
Max Registers, Counters, and Monotone Circuits

(Preliminary Version)

James Aspnes
∗

Department of Computer
Science, Yale University

New Haven, CT
aspnes@cs.yale.edu

Hagit Attiya
†

Department of Computer
Science, Technion

Haifa, Israel
hagit@cs.technion.ac.il

Keren Censor
‡

Department of Computer
Science, Technion

Haifa, Israel
ckeren@cs.technion.ac.il

ABSTRACT
A method is given for constructing a max register, a lineariz-
able, wait-free concurrent data structure that supports a
write operation and a read operation that returns the largest
value previously written. For fixed m, an m-valued max
register can be constructed from one-bit multi-writer multi-
reader registers at a cost of at most dlgme atomic register
operations per write or read. The construction takes the
form of a binary search tree: applying classic techniques for
building unbalanced search trees gives an unbounded max
register with cost O(min(log v, n)) to read or write a value
v, where n is the number of processes.

It is also shown how a max register can be used to trans-
form any monotone circuit into a wait-free concurrent data
structure that provides write operations setting the inputs
to the circuit and a read operation that returns the value of
the circuit on the largest input values previously supplied.
The cost of a write is bounded by O(Sdmin(dlgme, n), where
m is the size of the alphabet for the circuit, S is the number
of gates whose value changes as the result of the write, and
d is the number of inputs to each gate; the cost of a read
is min(dlgme, O(n)). While the resulting data structure is
not linearizable in general, it satisfies a weaker but natu-
ral consistency condition. As an application, we obtain a
simple, linearizable, wait-free counter implementation with
a cost of O(min(logn log v, n)) to perform an increment and
O(min(log v, n)) to perform a read, where v is the current
value of the counter. For polynomially-many increments,
this becomes O(log2 n), an exponential improvement on the
best previously known upper bounds of O(n) for an exact

counting and O(n4/5+ε) for approximate counting.

∗Supported in part by NSF grant CNS-0435201.
†Supported in part by the Israel Science Foundation (grant
number 953/06)
‡Supported in part by the Adams Fellowship Program of the
Israel Academy of Sciences and Humanities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’09, August 10–12, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-396-9/09/08 ...$5.00.

Finally, it is shown that the upper bounds are almost opti-
mal. We prove that min(dlgme, n−1) is a lower bound on the
worst-case complexity for any solo-terminating deterministic
implementation of anm-valued bounded max register, which
is exactly equal to the upper bound for m ≤ 2n−1. The same
bound also holds m-valued counters. Furthermore, even in a
solo-terminating randomized implementation of an n-valued
max register with an oblivious adversary and global coins,
there exist simple schedules containing n − 1 partial write
operations and one read operation in which, with high prob-
ability, the worst-case step complexity of a read operation is
Ω(logn/ log log n) if the write operations have polylogarith-
mic step complexity.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
programming ; E.1 [Data]: Data Structures; F.2 [Theory
of Computation]: Analysis of Algorithms and Problem
Complexity—Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
distributed computing, shared memory, max registers, coun-
ters, monotone circuits

1. INTRODUCTION
A critical aspect of programming contemporary multipro-

cessing systems is the implementation of concurrent data
structures, e.g., getting the maximal value stored in a data
structure, or counting. It is important to find methods
for building efficient concurrent data structures in shared-
memory systems, where n processes communicate by read-
ing and writing to shared multi-writer multi-reader reg-
isters.

One successful approach to building concurrent data struc-
tures is to employ the atomic snapshot abstraction [1]. An
atomic snapshot object is composed of components, each of
which typically updated by a different processes; the com-
ponents can be atomically scanned. By applying a specific
function to the scanned components, we can provide a spe-
cific data structure. For example, to obtain a max register,
supporting a write operation and a ReadMax operation that
returns the largest value previously written, the function re-
turns the component with the maximum value; to obtain a

counter, supporting an increment operation and a Read-

Counter operation, the function adds up the contribution
from each process.

These constructions take a linear (in n) number of steps,
due to the cost of implementing atomic snapshots [7]. In-
deed, Jayanti, Tan, Toueg [8] show that operations must
take Ω(n) space and Ω(n) steps in the worst case, for many
common data structures, including max registers and coun-
ters. This seems to indicate that we cannot do better than
snapshots. This motivated, e.g., Aspnes and Censor [2] to

switch to approximate counting, but even this has O(n4/5+ε)
cost.

However, careful inspection of the lower bound proof re-
veals that it holds only when there are numerous operations
on the data structure. Thus, it does not rule out the pos-
sibility of having sub-linear algorithms when the number
of operations is bounded, or, more generally, the existence
of algorithms whose complexity depends on the number of
operations. Such data structures are useful for many ap-
plications, either because they have a limited life-time, or
because several instances of the data structure can be used.

In this paper, we present polylogarithmic implementations
of key data structures with bounded values. We assume the
standard model of an asynchronous shared-memory system,
where n processes communicate by reading and writing to
shared multi-writer multi-reader registers. Each step con-
sists of some local computation and one shared memory
event, which is either a read or a write to some register.
We measure the cost of an implementation by the number
of steps required for an operation.

The cornerstone of our constructions, and our first exam-
ple, is an implementation of a max register that “beats” the
Ω(n) lower bound of [8] when logm is o(n). If the number of
values is bounded by m, its cost per operation is O(logm);
for an unbounded set of values, the cost is O(min(log v, n)),
where v is the value of the register.

Instead of simply summing the individual process contri-
butions, as in a snapshot-based implementation of a counter,
we can use a tree to compute this sum: take an O(logn)
depth tree of two-input adders, where the output of each
adder is a max register. To increment, walk up the tree re-
computing all values on path. The cost of a read operation is
O(min(log v, n)), where v is the current value of counter, and
the cost of an increment operation is O(min(logn log v, n)).
When the number of increments is polynomial, this has
O(log2 n) cost, which is an exponential improvement from
the trivial upper bound of O(n) using snapshots. The re-
sulting counter is wait-free and linearizable.

More generally, we show how a max register can be used
to transform any monotone circuit into a wait-free concur-
rent data structure that provides write operations setting
the inputs to the circuit and a read operation that returns
the value of the circuit on the largest input values previ-
ously supplied. Monotone circuits expose the parallelism
inherent in the dependency of the data structure’s values on
the arguments to the operations. Formally, a monotone
circuit computes a function over some finite alphabet of
size m, which is assumed to be totally ordered. The circuit
is represented by a directed acyclic graph where each node
corresponds to a gate that computes a function of the out-
puts of its predecessors. Nodes with in-degree zero are input
nodes; nodes with out-degree zero are output nodes. Each
gate g, with k inputs, computes some monotone function fg

of its inputs. Monotonicity means that if xi ≥ yi for all i,
then fg(x1, . . . , xk) ≥ fg(y1, . . . , yk).

The cost of a write is bounded by O(Sdmin(dlgme, n),
where m is the size of the alphabet for the circuit, d is the
number of inputs to each gate, and S is the number of gates
whose value changes as the result of the write; the cost of a
read is min(dlgme, O(n)). While the resulting data structure
is not linearizable in general, it satisfies a weaker but nat-
ural consistency condition, called monotone consistency,
which we will show is still useful for many applications.

We also show that the min(dlgme , n− 1) cost of the max
register read operation is the exact worst-case complexity
for any solo-terminating deterministic implementation when
m ≤ n. The same bound is also shown to hold for m-valued
counters (but in this case it is not known to be tight). Fur-
thermore, even in a solo-terminating randomized implemen-
tation of an n-valued max register with an oblivious adver-
sary and global coins, there exist simple schedules contain-
ing n − 1 partial write operations and one read operation
in which, with probability 1 − o(1), (a) the write opera-
tion with maximum value takes more than w steps, (b) the
read operation returns an incorrect value, or (c) the read
operation takes Ω(logn/(logw+ log logn)) steps. In partic-
ular, this tradeoff shows an Ω(logn/ log log n) lower bound
on the worst-case step complexity of read operations for any
randomized max register whose write operations have poly-
logarithmic step complexity.

2. MAX REGISTERS
Our basic data structure is a max register, which is an

object r that supports two operations. A WriteMax(r, t) op-
eration with an argument t that records the value t in r, and
a ReadMax(r) operation returning the maximum value writ-
ten to the object r. A max register may be either bounded
or unbounded. For a bounded max register, we assume that
the values it stores are in the range 0..(m−1), where m is the
size of the register. We assume that any non-negative inte-
ger can be stored in an unbounded max register. In general,
we will be interested in unbounded max registers, but will
consider bounded max registers in some of our constructions
and lower bounds.

One way to implement max registers is by using snapshots.
Given a linear-time snapshot protocol (e.g., [7]), a WriteMax

operation for process pi updates location a[i], while a ReadMax

operation takes a snapshot of all locations and returns the
maximum value. Assuming no bounds on the size of snap-
shot array elements, this gives an implementation of an un-
bounded max register with linear cost (in the number of
processes n) for both WriteMax and ReadMax. We show how
to build more efficient max registers: a recursive construc-
tion that gives costs logarithmic in the size of the register for
both WriteMax and ReadMax (Section 2.1). We also describe
(in Section 2.2) a non-linearizable, Monte Carlo implemen-
tation with only one atomic register read per ReadMax, but
the cost of WriteMax is drastically increased; while imprac-
tical, it is useful for illustrating the limitations of our lower
bounds.

2.1 Recursive max registers
We show how to construct a max register recursively from

a tree of increasingly large max registers.
The base objects will consist of at most one snapshot-

based max register as described in the previous section (used

MaxReg0 MaxReg0

�
�

�	

@
@
@R

left right

switch

�
�	

. .
.

�
�

�	

@
@
@R

left right

switch

Figure 1: Implementing a max register.

to limit the depth of the tree in the unbounded construction)
and a large number of trivial MaxReg0 objects, which are max
registers r that support only the value 0. The implementa-
tion of MaxReg0 requires zero space and zero step complexity:
WriteMax(r, 0) is a no-op, and ReadMax(r) always returns 0.

To get larger max registers, we combine smaller ones re-
cursively. A recursive MaxReg object has three components:
two MaxReg objects called r.left and r.right, where r.left is a
bounded max register of size m, and one 1-bit multi-writer
register called r.switch. The resulting object is a max regis-
ter whose size is the sum of the sizes of r.left and r.right, or
unbounded if r.right is unbounded.

Writing a value t to r is by the WriteMax(r, t) procedure,
in which the process writes the value t to r.left if t < m
and r.switch is off, or otherwise writes the value t − m to
r.right and sets the r.switch bit. Reading the maximal value
is by the ReadMax(r) procedure, in which the process returns
the value it reads from r.left if r.switch is off, and otherwise
returns the value it reads from r.right plus m.

shared data: switch: a 1-bit multi-writer register,
initially 0
left, a MaxReg object of size m, initially 0,
right, a MaxReg object of arbitrary size,

initially 0
if t < m then1

if r.switch = 0 then2

WriteMax(r.left, t)3

end4

end5

else6

WriteMax(r.right, t−m)7

r.switch← 18

end9

Procedure WriteMax(r,t)

An important property of this implementation is that it
preserves linearizability, as shown in the following lemma.

Lemma 1. If r.left and r.right are linearizable max regis-
ters, so is r.

shared data: switch: a 1-bit multi-writer register,
initially 0
left, a MaxReg object of size m, initially 0,
right, a MaxReg object of arbitrary size,

initially 0
if r.switch = 0 then1

return ReadMax(r.left)2

end3

else4

return ReadMax(r.right) +m5

end6

Procedure ReadMax(r)

Proof. We assume that each of the MaxReg objects r.left
and r.right is linearizable. Thus, we can associate each op-
eration on them with one linearization point and treat these
operations as atomic. In addition, we can associate each
read or write to the register r.switch with a single lineariza-
tion point since it is atomic.

We now consider a schedule of ReadMax(r) and
WriteMax(r, t) operations. These consist of reads and writes
to r.switch and of ReadMax and WriteMax operations on r.left
and r.right. We divide the operations on r into three cate-
gories:

• Cleft: ReadMax(r) operations that read 0 from r.switch,
and WriteMax(r, t) operations with t < m that read 0
from r.switch.

• Cright: ReadMax(r) operations that read 1 from r.switch,
and WriteMax(r, t) operations with t ≥ m (i.e., that
write 1 to r.switch).

• Cswitch: WriteMax(r, t) operations with t < m that read
1 from r.switch.

Inspection of the code shows that each operation on r falls
into exactly one of these categories. Notice that an operation
is in Cleft if and only if it invokes an operation on r.left, an
operation is in Cright if and only if it invokes an operation on
r.right, and an operation is in Cswitch if and only if it invokes
no operation on r.left or r.right. We order the operations by
the following four rules:

1. We order all operations of Cleft before those of Cright.
This preserves the execution order of non-overlapping
operations between these two categories, since an op-
eration that starts after an operation in Cright finishes
cannot be in Cleft.

2. An operation op in Cswitch is ordered at the latest time
possible before any operation op′ that starts after op
finishes.

3. Within Cleft we order the operations according to the
time at which they access r.left, i.e., by the order of
their respective linearization points.

4. Within Cright we order the operations according to the
time at which they access r.right (linearization points).

It is easy to verify that these rules are well-defined.
We first prove that these rules preserve the execution order

of non-overlapping operations. For two operations in the

same category this is clearly implied by rules 2–4. Since
rule 1 shows that two operations from Cleft and Cright are
also properly ordered, it is left to consider the case that one
operation is in Cswitch and the other is either in Cleft or in
Cright. In this case, rule 2 implies that their order preserves
the execution order.

We now prove that this order satisfies the specification of
a max register, i.e., if a ReadMax(r) operation op returns t
then t is the largest value written by operations on r of type
WriteMax that are ordered before op. This requires showing
that there is a WriteMax(r, t) operation opw ordered before
op, and that there is no WriteMax(r, t′) operation opw′ with
t′ > t ordered before op.

This is obtained again by using the linearizability of the
components. If op returns a value t < m (i.e., it is in Cleft)
then this is the value that is returned from its invocation
op′ of ReadMax(r.left). By the linearizability of r.left, there
is a WriteMax(r.left, t) operation op′w ordered before op′ in
the linearization of r.left. By rule 3, this implies that the
WriteMax(r, t) operation opw which invoked op′w is ordered
before op. A similar argument for r.right applies if op returns
a value t ≥ m.

To prove that no operation of type WriteMax with a larger
value is ordered before op, we assume, towards a contra-
diction, that there is a WriteMax(r, t′) operation opw′ with
t′ > t that is ordered before op. If op returns a value t < m
(i.e., it is in Cleft) then opw′ cannot be in Cright, otherwise it
would be ordered after op, by rule 1. Moreover, opw′ cannot
be in Cswitch, since rule 2 implies that op starts after opw′

finishes and hence must also read 1 from r.switch which is
a contradiction to op ∈ Cleft. Therefore, opw ∈ Cleft, but
this contradicts the linearizability of r.left. If op returns a
value t ≥ m (i.e., it is in Cright) then opw′ cannot be in Cleft

because t′ > t. Moreover, opw′ cannot be in Cswitch, since
t′ > t ≥ m. Therefore, opw is in Cright, which contradicts
the linearizability of r.right.

Using Lemma 1, we can build a max register whose struc-
ture corresponds to an arbitrary binary search tree, where
each internal node of the tree is represented by a recursive
max register and each leaf is a MaxReg0, or, for the right-
most leaf, a MaxReg0 or snapshot-based MaxReg depending
on whether we want a bounded or an unbounded max reg-
ister. There are several natural choices, as we will discussed
next.

2.1.1 Using a balanced binary search tree
To construct a bounded max register of size 2k, we use

a balanced binary search tree. Let MaxRegk be a recur-
sive max register built from two MaxRegk−1 objects, with
MaxReg0 being the trivial max register defined previously.
Then MaxRegk has size 2k for all k. It is linearizable by
induction on k, using Lemma 1 for the induction step.

We can also easily compute an exact upper bound on the
cost of ReadMax and WriteMax on a MaxRegk object. For
k = 0, both ReadMax and WriteMax perform no operations.
For larger k, each ReadMax operation performs one register
read and then recurses to perform a single ReadMax operation
on a MaxRegk−1 object, while each WriteMax performs either
a register read or a register write plus at most one recursive
call to WriteMax. Thus:

Theorem 2. A MaxRegk object implements a linearizable
max register for which every ReadMax operation requires ex-

actly k register reads, and every WriteMax operation requires
at most k register operations.

In terms of the size of the max register, operations on a
max register that supports m values, where 2k−1 < m ≤ 2k

values, each take at most dlgme steps. Note that this cost
does not depend on the number of processes n; indeed, it is
not hard to see that this implementation works even with
infinitely many processes.

2.1.2 Using an unbalanced binary search tree
In order to implement max registers that support un-

bounded values, we use unbalanced binary search trees.
Bentley and Yao [4] provide several constructions of un-

balance binary search trees with the property that the i-th
leaf sits at depth O(log i). The simplest of these, called B1,
constructs the tree by encoding each positive integer using
a modified version of a classic variable-length code known
as the Elias delta code [5]. In this code, each positive in-
teger N = 2k + ` with 0 ≤ ` < 2k is represented by the
bit sequence δ(N) = 1k−10β(`), where β(`) is the (k − 1)-
bit binary expansion of `. The first few such encodings are
0, 100, 101, 11000, 11001, 11010, 11011, 1110000, If we in-
terpret a leading 0 bit as a direction to the left subtree and
a leading 1 bit as a direction to the right subtree, this gives
a binary tree that consists of an infinitely long rightmost
path (corresponding to the increasingly long prefixes 1k),
where the i-th node in this path has a left substree that
is a balanced binary search tree with 2i leaves. (A similar
construction is used in [3].)

Let us consider what happens if we build a max register
using the B1 search tree. A ReadMax operation that reads
the value v will follow the path corresponding to δ(v + 1),
and in fact will read precisely this sequence of bits from the
switch registers in each recursive max register along the path.
This gives a cost to read value v that is equal to |δ(v+1)| =
2 dlg(v + 1)e+ 1. Similarly, the cost of WriteMax(v) will be
at most 2 dlg(v + 1)e+ 1.

Both of these costs are unbounded for unbounded values
of v. For ReadMax operations, there is an additional com-
plication: repeated concurrent WriteMax operations might
set each switch just before the ReadMax reaches it, prevent-
ing the ReadMax from terminating. Another complication is
in proving linearizability, as the induction does not bottom
without trickery like truncating the structure just below the
last node actually used by any completed operation.

For these reasons, we prefer to backstop the tree with a
single snapshot-based max register that replaces the entire
subtree at position 1n, where n is the number of processes.
Using this construction, we have:

Theorem 3. There is a linearizable implementation of
MaxReg for which every ReadMax operation that returns value
v requires min(2 dlg(v + 1)e+1, O(n)) register reads, and ev-
ery WriteMax operation requires at most min(2 dlg(v + 1)e+
1, O(n)) register operations.

If constant factors are important, the 2 can be reduced
to 1 + o(1) by using a more sophisticated unbalanced search
tree; the interested reader should consult [4] for examples.

Note that the infinite-tree construction does give an
obstruction-free algorithm, since any operation does termi-
nate when running alone.

2.2 Probabilistic max registers with low read
cost

In this subsection we consider a model where the local
computation of each process may include an arbitrary num-
ber of local coin flips. The coins of different processes are in-
dependent, i.e., the processes do not have access to a shared
global coin.

It is possible to build a probabilistic version of a max
register where a ReadMax operation has step complexity 1
but is allowed to return an incorrect value with low prob-
ability. This is not intended to be a practical implementa-
tion; instead, it demonstrates that the bound on the step
complexity of WriteMax in the randomized lower bound of
Theorem 12 is necessary.

The shared data consists of (a) an unbounded MaxReg ob-
ject r, and (b) an array a of N � n multi-writer multi-
reader atomic registers. Code is given in the Probabilis-

ticWriteMax and ProbabilisticReadMax procedures.

WriteMax(r, v);1

for i← 1 to N do2

a[i]← ReadMax(r)3

end4

Procedure ProbabilisticWriteMax(v)

Choose i uniformly at random from 1..N ;1

return a[i]2

Procedure ProbabilisticReadMax

The intuition is that once a ProbabilisticWriteMax(v)
operation of some process p finishes, all but n − 1 of the
values in a will be at least v. The reason is that p writes
a value that is at least v to all N array locations, and each
other process can overwrite at most one of these values be-
fore re-reading r and obtaining a value at least v thereafter.
It follows that ProbabilisticReadMax returns a value at
least as great as the largest value previously written by a
completed ProbabilisticWriteMax operation with proba-
bility at least 1− (n− 1)/N . It is also not hard to see that
it never returns a value that is too large. It follows that
ProbabilisticReadMax is monotone consistent with proba-
bility at least 1 − O(n/N), which can be made arbitrarily
close to 1 at the cost of drastically increasing the step com-
plexity of ProbabilisticWriteMax.

Theorem 4. There are monotone-consistent, probabilis-
tic implementations of MaxReg in which a WriteMax oper-
ation has step complexity w, a ReadMax operation has step
complexity 1, and a ReadMax operation returns an incorrect
value with probability O(n2/w).

Proof. By applying the preceding analysis where r is a
snapshot-based max register and N = Θ(w/n). (For w =
o(n2), have WriteMax and ReadMax do nothing.)

3. MONOTONE CIRCUITS
In this section, we show how a max register can be used to

construct more sophisticated data structures from arbitrary
monotone circuits.

For each monotone circuit, we can construct a correspond-
ing monotone data structure. This data structure supports

operations WriteInput and ReadOutput, where each WriteIn-

put operation updates the value of one of the inputs to the
circuit and each ReadOutput operation returns the value of
one of the outputs. Like the circuit as a whole, the effects
of WriteInput operations are monotone: attempts to set
an input to a value less than or equal to its current value
have no effect. This restriction still allows for an interesting
class of data structures, the most useful of which may be
the bounded counter described in Section 4.1. The resulting
data structure provides monotone consistency.

Definition 5. A monotone data structure is monotone
consistent if the following properties hold in any execution:

1. For each output, there is a total ordering < on all
ReadOutput operations for it, such that if some opera-
tion R1 finishes before some other operation R2 starts,
then R1 < R2, and if R1 < R2, then the value returned
by R1 is less than or equal to the value returned by R2.

2. The value v returned by any ReadOutput operation sat-
isfies f(x1, . . . , xk) ≤ v, where each xi is the largest
value written to input i by a WriteInput operation that
completes before the ReadOutput operation starts.

3. The value v returned by any ReadOutput operation sat-
isfies v ≤ f(y1, . . . , yk), where each yi is the largest
value written to input i by a WriteInput operation that
starts before the ReadOutput operation completes.

We convert a monotone circuit to a monotone data struc-
ture by assigning a max register to each input and each gate
output in the circuit. We assume that these max registers
are initialized to a default minimum value, so that the initial
state of the data structure will be consistent with the circuit.
A WriteInput operation on this data structure updates an
input (using WriteMax) and propagates the resulting changes
through the circuit as described in Procedure WriteInput. A
ReadOutput operation reads the value of some output node,
by performing a ReadMax operation on the corresponding
output. The cost of a ReadOutput operation is the same as
that of a ReadMax operation: O(min(logm,n)). The cost of
WriteInput operation depends on the structure of the cir-
cuit: in the worst case, it is O(Sdmin(logm,n)), where S is
the number of gates reachable from the input and d is the
maximum number of inputs to each gate.

Let x1, . . . , xd be the inputs to g.1

for i← 1 to d do2

yi ← ReadMax(xi)3

end4

WriteMax(g, fg(y1, . . . , yd))5

Procedure UpdateGate(g)

WriteMax(g, v)1

Let g1, . . . gS be a topological sort of all gates reachable2

from g.
for i← 1 to S do3

UpdateGate(gi)4

end5

Procedure WriteInput(g, v)

return ReadMax(g)1

Procedure ReadOutput(g)

����
x1

. . . ����
xn

��

. .
.

@I

..
.����

gi1
. . . ����

gik

����
g

�
�
�
��

@
@
@

@I6

6

..

.

Figure 2: A gate g in a circuit computes a function
of its inputs fg(gi1 , . . . , gik). The inputs to the circuit
are x1, . . . , xn.

Theorem 6. For any fixed monotone circuit C, the
WriteInput and ReadOutput operations based on that cir-
cuit are monotone consistent.

Proof. Consider some execution of a collection of
WriteInput and ReadOutput operations. We think of this
execution as consisting of a sequence of atomic WriteMax

and ReadMax operations and use time to refer to the total
number of such operations completed at any point in the
execution.

The first clause in Definition 5 follows immediately from
the linearizability of max registers, since we can just order
ReadOutput operations by the order of their internal ReadMax
operations.

For the remaining two clauses, we will jump ahead to the
third, upper-bound, clause first. The proof is slightly sim-
pler than the proof for the lower bound, and it allows us to
develop tools that we will use for the proof of the second
clause.

For each input xi, let V ti be the maximum value written
to the register representing xi at or before time t. For any
gate g, let Cg(x1, . . . , xn) be the function giving the output
of g when the original circuit C is applied to x1, . . . , xn (see
Figure 2). For simplicity, we allow C in this case to include
internal gates, output gates, and the registers representing
inputs (which we can think of as zero-input gates). We thus
can define Cg recursively by Cg(x1, . . . , xn) = xi when g =
xi is an input gate and

Cg(x1, . . . , xn) = fg(Cgi1
(x1, . . . , xn), . . . Cgi1

(xk, . . . , xn))

when g is an internal or output gate with inputs gi1 . . . gik .
Let gt be the actual output of g in our execution at time t,
i.e., the contents of the max register representing the output
of g. We claim that for all g and t, gt ≤ Cg(V t1 , . . . , V tn).

The proof is by induction on t and the structure of C. In
the initial state, all max registers are at their default min-
imum value and the induction hypothesis holds. Suppose
now that some max register g changes its value at time t. If
this max register represents an input, the new value corre-
sponds to some input supplied directly to WriteInput, and
we have gt = Cg(V

t
1 , . . . , V

t
n). If the max register represents

an internal or output gate, its value is written during some

call to UpdateGate, and is equal to fg(g
t1
i1
, gt2i2 , . . . , g

tk
ik

) where
each gij is some register read by this call to UpdateGate and
tj < t is the time at which it is read. Because max regis-
ter values can only increase over time, we have, for each j,

g
tj
ij
≤ gtij = gt−1

ij
≤ Cgij

(V t−1
1 , . . . , V t−1

n) by the induction

hypothesis, and the fact that only gate g changes at time
t. This last quantity is in turn at most Cgij

(V t1 , . . . , V
t
n) as

only gate g changes at time t. By monotonicity of fg we
then get

gt = fg(g
t1
i1
, gt2i2 , . . . , g

tk
ik

)

≤ fg(Cg1(V t1 , . . . , V
t
n), . . . , Cgk (V t1 , . . . , V

t
n))

= Cg(V
t
1 , . . . , V

t
n)

as claimed, which completes the proof of clause 3.
We now consider clause 2, which gives a lower bound

on output values. For each time t and input xi, let vti be
the maximum value written to the max register represent-
ing xi by a WriteInput operation that finishes at or be-
fore time t. We wish to show that for any output gate g,
gt ≥ Cg(v

t
1, . . . , v

t
n). As with the upper bound, we proceed

by induction on t and the structure of C. But the induction
hypothesis is slightly more complicated, in that in order to
make the proof go through we must take into account which
gate we are working with when choosing which input values
to consider.

For each gate g, let vti(g) be the maximum value writ-
ten to input register xi by any instance of WriteInput that
completes UpdateGate(g) at or before time t. Our induction
hypothesis is that at each time t and for each gate g, gt ≥
Cg(v

t
1(g), . . . vtn(g)). Although in general we have vti ≥ vti(g),

having gt ≥ Cg(vt1(g), . . . vtn(g)) implies gt ≥ Cg(vt1, . . . , vtn),
as any process that writes to some input xi that affects the
value of g as part of some WriteInput operation must com-
plete UpdateGate(g) before finishing the operation.

Suppose now that some max register g changes its value
at time t. If g is an input, the induction hypothesis holds
trivially. Otherwise, consider the set of all WriteInput oper-
ations that write to g at or before time t. Among these op-
erations, one of them is the last to complete UpdateGate(g′)
for some input g′ to g. Let this event occur at time t′ < t,
and call the process that completes this operation p. We
now consider the effect of the UpdateGate(g) procedure car-
ried out as part of this WriteInput operation. Because
no other operation completes an UpdateGate procedure for
any input gij to g between t′ and t, we have that for each

such input and each i, vti(gij) = vt
′
i (gij). Since the Read-

Max operation of each gij in p’s call to UpdateGate(g) oc-

curs after time t′, it obtains a value that is at least gt
′
ij ≥

Cgij
(vt

′
1 (gij), . . . , vt

′
n (gij)) ≥ Cgij

(vt1(gij), . . . , vtn(gij)), by

the induction hypothesis, monotonicity of Cgij
, and the

previous observation on the relation between vt
′
i (gij) and

vti(gij). But then

gt ≥ fg(Cgi1
(vt1(gi1), . . . , vtn(gi1)), . . .

Cgik
(vt1(gik), . . . , vtn(gik)))

≥ fg(Cgi1
(vt1(g), . . . , vtn(g)), . . . , Cgik

(vt1(g), . . . , vtn(g)))

= Cg(v
t
1(g), . . . , vtn(g)).

4. APPLICATIONS
In this section we consider applications of the circuit-based

method for building data structures described in Section 3.
Most of these applications will be variants on counters, as
these are the main example of monotone data structures
currently found in the literature. Because we are working
over a finite alphabet, all of our counters will be bounded.

The basic structure we will use is a circuit consisting of
a binary tree of adders, where each gate in the circuit com-
putes the sum of its inputs and each input to the circuit
is assigned to a distinct process to avoid lost updates. We
may consider either bounded or unbounded counters, de-
pending on whether we are using bounded or unbounded
max registers. For a bounded counter, we allow only values
in the range 0 through m − 1 for some m; an adder gate
whose output would otherwise exceed m − 1 limits its out-
put to m − 1. Because the circuit is a tree, a WriteInput

operation has a particularly simple structure since it need
only update gates along a single path to the root; it follows
that a WriteInput operation costs O(min(logn logm,n))
time while a ReadOutput operation costs O(min(logm,n))
time. This is an exponential improvement on the best previ-
ously known upper bounds of O(n) for exact counting, and

O(n4/5+ε((1/δ) logn)O(1/ε)), where ε is a small constant pa-
rameter, for approximate counting which is δ-accurate [2].

If each process is allowed to increase its input by arbitrary
values, we get a generalized counter circuit that supports ar-
bitrary non-negative increases to its inputs (the assumption
is that each process’s input corresponds to the sum of all
of its increments so far). Unfortunately, it is not hard to
see that the resulting generalized counter is not linearizable,
even though it satisfies monotone consistency; the reason is
that it may return intermediate values that are not consis-
tent with any ordering of the increments.

Here is a small example of a non-linearizable execution,
which we present to illustrate the differences between lin-
earizability and monotone consistency. Consider an execu-
tion with three writers, and look at what happens at the
top gate in the circuit. Imagine that process p0 executes
a WriteInput operation with argument 0, p1 executes a
WriteInput operation with argument 1, and p2 executes a
WriteInput operation with argument 2. Let p1 and p2 ar-
rive at the top gate through different intermediate gates g1
and g2; we also assume that each process reads g2 before g1
when executing UpdateGate(g). Now consider an execution
in which p0 arrives at g first, reading 0 from g2 just before p2

writes 2 to g2. Process p2 then reads g2 and g1 and computes
the sum 2 but does not write it yet. Process p1 now writes
1 to g1 and p0 reads it, causing p0 to compute the sum 1
which it writes to the output gate. Process p2 now finishes
by writing 2 to the output gate. If both these values are
observed by readers, we have a non-linearizable schedule, as
there is no sequential ordering of the increments 0, 1, and 2
that will yield both output values.

However, for restricted applications, we can obtain a fully
linearizable object, as shown in the next subsections.

4.1 Linearizable counters with unit increments
Suppose we consider a standard atomic counter object

supporting only read and increment operations, where the
increment operation increases the value of the counter by
exactly one. This is a special case of the generalized counter
discussed above, but here the resulting object is linearizable.

To prove linearizability, we consider the counter C as built
of a max register at the root output gate g, which adds up
two sub-counters, C1 and C2, each supporting half of the
processes. Our linearizability proof is then by induction,
where the base case is a counter for a single process.

Lemma 7. If C1 and C2 are linearizable unit-increment
counters, then so is C.

Proof. Each increment operation of C is associated with
a value equal to C1 +C2 at the time it increments C1 or C2,
considering that C1 and C2 are atomic counters according
to the induction hypothesis.

An increment operation with an associated value k is lin-
earized at the first time in which a value ` ≥ k is written
to the output max register g. A read operation is linearized
at the time it reads the output max register g (which we
consider to be atomic).

To see that the linearization point for increment k occurs
within the interval of the operation, observe that no incre-
ment can write a value ` ≥ k to g before increment k finishes
incrementing the relevant sub-counter C1 or C2, because be-
fore then C1 + C2 < k. Moreover, the increment k cannot
finish before ` ≥ k is first written to g, because k writes a
value ` ≥ k before it finishes. Since the read operations are
also linearized within their execution interval, this order is
consistent with the order of non-overlapping operations.

This clearly gives a valid sequential execution, since we
now have exactly one increment operation associated with
every integer up to any value read from C, and there are ex-
actly k increment operations ordered before a read operation
that returns k.

Theorem 8. There is an implementation of a lin-
earizable m-valued unit-increment counter of n processes
where a read operation takes O(min(logm,n)) low-level
register operations and an increment operation takes
O(min(logn logm,n)) low-level register operations.

Proof. Linearizability follows from the preceding argu-
ment. For the complexity, observe that the read operation
has the same cost as ReadMax, while an increment operation
requires reading and updating O(1) max registers per gate
at a cost of O(min(logm, 2i)) for the i-th gate. The full cost
of a write is obtained by summing this quantity as i goes
from 0 from dlgne.

Note that for a polynomial number of increments, an in-
crement takes O(log2 n) steps. It is also possible to use
unbounded max registers, in which case the value m in the
cost of a read or increment is replaced by the current value
of the counter.

For general counters (indeed, for any monotone circuit
constructed in this way), we only get monotone consistency:
the output of a read is at least w and at most W , where
w is the number of increments that finish before the read
starts, and W is the number of increments that start before
the read finishes.

4.2 Threshold objects
Another variant of a shared counter that is linearizable

is a threshold object. This counter allows increment opera-
tions, and supports a read operation that returns a binary
value indicating whether a predetermined threshold has been
crossed. We implement a threshold object with threshold T

by having increment operations do the same as in the gen-
eralized counter, and a read operation returns 1 if the value
it reads from the output gate is at least T , and 0 other-
wise. We show that this implementation is linearizable even
with non-uniform increments, where the requirement is that
a read operation returns 1 if and only if the sum of the
increment operations linearized before it is at least T .

Lemma 9. The implementation of a threshold object C
with threshold T by the monotone data structure with the
procedures WriteInput and ReadOutput is linearizable.

Proof. We use monotone consistency to prove lineariz-
ability for the threshold object C. Let C1 and C2 be the
sub-counters that are added to the final output gate g.

We order read operations according to the ordering im-
plied by monotone consistency, which is consistent with the
order of non-overlapping read operations, and implies that
once a read operation returns 1 then any following read op-
eration returns 1. We order write operations according to
their execution order, which is clearly consistent with the
order of non-overlapping write operations. We then inter-
leave these orders according to the execution order of reads
and writes, which implies that this order is consistent with
the order of non-overlapping read and write operations.

The interleaving is done while making sure that the sum
of increments that are ordered before any read that returns
0 is less than T , and that the sum of increments that are
ordered before the first read that returns 1 is at least T .
Monotone consistency guarantees that we can do this. For
a read operation that returns 0, the value read in g is less
than T , therefore the second clause of monotone consistency
implies that the sum of all writes that finish before the read
starts is less than T . For a read operation that returns 1,
the value read in g is at least T , therefore the third clause
implies that there enough increment operations that start
before this read finishes that have a sum at least T .

Our proof of Lemma 9 does not use the specification of
a threshold object, but rather the fact that it is an imple-
mentation of a monotone circuit with a binary output. We
therefore have:

Lemma 10. The implementation of any monotone circuit
with a binary output by the monotone data structure with the
procedures WriteInput and ReadOutput is linearizable.

Note that we can obtain a better cost for read operations if
we have an additional 1-bit flag instead of the output gate,
which is initialized to 0 and set to 1 by any process that
increments the counter above the threshold (can be viewed
as a 2-valued bounded max register). The reader may then
do only one operation which accesses that flag and returns
its value.

4.3 Max registers as multiplexers
The linearizability proof in Lemma 1 goes through essen-

tially unchanged even if we replace the objects at the base
of the tree with arbitrary linearizable objects. This allows
a max register to be used as a multiplexer between different
instances of an object, where read operations are directed
to the current instance and write operations set the current
instance (or fail, if the instance of the write is out of date).

An example of such a multiplexed data structure is the
following implementation of a tagged register as defined

by Subramonian [9]. In a tagged register, each write opera-
tion specifies a (tag, value) pair, and the write goes through
only if it is the first write with the given tag or larger. No-
tice that the difference between a tagged register and a max
register whose contents is a (tag, value) is that the max reg-
ister may allow two different values with the same tag to be
written. We can implement a tagged register by replacing
the leaves in the balanced tree construction of Theorem 2
with CAS objects; here the tree structure handles tags and
the CAS objects are used to ensure that at most one value
per tag is written.

5. LOWER BOUNDS

5.1 Lower Bound for Deterministic Implemen-
tations

We begin by describing a lower bound of min(dlgme, n−1)
on the worst-case number of atomic register operations of
a ReadMax or ReadCounter operation in any deterministic
asynchronous linearizable implementation of a bounded max
register or bounded counter, where m is the number of states
of the register or counter and n is the number of processes.
For m ≤ 2n−1, this shows that the balanced tree max-
register implementation of Theorem 2 has an optimal cost
for ReadMax operations.

We show that the result holds first for a max register, and
observe that the same proof applies to counters. Our proof
is based on a covering argument which applies even for a
read-once version of the max register that is only required
to be correct in executions with at most one ReadMax or
ReadCounter operation.

To simplify the argument, we consider only a restricted set
of executions, and evaluate algorithms based only on their
performance (and correctness) on this class of executions.
Let Sk be the set of all max register executions consisting of a
sequence of (possibly concurrent) executions of the WriteMax
operation with inputs in the range 1..k by processes p1..pn−1,
followed by a single ReadMax operation by pn. Let T (m,n) be
the worst-case cost of a ReadMax operation in any execution
in Sm (which also includes all executions in Sk ⊆ Sm for k ≤
m), and consider some implementation of a max register that
that is correct on all executions in Sm and that minimizes
this cost for a given m and n. Then T (m,n) will also give a
lower bound on the cost of ReadMax operations in arbitrary
executions.

Consider the first register read by pn. Because pn is de-
terministic and takes no steps prior to its ReadMax opera-
tion, any low-level operation it performs depends only on
the outcome of its previous low-level operations. Moreover,
without loss of generality, we can assume that pn performs
no write operations, since there are no steps by other pro-
cesses after it begins. This implies that the first step by the
ReadMax of pn is a read of a fixed register R, not depending
on the WriteMax operations preceding it. Let t be the small-
est value of k for which there exists an execution in Sk in
which some process writes to R. (If no such execution ex-
ists, we can omit the read of R from the ReadMax operation,
contradicting the assumption that the algorithm is optimal.)
We use this threshold t to construct two new max register
implementations for smaller values of m:

1. Because t is minimal, if t > 1 there is no execution
in St−1 in which some process writes to R. It follows

that if we restrict the range of values to 1..t−1, we can
omit the read of R from the implementation of ReadMax
and obtain T (t − 1, n) ≤ T (m,n) − 1, or T (m,n) ≥
T (t− 1, n) + 1.

2. Additionally, let α be an execution in St in which a
write to R occurs, and let α′ be the prefix of α pre-
ceding the first such write and δ the write operation
itself. Let α′ν be the execution obtained by letting
every WriteMax operation in progress at the end of α′

run to completion, excluding the operation that ex-
ecutes δ. Now consider any execution α′νγδ, where
γ is a sequence of non-concurrent WriteMax opera-
tions with values in the range t..m by processes in
p1..pn−1, excluding the process that executes δ. In
such executions, a following ReadMax operation always
observes δ when reading R, but nonetheless returns
the largest value written in γ. We can thus obtain
an implementation of an (m − t + 1)-valued (n − 1)-
process max register by initializing the registers to the
values they have at the end of α′ν and replacing the
first read in ReadMax by a fixed constant. This gives
T (m,n) ≥ T (m− t+ 1, n− 1) + 1.

We thus get a recurrence:

T (m,n) ≥ 1 + min
t
{max(T (t− 1, n), T (m− t+ 1, n− 1))},

with T (1, n) = 0 and T (m, 1) = 0. We show, by double
induction on n and m, that the solution to this recurrence
is

T (m,n) ≥ min(dlgme, n− 1).

For n = 1, the bound holds trivially; similarly if m = 1. For
larger n, and m > 1, we have

T (m,n) ≥ 1 + min
t
{max(T (t− 1, n), T (m− t+ 1, n− 1))}

≥ 1 + T (dm/2e , n− 1) ≥ 1 + min(dlg(m/2)e , n− 2)

= 1 + min(dlgme − 1, n− 2) = min(dlgme, n− 1).

This gives the claimed lower bound:

Theorem 11. For any deterministic solo-terminating im-
plementation from atomic registers by n processes of a lin-
earizable max register that supports m values, there is a read
operation that takes min(dlgme, n− 1) low-level register op-
erations.

Essentially the same argument as in the proof of Theo-
rem 11 gives same lower bound for counters: T (m,n) ≤
min(dlgme, n − 1) for a counter that allows up to m − 1
increments. We omit the details for reasons of space.

5.2 Lower Bound for Randomized Implemen-
tations

For randomized implementations of max registers, we sketch
a lower bound using Yao’s Principle [10]. The idea is that we
can treat any randomized algorithm as a weighted average
of deterministic algorithms. A distribution over schedules
that gives a high cost on average for any fixed deterministic
algorithm, also gives a high cost on average for any random-
ized algorithm. Furthermore, if an average schedule gives a
high cost for a given randomized algorithm, then there exists
some specific schedule that does so.

Formally, we consider the set of all deterministic algo-
rithms M1,M2, Given a deterministic oblivious adver-
sary, which supplies a fixed schedule, a randomized algo-
rithm Mr with global coins can be modeled by choosing
some fixed Mi randomly at the start of the execution, which
happens to deterministically choose the same coin-flip values
as Mr does during its execution. If there exists a probabil-
ity distribution on inputs x such that Ex[cost(Mi(x))] ≥ k
for all i, then for any randomized algorithm Mr there exists
some fixed x such that cost(Mr(x)) ≥ k.

We now show a distribution over schedules that gives a
high cost for any deterministic algorithm. We will prove
the bound for m ≥ n. For the general case, we can re-
place all occurrences of n in the lower bound argument with
min (m,n).

Consider a schedule β1β2 . . . βn−1ρ, where βi is a write
operation by pi with value i and ρ is a read operation by pn.
We denote by w the worst-case cost of any write operation,
and therefore we allocate w steps to each write operation
and have no bound on the number of steps that ρ takes.

We modify the above schedule by truncating each write
operation randomly. Specifically, we choose a prefix β′iδi of
βi, where δi is a single operation that we will delay, with all
lengths 0..w − 1 for β′i equally likely. We now construct a
family of schedules of the form

α0 = ρ

α1 = β1ρ

α2 = β′1β2δ1ρ

α3 = β′1β
′
2β3δ2δ1ρ

...

In each of these schedules, we run i ∈ 0..n − 1 write oper-
ations, where the i-th write operation (if i > 1) is run to
completion, but previous write operations are used to at-
tempt to cover registers. The covering writes are done in
reverse order because it may be that several δi operations
write to the same location, and we want the earliest value
to cover any subsequent values. The key fact is that the lo-
cation to which δi writes does not depend on the truncation
of the βj schedules for j > i.

We examine the sequence of values read by pn after each
αi, and show that in the set of such sequences for successful
executions (in which βi finishes in w steps and ρ returns the
correct value i) form a prefix-free code over an alphabet of
bounded size. To do so, we first consider how many dis-
tinct values can appear in each register R at the end of the
different schedules αi.

1. βi doesn’t write to R. Then S(i) = S(i − 1) and R is
still uncovered.

2. βi writes to R. Then S(i + 1) ≥ S(i − 1) + 1 (the in-
equality is because it is possible that the value written
by βi is equal to some previous value), and there is a
1/w chance that R is now covered by δi. If R is cov-
ered, then no new values can appear in it, otherwise
we continue.

Therefore, S(min(m− 1, n− 1)) is bounded by a geometric
random variable with parameter 1 − 1/w. The probability
that this variable exceeds some value x is less than or equal
to (1 − 1/w)(x−1) ≤ exp(−1/w)(x−1) = exp(−(x − 1)/w).
In particular, it exceeds 1 + cw logn with probability less

than exp(−nc). Therefore with high probability, no register
exhibits more than O(w logn) values.

For each execution αi, the reader sees some sequence of
values, each of which is chosen from the O(w logn) possible
values for each register. The set of reader executions can
be described by giving a decision tree with O(w logn)-way
branching, where each leaf of the tree corresponds to some
decision by the reader. For some constant c and sufficiently
large n there are at most

√
n possible leaves in this tree with

depth smaller than c logn/ log(w logn).
If we call an execution αi good if ρ returns i in less than

c logn/ log(w logn) steps, this implies that among the n ex-
ecutions αi, there are at most

√
n good executions. For the

remaining bad executions,

1. The reader takes c logn/ log(w logn) steps,

2. The write operation in βi takes more than w steps, or

3. ρ fails to return the correct value.

Therefore with probability 1− o(1), either some write oper-
ation takes more than w steps, some read operation takes
Ω(logn/ log(w logn)) steps, or some operation fails. This
gives the claimed lower bound:

Theorem 12. For any randomized implementation by n
processes of a max register where any write operation takes
no more than O(w) low-level register operations, with prob-
ability 1 − o(1) there exists a read operation which takes
Ω(logn/ log(w logn)) low-level register operations.

For w = polylog(n), the read bound is Ω(log n/ log logn).
To get the read bound down to a constant, w must be poly-
nomial in n, and indeed we provide, in Section 2.2, a ran-
domized implementation that achieves this.

6. DISCUSSION
This paper gives a method for using multi-writer multi-

reader registers to construct m-bounded max registers with
dlgme cost per operation, and unbounded max registers with
O(min(log v, n)) cost to read or write the value v. An analog
data structure of a min register can be implemented in a sim-
ilar way. We prove a lower bound that shows that the cost
of our implementation is optimal. For randomized imple-
mentations we show a lower bound of Ω(logn/ log(w logn))
for read operations, where w is the cost of write operations.
This leaves open the problem of tightening the randomized
lower bound for m� n, or finding an implementation whose
cost depends only on n.

A curious fact is that our randomized lower bound applies
even to algorithms supplied with free global coins, since it
does not rule out executions in which there are dependen-
cies between the local coins. This puts the lower bound for
max register reads higher than the O(1) upper bound on
the expected individual step complexity for consensus in a
global-coin model.

We use max registers to construct wait-free concurrent
data-structures out of any monotone circuit, while satisfy-
ing a natural consistency condition we call monotone con-
sistency. The cost of a write is O(Sdmin(dlogme, O(n))),
where m is the size of the alphabet for the circuit, S is the
number of gates whose value changes as the result of the
write, and d is the number of inputs to each gate; the cost
of a read is min(dlogme, O(n)).

As an application, we obtain a simple, lineariz-
able, wait-free counter implementation with a cost
of O(min(logn log v, n)) to perform an increment and
O(min(log v, n)) to perform a read, where v is the current
value of the counter. For polynomially-many increments,
these become O(log2 n) and O(logn), respectively, an ex-
ponential improvement on the best previously known upper
bounds of O(n) for an exact counting and O(n4/5+ε) for
approximate counting [2]. Note that bounding the counters
allows us to overcome the linear lower bound of Jayanti, Tan,
and Toueg [8], as well as the similar lower bounds by Fich,
Hendler, and Shavit [6] that hold even with CAS primitives.
Whether further improvements are possible is still open.

Acknowledgements. The authors would like to thank Dana
Angluin, David Eisenstat, and Hanna Mazzawi for useful
discussions.

7. REFERENCES
[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,

and N. Shavit. Atomic snapshots of shared memory. J.
ACM, 40(4):873–890, 1993.

[2] J. Aspnes and K. Censor. Approximate
shared-memory counting despite a strong adversary.
In SODA ’09: Proceedings of the Nineteenth Annual
ACM -SIAM Symposium on Discrete Algorithms,
pages 441–450, Philadelphia, PA, USA, 2009. Society
for Industrial and Applied Mathematics.

[3] H. Attiya and A. Fouren. Adaptive and efficient
algorithms for lattice agreement and renaming. SIAM
Journal on Computing, 31(2):642–664, 2001.

[4] J. L. Bentley and A. C.-C. Yao. An almost optimal
algorithm for unbounded searching. Inf. Process. Lett.,
5(3):82–87, 1976.

[5] P. Elias. Universal codeword sets and representations
of the integers. Information Theory, IEEE
Transactions on, 21(2):194–203, 1975.

[6] F. E. Fich, D. Hendler, and N. Shavit. Linear lower
bounds on real-world implementations of concurrent
objects. In FOCS ’05: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer
Science, pages 165–173, Washington, DC, USA, 2005.
IEEE Computer Society.

[7] M. Inoue and W. Chen. Linear-time snapshot using
multi-writer multi-reader registers. In WDAG ’94:
Proceedings of the 8th International Workshop on
Distributed Algorithms, pages 130–140, London, UK,
1994. Springer-Verlag.

[8] P. Jayanti, K. Tan, and S. Toueg. Time and space
lower bounds for nonblocking implementations. SIAM
Journal on Computing, 30(2):438–456, 2000.

[9] R. Subramonian. Writing sequential programs for
parallel processors: Implementation experience. In
ICCI ’92: Proceedings of the Fourth International
Conference on Computing and Information, pages
159–163, Washington, DC, USA, 1992. IEEE
Computer Society.

[10] A. C.-C. Yao. Probabilistic computations: Toward a
unified measure of complexity. In Proceedings of the
17th Annual Symposium on Foundations of Computer
Science, pages 222–227, Los Alamitos, CA, USA,
1977. IEEE Computer Society.

