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Abstract

We show that consensus can be solved by an alternating sequence of adopt-commit ob-
jects [2,25], which detect agreement, and conciliators, which ensure agreement with some
probability. We observe that most known randomized consensus algorithms have this structure.

We give a deterministic implementation of an m-valued adopt-commit object for an un-
bounded number of processes that uses lgm + O (loglogm) space and individual work. We also
give a randomized conciliator for any number of values in the probabilistic-write model with
n processes that guarantees agreement with constant probability while using one multi-writer
register, O(logn) expected individual work, and ©(n) expected total work. Combining these
objects gives a consensus protocol for the probabilistic-write model that uses O(logm + logn)
individual work and O(nlogm) total work. No previous protocol in this model uses sublinear
individual work or linear total work for constant m.

1 Introduction

The consensus problem [29] is to devise a protocol so that n processes, each with a private input,
can agree on a single common output that is equal to some process’s input. For asynchronous
deterministic processes, consensus is known to be impossible with a single crash failure in either
a message-passing [24] or shared-memory [28] model. These impossibility results can be overcome
using randomization [18], and randomized consensus protocols can even tolerate up to n — 1 crash
failures in a shared-memory model [1]. There is a substantial literature on randomized consensus
protocols that tolerate crash failures; see [7] for a survey.

In this paper, we concentrate on wait-free [26] consensus protocols in various shared-memory
models with only atomic registers as their base objects (see Section 2). Our goal is to find efficient
algorithms, that minimize both the total number of register operations carried out by all processes
(the total work Tiuta1) and the maximum number of register operations carried out by any single
process (the individual work T, gividual)-

An important factor in determining the cost of consensus is the strength of the adversary
scheduler that controls the interleaving of operations, where the strength of the adversary is a
consequence of what information the adversary is allowed to use when choosing each step. For an
adaptive adversary, which can observe the entire state of the system when choosing which process
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moves next, optimal algorithms are known for both total expected work [13] and individual expected
work [10]. But for weaker adversaries, finding tight bounds on expected work has remained an open
problem.

Recently, Attiya and Censor [14] have shown that any randomized consensus protocol for 2-
valued consensus tolerating f failures must fail to terminate after k(n — f) total steps with prob-
ability at least Cik This bound is very general: it applies even with a very weak adversary that
cannot observe the protocol’s execution, and works even in a model that allows global coins visible
to all processes as well as O(1)-cost snapshot operations. They also show that it is tight for mod-
els with correlated local coins, using as a matching upper bound the BINARY-CONSENSUS protocol
of [15]. Unfortunately, it gives little insight into the expected cost of consensus; the geometric series
converges to 2(n), a trivial lower bound on total work.

The best currently known upper bounds on expected work for weak adversaries in a asyn-
chronous shared-memory model without correlated coins are O(logn) expected individual work
(and O(nlogn) expected total work) assuming a value-oblivious adversary that cannot observe
internal states of processes or the contents of registers (but can see where processes choose to read
and write) [15]; and O(nloglogn) expected total work (with the same bound on individual work)
in the probabilistic-write model, where a process can flip a coin and choose whether or not to
execute a write operation based on its outcome [22]. (We argue in Section 2 that this model is a
special case of assuming a location-oblivious adversary, one that cannot distinguish between
operations on different registers.)

The present work improves on previous upper bounds for weak-adversary randomized consensus
by giving a new family of consensus protocols for the probabilistic-write model. For 2-valued
consensus, we obtain O(logn) expected individual work and O(n) expected total work with a
single algorithm. This is the first weak-adversary consensus protocol with optimal total work, and
demonstrates that the Attiya-Censor lower bound is asymptotically tight for the probabilistic-write
model. For m-valued consensus, the individual work remains the same, but the total work rises to
O(nlogm); there may still be room for improvement in both this bound and the individual-work
bound in both the binary and m-valued cases.

Our algorithms are structured as classic Las Vegas style randomized algorithms [17]. We ex-
plicitly separate the problems of producing agreement and detecting it into abstract conciliator
objects, which produce agreement with some probability, and adopt-commit objects, which cause
the processes to decide only once agreement has been reached. This modular approach allows these
tasks to be optimized separately, with the expected cost of a consensus object built in this fashion
proportional to the sum of the cost of a conciliator and adopt-commit object. Furthermore, since
a consensus object satisfies the specifications for both classes of objects, a lower bound on either
conciliators or adopt-commit objects will translate directly into a lower bound on consensus. This
may help in determining the limits to weak-adversary consensus protocols.

Formal definitions of these objects, together with methods for composing them, are given in
Section 3. Generic algorithms for consensus (that do not specify the details of their component
conciliators and adopt-commit objects) are given in Section 4.

In Section 5, we give an implementation of a conciliator for arbitrarily many values that produces
agreement with constant probability at the cost of O(logn) individual work in the worst case
and O(n) expected total work. (This dominates the cost of the adopt-commit object for binary
consensus, hence our binary-consensus bound.) The implementation is very simple, and uses only
a single multi-writer register large enough to hold one input value or a null value 1. We also show



that weak shared coins as defined in [11] can be turned into conciliators. While this does not
give any new results, it shows how the conciliator+adopt-commit framework can be used to model
previous shared-memory consensus protocols.

In Section 6, we give a deterministic implementation of an m-valued adopt-commit object
that uses [lgm] + O(loglogm) registers and has the same individual work cost. For m-valued
consensus, the total work cost of the adopt-commit object becomes dominant. Though we have not
fully resolved the cost of consensus in weak-adversary models, we believe that our decomposition of
consensus into separate conciliation and adopt-commit steps is natural, and that the limitations of
our current implementations hint at where further improvements would be needed to obtain better
bounds.

2 Model

We use the standard model of asynchronous shared memory. There are n processes that com-
municate by reading and writing atomic registers, with the value returned by each read equal to
the last value written. Asynchrony is modeled by interleaving. Each process that has not halted
has exactly one pending operation in each state; an execution, which consists of a sequence
of operations and their return values, is constructed by repeatedly applying pending operations.
A partial execution is one in which not all processes have halted. The choice of which pending
operation occurs in each state is determined by an adversary scheduler, a function from par-
tial executions to process ids. We consider only wait-free protocols, where there are no fairness
conditions on executions.

Processes are randomized: they have access to local coins that are not predictable by the
adversary but also not visible to other processes. Formally, we can think of the local coins as
probabilistic read-only objects private to each process, so that executing a coin-flip is an operation.

The total work or total step complexity of an execution is the total number of operations it
contains. The individual work or individual step complexity is the maximum number of op-
erations carried out by any single process. Local computation (including local coin-flip operations)
is excluded from both measures.

2.1 Strong and weak adversaries

The strength of the adversary has a large effect on the cost of randomized consensus. An adaptive
or strong adversary has no restrictions on its choice of which process carries out the next operation.
A weak adversary is any adversary that is not strong. Typically, this means that the adversary’s
knowledge is limited in some way; this can be modeled by an equivalence relation on partial
executions, where the adversary is required to choose the same process after equivalent partial
executions.

Some examples of weak adversaries:

e Oblivious adversary. An oblivious adversary has no knowledge of the execution and sched-
ules processes in a fixed order. Here, two executions are equivalent if they have the same
length.

e Value-oblivious adversary. A value-oblivious adversary cannot observe internal states of
processes, the contents of registers, or the values in pending write operations, but it can



distinguish between pending operations of different types (e.g., read vs. write) or to different
locations. Value-oblivious adversaries of various kinds are used by [15,16,21]. The useful
property of value-oblivious adversaries is that they allow the outcome of a local coin-flip to
be stockpiled in a register as a pre-flipped global coin that is visible to all processes but still
not predictable by the adversary until some process uses its value.

e Location-oblivious adversary. A location-oblivious adversary cannot observe internal
states of processes, can observe the contents of memory and the values of pending write
operations, but cannot distinguish between pending write operations to different locations.
This allows for probabilistic writes as defined in the “strong model” of [1] to represent the
assumptions of the Chor-Israeli-Li protocol [23] and as used more recently by Cheung [22].
These are write operations that take effect only with some probability, where the adversary
cannot choose whether to allow the write operation based on the outcome of the coin-flip. In
a location-oblivious model, they can be implemented by having a process randomly choose
between writing to the desired location or to some dummy location (corresponding to an
omitted write).

For some of our results, we assume probabilistic writes, which can be implemented using a
location-oblivious adversary as described above.

The practical justification for weak adversaries is that realistic implementations of shared mem-
ory are not likely to distinguish between operations with similar properties. This is a very natural
assumption for value-oblivious adversaries. For location-oblivious adversaries, it may be less natu-
ral, but it is still plausible if we assume that the relevant memory locations are all stored on the
same page, and that the main source of timing uncertainty lies in a page-based memory manage-
ment system that treats all locations on the same page as equivalent. The same considerations
apply to probabilistic writes, if we assume they are implemented as a choice between writing a real
location or a dummy location with the same characteristics.

Other restrictions on the adversary have been used in the consensus literature. These include
requiring that the adversary implement a quantum or priority-based scheduling algorithm [3,4,30] or
that the adversary include some random jitter in its scheduling decisions [6]. We discuss implications
of some of these assumptions for our framework in Section 4.2.

3 Decomposing consensus

Here we show how a consensus protocol can be decomposed into a collection of conciliators and

adopt-commit objects. This provides an alternative to previous general frameworks for implement-

ing consensus, such as the round-based weak-shared-coin framework of Aspnes and Herlihy [11].
Recall that a randomized consensus protocol must satisfy three properties:

e Validity. Every output equals some process’s input.
e Termination. Every process terminates with probability 1.
e Agreement. No two outputs are different.

A consensus object is a shared-memory object with a single consensus operation, such that
if each process executes this operation exactly once with its input, the resulting outputs satisfy the
requirements for randomized consensus.



We are going to replace consensus objects by sequences of objects satisfying weaker conditions.
Like consensus objects, these weaker objects will be one-shot objects—which means that each
process executes at most one operation on the object—and we will expect inputs to be from the
set of possible decision values 3. But the outputs will be annotated by a decision bit, chosen
from the set {commit, adopt}, that indicates whether the protocol should terminate immediately
or continue to the next object in the sequence: an output of (commit,v) means to terminate with
decision value v immediately, while an output of (adopt,v) means to continue to the next object,
using v as input. We call an object annotated with a decision bit in this way a deciding object.
The adopt and commit values for the decision bit are used for compatibility with the definition of
adopt-commit objects given by [2].

These objects will generally satisfy only Las Vegas requirements [17], where an object is not
required to guarantee agreement unless at least one of its outputs is marked with commit. We refer
to this weaker agreement requirement as coherence:!

e Coherence. If any process outputs (commit,v), then no process outputs (d,v’) for v/ # v.

A weak consensus object is a deciding object that satisfies validity, termination, and coher-
ence. Note that weak consensus objects may be very weak indeed: an object that simply copies
its input to its output with decision bit adopt satisfies all three properties. But we will use weak
consensus objects as a basis for building stronger objects.

3.1 Conciliators

A conciliator is a weak consensus object that guarantees that its outputs agree with constant prob-
ability, but that does not detect when or if agreement occurs. Formally, it satisfies the additional
requirement of probabilistic agreement:

e Probabilistic agreement. There is a fixed agreement probability § > 0 such that, for
any adversary strategy, the probability that all return values are equal is at least 9.

A conciliator object may correspond to a weak shared coin (with machinery added to ensure
validity) or to the first-mover-wins technique of Chor-Israel-Li-style protocols [22,23]. We give
examples of both types of constructions in Section 5. Because conciliators are not expected to
detect agreement, our constructions will satisfy coherence vacuously, by always returning adopt.

3.2 Adopt-commit objects

Actual decisions are produced by adopt-commit objects, objects that detect agreement. An
adopt-commit object is a weak consensus object that satisfies the additional requirement of con-

vergence:?

e Convergence. If all inputs are equal to v, all outputs are (commit, v).

!The presentation of adopt-commit objects in [2] uses the term agreement for this property; we will reserve
agreement for the stronger, unconditional agreement property of full consensus objects.
2The terminology here follows [2]. The term used in [8] was the less evocative acceptance.



Adopt-commit objects [2] are a representation, as shared-memory objects, of the adopt-commit
protocols of Gafni [25]. The same objects, with minor cosmetic differences, were defined under the
name of ratifiers in [8]. The adopt-commit objects defined here largely follow the definition and
terminology in [2], with the exception that we use the term coherence (from [8]) for what is called
agreement in [2].

Because adopt-commit objects are not required to produce agreement, they can be implemented
deterministically with low space and work complexity. In Section 6, we give an implementation of
an m-valued adopt-commit object that uses O(log m) multi-writer registers and O(logm) individual
work. For binary consensus, this reduces to 3 registers and at most 4 operations per process.

3.3 Composing objects

Our consensus protocols will consist of an alternating sequence of adopt-commit objects and con-
ciliators. To define this formally, it helps to have a notion of composing deciding objects.

Recall that a deciding object is one that annotates its output with either adopt or commit. If
X and Y are deciding objects then their composition (X;Y') is a deciding object whose operation
op(x;y)(z) is given by the code in Procedure Composition.

(d,v) < opx(z)
if d = commit then
return (commit, v)
else
return opy (v)
end

S s W N =

Procedure Composition(X,Y,z)

Informally, we perform opy first, and feed the result to opy only if opy does not commit to a
value on its own. We can also think of this rule as implementing an exception mechanism where a
commit by X immediately terminates the composite object without executing Y.

Note that in (X;Y"), X comes first. This is the reverse of the usual rule for function composition.

It is easy to see that composition is associative: ((X;Y');Z) has exactly the same behavior as
(X;(Y;2)) for all objects X, Y, Z. We will generally omit the parentheses and write (X;Y;Z) in
this case. Similarly, we can define compositions (X7; Xo;...; Xx) for arbitrarily many objects, and
even define infinite compositions (X1; Xo;...) in the obvious way.

If P is some predicate on objects, we say that composition preserves P if P(X) and P(Y)
implies P(X;Y’). This naturally extends by induction to longer finite compositions.

3.3.1 Composing weak consensus objects

The property of being a weak consensus object is preserved by composition.
Lemma 1 Validity is preserved by composition.

Proof: Suppose that X and Y satisfy validity. Then any return value of (X;Y) is either (a)
a return value of X, and thus equal to an input to (X;Y); or (b) a return value of Y, and thus



equal to an input to Y, which is in turn an output of X and thus equal to an input of (X;Y). Il

The converse does not hold. It may be that the first object always scrambles its inputs (but
does not commit) while the second unscrambles them.

Lemma 2 Termination is preserved by composition.

Proof: Immediate. I

A partial converse holds for termination: if (X;Y) terminates with probability 1, so does X.

Lemma 3 If X satisfies coherence, and Y satisfies both validity and coherence, then (X;Y') satis-
fies coherence.

Proof: We consider two cases, depending on whether any process skips Y:

1. X outputs (commit,v) for some process. Then coherence for X implies all processes obtain
(—,v) from X, and any other process either obtains the same return value directly from X
or obtains the same return value from Y because of the validity of Y.

2. X does not output (commit, —) for any process. Then all processes execute opy and coherence
follows from coherence of Y.

Theorem 4 The property of being a weak consensus object is preserved by composition.

Proof: Apply Lemmas 1, 2, and 3. 11

4 Recomposing consensus

We give three constructions of consensus protocols. The first uses an infinite sequence of adopt-
commit objects and conciliators (but terminates after using only a constant number on average);
the second truncates the infinite sequence by falling back to some fixed-space consensus protocol
with low probability; and the third omits the conciliators and relies on scheduling restrictions to
terminate.

4.1 Consensus with conciliators and adopt-commit objects

4.1.1 Unbounded construction

Let A; be a separate adopt-commit object for each ¢ > —1 and C; a conciliator object with
agreement probability § for each ¢ > 1. Construct the composite object

U= A_1;40;C1; A1;C; Ag; . . ..

Observe that this object satisfies termination (and thus yields well-defined return values), because,
with probability 1, some C; eventually produces agreement, causing the following A; to force every
process to commit.



Suppose now that every process commits in some prefix A_1; Ag; C1; Ay;...; Cg; Ag. Then this
prefix is a weak consensus object by Theorem 4, so the output values are consistent with validity
and coherence (and thus agreement because the processes commit). It follows that object U is a
randomized consensus object.

The initial prefix A_1; Ag implements a fast path for the case where some process p finishes
A_; before any process with a different input arrives.® If this case holds, then the convergence
condition implies that p must commit, because it cannot distinguish this execution from one in
which all processes have the same input. But then coherence implies that all processes have the
same output from A_; and thus commit in Ag. This avoids the overhead of running a conciliator
when conciliators are more expensive than adopt-commit objects.

In a general execution, the cost of object U depends on the cost of the A; and C;. Let T be
a time measure that is additive (the cost of executing an operation X followed by an operation
Y is T(X) + T(Y)) and does not charge for internal operations of processes; note that both the
individual work Ti.gividual and the total work Ti.i, have these properties. The expected value
of ¢ at which some C; successfully produces agreement is at most 1/J, so we have E[T(U)] <
2T (A) + (1/6)(T(C) +T(A)) = O(T(C)+T(A)) when ¢ is constant. So the cost of consensus will

be asymptotically equal to the worse of the costs of a conciliator and an adopt-commit object.

4.1.2 Bounded construction

The preceding construction requires unbounded space. We can avoid this by leveraging some
bounded-space randomized consensus protocol to truncate the sequence of objects (e.g. the bounded-
space protocol of [5], which uses polynomial total work and thus also polynomial individual work).

Let A; and C; be as above and let B = (A_1; Ap; C1; A1;Co; Ag; ... ; Ck; Ag; K), where K
is a bounded-space randomized consensus protocol. That B is a consensus object follows from
Theorem 4 and the fact that K commits if no earlier object does. The expected complexity of
B for an additive time measure T" is bounded by O((1/6)(T(A) + T(C)) + (1 — §)*T(K)). If 6 is
constant and T'(K) is polynomial in n, then for some k& = O(logn) this reduces to O(T(A)+T(C))
as in the previous case.

We state this result as a theorem:

Theorem 5 Given any bounded-space implementations of conciliators {C;} with constant agree-
ment probability and adopt-commit objects {A;}, there exists an implementation of consensus that
uses bounded space, with expected individual work O(max(Tindividual(Ci), Tindividual(4:))) and ez-
pected total work O(max(Tiota1(Ci), Tiota1(Ai))).

4.2 Consensus with adopt-commit objects only

Under severe restrictions on the adversary, it is possible to solve consensus without using conciliators
at all. Let A* = Ay; Ag;... consist of an unbounded sequence of adopt-commit objects. If during
an execution of A*, some process p completes A; before any process with a conflicting value enters
A;, then p commits by the same analysis as for the fast-path prefix above. So if we can guarantee
that this eventually happens, A* implements a consensus protocol.

For binary consensus using a constant-individual-work adopt-commit object, A* is essentially
equivalent to the LEAN-CONSENSUS protocol of [6], so the analysis there shows that A* will terminate

31 am indebted to Azza Abouzeid for suggesting this idea.



in O(logn) individual work with a noisy scheduler. This is a scheduler that chooses in advance
the timing of all steps of the algorithm, but has its choices perturbed by random errors that
accumulate over time. The proof in [6] shows that eventually this cumulative error will push some
process ahead of all the others. We expect that comparable results can be obtained for m-valued
consensus, but as our current m-valued adopt-commit object requires O(logm) work, additional
analysis would be needed.

The A* protocol also works with priority-based scheduling as described by [30]. Here each
process is assigned a unique priority that does not change over the duration of its execution of
the consensus protocol, and each step is taken by the highest-priority process that currently has a
pending operation. It is easy to see that in this model, the highest-priority process to execute the
protocol will eventually overtake all other processes and reach some adopt-commit object alone,
unless a decision occurs earlier. In either case, we achieve consensus. (The same argument shows
that this protocol achieves obstruction-free consensus for any scheduling policy, since obstruction-
free consensus requires termination only when some process eventually runs by itself.) The A*
protocol is less efficient than the protocol from [30], which uses only two registers and terminates in
at most six operations per process. Part of the reason for this inefficiency is that we are assuming
that A is an arbitrary adopt-commit object. Particular implementations of adopt-commit objects
might offer better performance.

5 Implementing a conciliator

Here we show how to implement a conciliator. We first show that the classic weak shared coin
approach of [11] fits in our framework, and then give a new conciliator for the probabilistic-write
model with very strong performance bounds.

5.1 Conciliators from weak shared coins

A weak shared coin [11] is a protocol in which each process outputs a bit, and, for some agreement
probability & > 0, it holds that the probability that all processes output 0 and the probability that
all processes output 1 are both at least §, regardless of the adversary’s choices. Conciliators are
generally not weak shared coins: while a conciliator produces a common output value with some
probability, the adversary may have complete control over that value. In the other direction, while
weak shared coins do guarantee agreement with some probability, they are generally not conciliators,
because they don’t guarantee validity. Fortunately, validity is easily enforced.

shared data:
binary registers ro and ry, initially 0;
weak shared coin SharedCoin

17y 1

2 if r-, = 1 then

3 return (adopt, SharedCoin())
4 else

5 return (adopt, v)

6 end

Procedure CoinConciliator (v)



Code for a shared-coin-based binary conciliator is given as Procedure CoinConciliator.

Theorem 6 Given a weak shared coin SharedCoin with agreement probability §, Procedure
CoinConciliator satisfies termination, validity, coherence, and probabilistic agreement with agree-
ment probability at least §.

Proof: Termination follows from termination of SharedCoin and the lack of loops. Validity
follows from the fact that if all inputs are v, then no process writes r—,, and all processes skip the
shared coin. Coherence is satisfied vacuously.

For probabilistic agreement, essentially the same argument as used in [11] applies. If every
process executes the shared coin, they all return the same value v with probability at least § for
each v. Alternatively, if some process p skips the shared coin and returns v, then it must have
written r, before reading 0 from r_,. It follows that any process with input —wv reads r, after
writing 7—,, sees 1, and executes the shared coin. So only v can be returned by processes skipping
the shared coin, and with probability at least J, all processes executing the shared coin also return

v. 1

The cost of this implementation is likely to be dominated by the cost of SharedCoin; the other
parts add 2 registers and 2 register operations. Note that this implementation only provides a
2-valued conciliator. How to extend a shared coin to more values is not obvious; for one choice,
see [20]. Our new algorithm below avoids this restriction to a bounded set of values, at the cost of
requiring a weaker adversary.

5.2 Conciliators using probabilistic writes

In the probabilistic-write model, we can build a conciliator for arbitrarily many values, following
the approach of the classic algorithm of Chor, Israeli, and Li [23] and its more recent optimization
by Cheung [22]. The basic idea is to have a single multi-writer register, which in an ideal execution
is written only once by some winning process. This is enforced by having each process attempt to
write the register, with small probability, only if it has not yet observed a value in the register.
Assuming the probabilities are set correctly, there will be a constant chance that some process
writes the register but the next n — 1 processes do not, causing them to read the winning value and
return it.

Previous protocols in this model have used a constant ©(1/n) probability for each write. This
gives a bound on both total and individual work of O(n). We generalize this approach to allow
processes to become impatient over time and increase their probabilities (analogously to the in-
creasing weighted votes in the weak shared-coin protocols of [9,10,12]). This new approach will
allow us to get optimal O(n) expected total work while reducing the individual work to O(logn).

Code for the conciliator is given in Procedure ImpatientFirstMoverConciliator. Each pro-
cess repeatedly checks if the register is empty, and if so, writes its input to the register with
probability %, where k is the number of previous failed attempts. If a process observes a value in
the register, it returns that value.

Because the process writes with probability 1 once 2% reaches 2n, the loop is never executed
for more than [lgn] + 1 iterations, at the cost of two operations per iteration (one read and one
probabilistic write). Following the last iteration, an additional read is needed to detect r # L.

10



shared data: register r, initially L
1 k<0

2 while r = | do
3 write v to 7 with probability %
4 k—k+1

5 end

6 return (adopt,r)

Procedure ImpatientFirstMoverConciliator (v)

This gives a bound of 2 [Ig2n] +3 = 2 [lgn] + 5 on the individual work.* At the same time, since
each write succeeds with probability at least ﬁ, we retain the O(n) bound of previous first-mover
protocols on the expected total work. But it may be that the cost of impatient processes is that
we lose the constant agreement probability. That this is not the case is shown in the following
theorem:

Theorem 7 Procedure ImpatientFirstMoverConciliator satisfies termination in expected O(n)
total work and at most 2lgn + O(1) individual work; wvalidity; coherence; and agreement with
probability at least (1 — e~'/*)(1/4) ~ 0.0553.

Proof: The bounds on individual work and total work have already been established. Validity
and coherence are immediate from inspection of the algorithm.

For agreement, observe that the adversary’s choices are effectively limited to choosing the order
in which the processes will attempt their probabilistic writes, and that it succeeds only if it can
get one of the remaining n — 1 processes to carry out a successful write after some initial process
successfully writes to r. Fix some adversary strategy, and let p; be the probability that the i-th
write succeeds if no previous write succeeds. Let ¢ be the minimum value for which S°%_, p; > 1/4.
We will argue that with at least constant probability, some write succeeds in the first ¢ attempts,
and thereafter no process writes r on its next attempt. In this case exactly one value is written to
r and this value is returned by all processes.

The probability that none of the first ¢ writes succeed is given by [[i_, (1—p;) < [Ti—; exp (—pi) =
exp (— 25:1 pi) < e~1/4. So with probability at least 1 — e~/4, some process writes r at a time ¢’
when Ef/:_ll pi is still small.

The reason we care about this is that we can use the bound on > p; to get a bound on the
probability that some other process then overwrites . Consider any single process p, and suppose
that it has failed to carry out its first k, writes. The probability that its next write succeeds is
gt =k (14t ) = L+ i 2

If process g carries out the first successful write as one of the first ¢ writes, we can bound the
right-hand side of the above equation when summed over all p # ¢ by letting each &, count the
number of unsuccessful writes carried out by p among the at most ¢t — 1 writes preceding ¢’s write.

4We assume here that each probabilistic write costs 1 unit whether or not the write succeeds. We do not require
that a process detect if it performs a successful write, as it will leave the loop following its next read in any case. If
we can detect success, the individual work bound can be reduced by 1 by returning immediately after a successful
write.

11



The probability that ¢’s value is overwritten is then bounded by

ky,—1 .
Qkp 1 Y]
Z%—Z %+Z%
PF#q PFq Jj=0
n—1 t—1
< 5 +sz'
=1
<1+1_3
2 4 4

Note that this bound does not depend on which write succeeds. We thus have

3
Prfonly one write occurs] > (1 — 6_1/4> <1 — 4)
= (1 - 6—1/4) (1/4)
~ 0.0553.

6 Implementing an adopt-commit object

Here we show how to build a deterministic m-valued adopt-commit object with ©(logm) individual
work. This is an exponential improvement on the ©(m) individual work of the previously-known
adopt-commit implementation based on collect [25].

6.1 Write and read quorums

The operation of our adopt-commit object is similar to the adopt-commit protocol of Gafni [25],
and also resembles the follow-the-leader mechanisms in the classic Chor-Israeli-Li [23] and Aspnes-
Herlihy [11] consensus protocols. The main difference from this previous work is that we exploit
the power of multi-writer registers to reduce the cost.

A process first announces that it has a particular value v by writing to all registers in a write
quorum W, that depends on v. It then examines a special proposal register proposal. If this
register is empty, the process may propose its value by writing to the proposal register; otherwise,
it adopts the previously proposed value as its new preferred value in place of v. Whatever value
preference it obtains, it returns (commit, preference) only if no other value has been announced;
otherwise, it returns (adopt, preference). Conflicting values are detected by reading all registers in
a read quorum Rpreference- 1his works as long as for every two distinct values v and v', Ry includes
some register written in W, that is not written in W,,.

Code for this implementation is given as Procedure AdoptCommit.

Theorem 8 Let W, N Ry = 0 if and only if v = v'. Then Procedure AdoptCommit satisfies
termination, validity, coherence, and convergence.

12



shared data:
register proposal, initially _L;
binary registers r;, initially 0
local data: preference, u
foreach r;, € W, do
ri <1
end
u < proposal; if u # 1 then
preference < u
else
preference < v
proposal < preference

© 00w N O A W

end
if r; # 0 for some r; € Rpreference then
return (adopt, preference)

=
= o

else
return (commit, preference)
end

e e
W N

Procedure AdoptCommit (v)

Proof: Termination is immediate from the lack of unbounded loops. Validity holds because
any return value is either an initial input v or an input read indirectly from proposal. Convergence
holds because if every process has input v, then no process announces any value v’ # v, or writes
any v’ # v to proposal, so preference = v for all processes and the test in Line 10 always fails.

For coherence, suppose that some process p returns (commit,v) (it is not hard to see that a
process can only return its own input in this case). Then p observed no conflicting v" when it
executed Line 10. It follows that no process p’ with a conflicting value v" had yet completed Line 3
before p finished executing all of the code up to Line 10. Since p either reads v from proposal in
Line 4 or sets proposal to v in Line 8, we have that no process p’ with input v’ # v finishes Line 3
before proposal is set to v. Thus no such p’ writes any v’ # v to proposal, and no process chooses a
preference different from v before Line 10. Hence no process outputs a value different from v. il

6.2 Choice of quorums

It remains only to specify a choice of quorums satisfying the condition in Theorem 8. Because the
cost of Procedure AdoptCommit is dominated by writing W, and checking Rpreference, Our goal is to
keep both write quorums and read quorums as small as possible.

Here are some possible choices:

1. For a binary adopt-commit object, use two 1-bit registers ro and r1, and let W, = {r,} and
R, = {r-,}. Using this implementation, AdoptCommit requires at most 4 register operations
and uses only 3 registers: rg, r1, and proposal.

2. A generalization of the preceding mechanism to m values is to use a pool of k registers ry ... 1,
where k = lgm + O(loglog m) satisfies (LkI;Q J) > m. For each value v, assign a distinct write

13



quorum W, of size |k/2] and a complementary read quorum R, = W,. Then R, N W, = {)
and R, "W, # () when v # v'. An m-valued instance of AdoptCommit constructed using this
technique requires 1g m + O(loglog m) registers and 1lgm + O(loglogm) individual work.

This choice of quorums is optimal, in the sense of maximizing the number of distinct values
m given a fixed bound k on |W,| + |R,|. This follows from a classic result in extremal set
theory, known as Bollabds’s Theorem [19]; the version we give here is taken from [27].

Theorem 9 ( [27], Theorem 9.8) Let Aj,..., A, and By,..., By, be two sequences of sets
such that A; N Bj = 0 if and only if i = j. Then

S () < )

i=1

where a; = |A;| and b; = | B;|.

Letting each A; correspond to some W; and each B; to some R;, each term in the left-hand
side of (1) is minimized by setting |W;| = |k/2]; this gives m = (Lk];QJ) as above.

. An alternative encoding of values into write quorums gives a simpler implementation with
almost as good performance. Here we use a two-dimensional array of registers r;; where
ie{l...[lgm]} and j € {0,1}. Writing each v as a [lgm]-bit vector, let W, equal {r,,}
and R, equal its complement. The rest of the analysis is the same as in the previous method;
the space complexity is exactly 2[lgm] + 1 registers and the individual work is at most
2 [lgm] + 2 operations.

. Finally, in a cheap-snapshot or cheap-collect model (where reading an array of n single-writer
registers takes O(1) time), we can simulate write quorums of size 1 (and corresponding read
quorums of size m — 1) by having each process announce its value by writing its own register
and having each process test if any process has announced a conflicting value using a single
collect operation. The individual work bound in this case is 4 operations, as in the binary
case. (While this model is not realistic, a cheap-collect adopt-commit object helps put a limit
on what lower bounds can be achieved in a cheap-collect model.) With standard collects
implemented as n — 1 single-register reads, the same approach costs O(n) individual work,
and gives precisely the original adopt-commit protocol of Gafni [25].

Using either construction of O(logm)-sized quorums with Theorem 8 gives the following result:

Theorem 10 For any m, an m-valued adopt-commit object can be implemented deterministically
for any number of processes using O(logm) atomic registers and O(logm) individual work.

7 Discussion

We have shown that separating consensus into explicit objects responsible for generating and de-
tecting agreement allows for a simpler description of the overall protocol and for optimizing the
resulting objects independently. For the probabilistic-write model, this gives the first known algo-
rithm with sublinear individual work and the first algorithm with linear total work when only a
constant number of input values are permitted.
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Considering conciliators and adopt-commit objects separately also offers guidance for seeking
possible non-trivial lower bounds on expected work in weak-adversary models with uncorrelated
local coins. For m-valued consensus, we currently have two obstacles to improved individual work:
we would need to reduce both the O(logn) upper bound on conciliators and the O(logm) upper
bound on adopt-commit objects. While it is not necessarily the case that any consensus protocol
separates cleanly into these components (for example, the protocol of [5] clearly does not), because
a consensus object satisfies the specifications of both a conciliator and an adopt-commit object,
any lower bound on either object also gives a lower bound on consensus. Concentrating on these
more restricted objects may make finding such a lower bound easier, by giving insight into precisely
what aspects of consensus make it hard.
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