. Suppose that X and Y satisfy validity. Then any
return value of (X;Y ) is either (a) a return value of X, and
thus equal to an input to (X;Y ); or (b) a return value of Y ,
and thus equal to an input to Y , which is in turn an output
of X and thus equal to an input of (X;Y ).

The converse does not hold. It may be that the first object
always scrambles its inputs (but does not decide) while the
second unscrambles them.

Lemma 2. Termination is preserved by composition.

Proof. Immediate.

A partial converse holds for termination: if (X;Y ) termi-
nates with probability 1, so does X.

Lemma 3. If X satisfies coherence, and Y satisfies both
validity and coherence, then (X;Y ) satisfies coherence.

Proof. We consider two cases, depending on whether
any process skips Y :

1. X outputs (1, v) for some process. Then coherence
for X implies all processes obtain (−, v) from X, and
any other process either obtains the same return value
directly from X or obtains the same return value from
Y because of the validity of Y .

2. X does not output (1,−) for any process. Then all
processes execute opY and coherence follows from co-
herence of Y .

Corollary 4. The property of being a weak consensus
object is preserved by composition.

Proof. Apply Lemmas 1, 2, and 3.

4. RECOMPOSING CONSENSUS
We give three constructions of consensus protocols. The

first uses an infinite sequence of ratifiers and conciliators
(but terminates after using only a constant number on av-
erage); the second truncates the infinite sequence by falling
back to some fixed-space consensus protocol with low prob-
ability; and the third omits the conciliators and relies on
scheduling restrictions to terminate.

4.1 Consensus with conciliators and ratifiers

4.1.1 Unbounded construction
Let Ri be a separate ratifier object for each i ≥ −1 and

Ci a conciliator object with agreement probability δ for each
i ≥ 1. Construct the composite object

U = R−1;R0;C1;R1;C2;R2; . . . .

Observe that this object satisfies termination (and thus yields
well-defined return values), because with probability 1 some
Ci eventually produces agreement, causing the following Ri

to force every process to decide.
Suppose now that every process decides in some prefix

R−1;R0;C1;R1; . . . ;Ck;Rk. Then this prefix is a weak con-
sensus object by Corollary 4, so the output values are con-
sistent with validity and coherence (and thus agreement be-
cause the processes decide). It follows that object U is a
randomized consensus object.

The initial prefix R−1;R0 implements a fast path for the
case where some process p finishes R−1 before any process
with a different input arrives.1 If this case holds, then the
acceptance condition implies that p must decide, because it
cannot distinguish this execution from one in which all pro-
cesses have the same input. But then coherence implies that
all processes have the same output from R−1 and thus de-
cide in R0. This avoids the overhead of running a conciliator
when conciliators are more expensive than ratifiers.

In a general execution, the cost of object U depends on
the cost of the Ri and Ci. The expected waiting time until
some Ci successfully produces agreement is at most 1/δ, so
given some time measure T we have E[T (U)] ≤ 2T (R) +
(1/δ)(T (C) + T (R)) = O(T (C) + T (R)) when δ is constant.
So the cost of consensus will be asymptotically equal to the
worse of the costs of conciliation and ratification.

4.1.2 Bounded construction
The preceding construction requires unbounded space. We

can avoid this by leveraging any bounded-space construction
to truncate the sequence of objects (e.g. the polynomial-time
bounded-space construction of [4]). Let Ri and Ci be as
above and let B = (R−1;R0;C1;R1;C2;R2; . . . ;Ck;Rk;K),
where K is a bounded-memory consensus protocol. That
B is a consensus object follows from Corollary 4 and the
fact that K decides if no earlier object does. The expected
complexity of B for any time measure T is bounded by
O((1/δ)(T (R) + T (C)) + (1 − δ)kT (K)). If δ is constant
and T (K) is polynomial in n, then for some k = O(logn)
this reduces to O(T (R) + T (C)) as in the previous case.

1I am indebted to Azza Abouzeid for suggesting this idea.



We state this result as a theorem:

Theorem 5. Given any bounded-space implementations
of conciliators {Ci} with constant agreement probability
and ratifiers {Ri}, there exists an implementation of con-
sensus that uses bounded space, with expected individual
work O(max(Tindividual(Ci), Tindividual(Ri))) and expected
total work O(max(Ttotal(Ci), Ttotal(Ri)).

4.2 Consensus with ratifiers only
Under severe restrictions on the adversary, it is possible to

solve consensus without using conciliators at all. Let R∗ =
R1;R2; . . . consist of an unbounded sequence of ratifiers. If
during an execution of R∗, some process p completes Ri

before any process with a conflicting value enters Ri, then
p decides by the same analysis as for the fast-path prefix
above. So if we can guarantee that this eventually happens,
R∗ implements a consensus protocol.

For binary consensus using a constant-individual-work rat-
ifier, R∗ is essentially equivalent to the lean-consensus
protocol of [5], so the analysis there shows that R∗ will ter-
minate in O(logn) individual work with a noisy scheduler.
This is a scheduler that chooses in advance the timing of
all steps of the algorithm, but has its choices perturbed by
random errors that accumulate over time. The proof in [5]
shows that eventually this cumulative error will push some
process ahead of all the others. We expect that comparable
results can be obtained for m-valued consensus, but as our
current m-valued ratifier requires Θ(logm) work, additional
analysis would be needed.

The R∗ protocol also works with priority-based scheduling
as described by [27]. Here each process is assigned a unique
priority that does not change over the duration of its execu-
tion of the consensus protocol, and each step is taken by the
highest-priority process that currently has a pending opera-
tion. It is easy to see that in this model, the highest-priority
process to execute the protocol will eventually overtake all
other processes and reach some ratifier alone, unless a de-
cision occurs earlier. In either case, we achieve consensus.
The R∗ protocol is less efficient than the protocol from [27],
which uses only two registers and terminates in at most six
operations per process. Part of the reason for this ineffi-
ciency is that we are assuming R is an arbitrary ratifier
object. Particular implementations of ratifier objects might
offer better performance.

5. IMPLEMENTING A CONCILIATOR
Here we show how to implement a conciliator. We first

show that the classic weak shared coin approach of [9]
fits in our framework, and then give a new conciliator for
the probabilistic-write model with very strong performance
bounds.

5.1 Conciliators from weak shared coins
A weak shared coin [9] is a protocol in which each pro-

cess decides on a bit, and for some agreement probability
δ > 0 it holds that the probability that all processes de-
cide 0 and the probability that all processes decide 1 are
both at least δ, regardless of the adversary’s choices. This is
both stronger than our definition of a conciliator—in that a
conciliator need not be unpredictable—and weaker—in that
a weak shared coin need not respect validity. Fortunately,
validity is easily enforced.

shared data:
binary registers r0 and r1, initially 0;
weak shared coin SharedCoin

rv ← 11

if r¬v = 1 then2

return (0, SharedCoin())3

else4

return (0, v)5

end6

Procedure CoinConciliator(v)

Code for a shared-coin-based binary conciliator is given
as Procedure CoinConciliator.

Theorem 6. Given a weak shared coin SharedCoin with
agreement probability δ, Procedure CoinConciliator satis-
fies termination, validity, coherence, and probabilistic agree-
ment with agreement probability at least δ.

Proof. Termination follows from termination of Shared-
Coin and the lack of loops. Validity follows from the fact
that if all inputs are v, then no process writes r¬v and all
processes skip the shared coin. Coherence is satisfied vacu-
ously.

For probabilistic agreement, essentially the same argu-
ment as used in [9] applies: if some process p skips the shared
coin and returns v, then it must have written rv before read-
ing 0 from r¬v. It follows that any process with input ¬v
reads rv after writing r¬v, sees 1, and executes the shared
coin. So only v can be returned by processes skipping the
shared coin, and with probability at least δ, all processes
executing the shared coin also return v.

The cost of this implementation is likely to be dominated
by the cost of SharedCoin; the other parts add 2 regis-
ters and 2 register operations. Note that this implemen-
tation only provides a 2-valued conciliator. How to extend
a shared coin to more values is not obvious; for one choice,
see [23]. Our new algorithm below avoids this restriction to
a bounded set of values, at the cost of requiring a weaker
adversary.

5.2 Conciliators using probabilistic writes
In the probabilistic-write model, we can build a conciliator

for arbitrarily many values, following the approach of the
classic algorithm of Chor, Israeli, and Li [20] and its more
recent optimization by Cheung [19]. The basic idea is to have
a single multi-writer register, which in an ideal execution is
written only once by some winning process. This is enforced
by having each process attempt to write the register with
small probability only if it has not yet observed a value in
the register. Assuming the probabilities are set correctly,
there will be a constant chance that some process writes the
register but the next n− 1 writes do not, meaning that the
corresponding processes read the winning value and return
it.

Previous protocols in this model have used a constant
Θ(1/n) probability for each write. This gives a bound on
both total and individual work of O(n). We generalize this
approach to allow processes to become impatient over time
and increase their probabilities (analogously to the increas-
ing weighted votes of [7, 8, 10]). This new approach will



shared data: register r, initially ⊥
k ← 01

while r = ⊥ do2

write v to r with probability 2k

2n
3

k ← k + 14

end5

return (0, r)6

Procedure ImpatientFirstMoverConciliator(v)

allow us to get optimal O(n) total work while reducing the
individual work bound to O(logn).

Because the process writes with probability 1 once 2k

reaches 2n, we immediately get a bound of 2 dlg 2ne + 2 =
2 dlgne+4 on the number of operations.2 At the same time,
since each write succeeds with probability at least 1

2n
, we re-

tain the total work bound of 6n expected operations. But
it may be that the cost of impatient processes is that we
lose the constant agreement probability. That this is not
the case is shown in the following theorem:

Theorem 7. Procedure ImpatientFirstMoverConcilia-

tor satisfies termination in expected 6n total work and at
most 2 lgn+ O(1) individual work; validity; coherence; and

agreement with probability at least (1−e−1/4)(1/4) ≈ 0.0553.

Proof. The bounds on individual work and total work
have already been established. Validity and coherence are
immediate from inspection of the algorithm.

For agreement, observe that the adversary’s choices are
effectively limited to choosing what order the processes will
attempt their probabilistic writes, and that it succeeds only
if it can get one of the remaining n − 1 processes to carry
out a successful write after some initial process successfully
writes to r. Fix some adversary strategy, and let pi be the
probability that the i-th write succeeds if no previous write
succeeds. Let t be the minimum value for which

Pt
i=1 pi ≥

1/4. We will argue that with at least constant probability,
some write succeeds in the first t attempts, and thereafter
no process writes r on its next attempt. In this case exactly
one value is written to r and this value is returned by all
processes.

The probability that none of the first t writes succeed is
given by

Qt
i=1(1−pi) ≤

Qt
i=1 exp (−pi) = exp

`
−
Pt

i=1 pi

´
≤

e−1/4. So with probability at least 1 − e−1/4, some process

writes r at a time t′ when
Pt′−1

i=1 pi is still small.
The reason we care about this is that we can use the

bound on
P
pi to get a bound on the probability that some

other process then overwrites r. Consider any single pro-
cess p, and suppose that it has failed to carry out its first
kp writes. The probability that its next write succeeds is
1
2n

2kp = 1
2n

“
1 +

Pkp−1
j=0 2j

”
= 1

2n
+
Pkp

j=0
2j

2n
.

If process q carries out the first successful write as one of
the first t writes, we can bound the right-hand side of the
above inequality when summed over all p 6= q by letting each
kp count the number of unsuccessful writes carried out by

2We assume here that each probabilistic write costs 1 unit
whether or not the write succeeds. We do not require that
a process detect if it performs a successful write, as it will
leave the loop following its next read in any case. If we can
detect success, the individual work bound can be reduced
by 2 if we return immediately after a successful write.

p among the at most t − 1 writes preceding q’s write. The
probability that q’s value is overwritten is then bounded by

X
p 6=q

2kp

2n
≤
X
p6=q

0@ 1

2n
+

kp−1X
j=0

2j

2n

1A
≤ n− 1

2n
+

t−1X
i=1

pi

<
1

2
+

1

4
=

3

4
.

Note that this bound does not depend on which write
succeeds. We thus have

Pr[only one write occurs] ≥
“

1− e−1/4
”„

1− 3

4

«
=
“

1− e−1/4
”

(1/4)

≈ 0.0553.

6. IMPLEMENTING A RATIFIER
Here we show how to build a deterministic m-valued rat-

ifier with Θ(logm) individual work.

6.1 Write and read quorums
The operation of our ratifier is similar to the follow-the-

leader mechanisms in the classic Chor-Israeli-Li [20] and
Aspnes-Herlihy [9] protocols. A process first announces that
it has a particular value v by writing to all registers in a
write quorum Wv that depends on v. It then examines a
special proposal register proposal. If this register is empty,
the process may propose its value by writing to the pro-
posal register; otherwise, it adopts the previously proposed
value as its new preferred value in place of v. Whatever
value preference it obtains, it returns (1, preference) only if
no other value has been announced; otherwise, it returns
(0, preference). Conflicting values are detected by reading
all registers in a read quorum Rpreference. This works as long
as for every two distinct values v and v′, Rv′ includes some
register written in Wv that is not written in Wv′ .

Code for this implementation is given as Procedure Rat-

ifier.

Theorem 8. Let Wv ∩ Rv′ = ∅ if and only if v = v′.
Then Procedure Ratifier satisfies termination, validity, co-
herence, and acceptance.

Proof. Termination is immediate from the lack of un-
bounded loops. Validity holds because any return value is
either an initial input v or an input read indirectly from
proposal. Acceptance holds because if every process has in-
put v, then no process announces any value v′ 6= v, or writes
any v′ 6= v to proposal, so preference = v for all processes
and the test in Line 10 always fails.

For coherence, suppose that some process p returns (1, v)
(it is not hard to see that a process can only return its
own input in this case). Then p observed no conflicting
v′ when it executed Line 10. It follows that no process p′

with a conflicting value v′ had yet completed Line 3 before
p finished executing all of the code up to Line 10. Since
p either reads v from proposal in Line 4 or sets proposal to
v in Line 8, we have that no process p′ with input v′ 6= v



shared data:
register proposal, initially ⊥;
binary registers ri, initially 0

local data: preference, u
foreach ri ∈Wv do1

ri ← 12

end3

u← proposal; if u 6= ⊥ then4

preference← u5

else6

preference← v7

proposal← preference8

end9

if ri 6= 0 for some ri ∈ Rpreference then10

return (0, preference)11

else12

return (1, preference)13

end14

Procedure Ratifier(v)

finishes Line 3 before proposal is set to v. Thus no such p′

writes any v′ 6= v to proposal, and every process adopts v as
its preference—and hence its ultimate return value—before
reaching Line 10.

6.2 Choice of quorums
It remains only to specify a choice of quorums satisfying

the condition in Theorem 8. Because the cost of Proce-
dure Ratifier is dominated by writing Wv and checking
Rpreference, our goal is to keep both write quorums and read
quorums as small as possible.

Here are some possible choices:

1. For a binary ratifier, use two 1-bit registers r0 and r1,
and let Wv = {rv} and Rv = {r¬v}. Using this imple-
mentation, Ratifier requires at most 4 register oper-
ations and uses only 3 registers: r0, r1, and proposal.

2. A generalization of the preceding mechanism to m
values is to use a pool of k registers r1 . . . rk, where
k = lgm + O(log logm) satisfies

`
k
bk/2c

´
≥ m. For

each value v, assign a distinct write quorum Wv of size
bk/2c and a complementary read quorum Rv = W v.
Then Rv ∩Wv = ∅ and Rv ∩Wv′ 6= ∅ when v 6= v′.
An m-valued instance of Ratifier constructed using
this technique requires lgm + O(log logm) registers
and lgm+O(log logm) individual work.

This choice of quorums is optimal, in the sense of max-
imizing the number of distinct values m given a fixed
bound k on |Wv| + |Rv|. This follows from a classic
result in extremal set theory, known as Bollabás’s The-
orem [17]; the version we give here is taken from [24].

Theorem 9 ( [24], Theorem 9.8). Let
A1, . . . , Am and B1, . . . , Bm be two sequences of
sets such that Ai ∩Bj = ∅ if and only if i = j. Then

mX
i=1

 
ai + bi
ai

!−1

≤ 1, (1)

where ai = |Ai| and bi = |Bi|.

Letting each Ai correspond to some Wi and each Bi

to some Ri, each term in the left-hand side of (1) is
minimized by setting |Wi| + |Ri| = k |Wi| = bk/2c;
this gives m =

`
k
bk/2c

´
as above.

3. An alternate encoding of values into write quorums
gives a simpler implementation with almost as good
performance. Here we use a two-dimensional array of
registers rij where i ∈ {1 . . . dlgme} and j ∈ {0, 1}.
Writing each v as a dlgme-bit vector, let Wv equal
{rivi} and Rv equal its complement. The rest of the
analysis is the same as in the previous method; the
space complexity is exactly 2 dlgme + 1 registers and
the individual work is at most 2 dlgme+ 2 operations.

4. Finally, in a cheap-snapshot or cheap-collect model
(where reading an array of n single-writer registers
takes O(1) time), we can simulate write quorums of
size 1 (and corresponding read quorums of size m− 1)
by having each process announce its value by writing
its own register and test if any process has announced
a conflicting value using a single collect operation. The
individual work bound in this case is 4 operations, as
in the binary case. (While this model is not realistic,
a cheap-collect ratifier helps put a limit on what lower
bounds can be achieved in a cheap-collect model.)

Using either construction of O(logm)-sized quorums with
Theorem 8 gives the following result:

Theorem 10. For any m, an m-valued ratifier can be im-
plemented deterministically for any number of processes us-
ing O(logm) atomic registers and O(logm) individual work.

7. DISCUSSION
We have shown that separating consensus into explicit

objects responsible for generating and detecting agreement
allows for a simpler description of the overall protocol and
for optimizing the resulting objects independently. For the
probabilistic-write model, this gives the first known algo-
rithm with sublinear individual work and the first algorithm
with linear total work when only a constant number of input
values are permitted.

Considering conciliators and ratifiers separately also of-
fers guidance for seeking possible non-trivial lower bounds
on expected work in weak-adversary models with uncorre-
lated local coins. For m-valued consensus, we currently have
two obstacles to improved individual work: we would need
to reduce both the O(logn) upper bound on conciliators
and the O(logm) upper bound on ratifiers. While it is not
necessarily the case that any consensus protocol separates
cleanly into these components (for example, the protocol
of [4] clearly does not), because a consensus object satis-
fies the specifications of both a conciliator and a ratifier,
any lower bound on either object also gives a lower bound
on consensus. So it may be that concentrating on proving
lower bounds for conciliators or ratifiers separately could
yield better lower bounds for consensus in general.
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