Polylogarithmic Concurrent Data Structures from Monotone Circuits

JAMES ASPNES, Yale University
HAGIT ATTIYA, Technion
KEREN CENSOR-HILLEL, mIT

The paper presents constructions of useful concurrent data structures, including max registers and counters,
with step complexity that is sublinear in the number of processes, n. This result avoids a well-known lower
bound by having step complexity that is polylogarithmic in the number of values the object can take or the
number of operations applied to it.

The key step in these implementations is a method for constructing a maz register, a linearizable, wait-
free concurrent data structure that supports a write operation and a read operation that returns the largest
value previously written. For fixed m, an m-valued max register is constructed from one-bit multi-writer
multi-reader registers at a cost of at most [log m] atomic register operations per write or read. An unbounded
max register is constructed with cost O(min(logv,n)) to read or write a value v.

Max registers are used to transform any monotone circuit into a wait-free concurrent data structure that
provides write operations setting the inputs to the circuit and a read operation that returns the value of
the circuit on the largest input values previously supplied. One application is a simple, linearizable, wait-
free counter with a cost of O(min(lognlogwv,n)) to perform an increment and O(min(logv,n)) to perform a
read, where v is the current value of the counter. For polynomially-many increments, this becomes O(log2 n),
an exponential improvement on the best previously known upper bounds of O(n) for exact counting and
O(n*/5%€) for approximate counting.

Finally, it is shown that the upper bounds are almost optimal. It is shown that for deterministic imple-
mentations, even if they are only required to satisfy solo-termination, min([logm],n — 1) is a lower bound
on the worst-case complexity for an m-valued bounded max register, which is exactly equal to the upper
bound for m < 2"~ and min(n — 1, [logm] — log ([logm] + k)) is a lower bound for the read operation of
an m-valued k-additive-accurate counter, which is a bounded counter in which a read operation is allowed
to return a value within an additive error of £k of the number of increment operations linearized before it.
Furthermore, even in a solo-terminating randomized implementation of an n-valued max register with an
oblivious adversary and global coins, there exist simple schedules in which, with high probability, the worst-
case step complexity of a read operation is Q(logn/loglogn) if the write operations have polylogarithmic
step complexity.

Categories and Subject Descriptors: D.1.3 [Software]: Programming Techniques—Concurrent program-
ming; E.1 [Data]: Data Structures; F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity—Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: distributed computing, shared memory, max registers, counters, mono-
tone circuits

A preliminary version of this paper appeared in Proceedings of the 28th Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 36-45, 2009. James Aspnes is partially supported by NSF grant
CNS-0435201. Hagit Attiya is partially supported by the Israel Science Foundation (grant number 953/06).
Keren Censor-Hillel is supported by the Simons Postdoctoral Fellows Program. Part of this author’s work
was done as a Ph.D. student at the Department of Computer Science, Technion, and supported in part by
the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 0004-5411/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A2 James Aspnes et al.

ACM Reference Format:
J.ACM V, N, Article A (January YYYY), 25 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

A critical aspect of programming contemporary multiprocessing systems is the imple-
mentation of concurrent data structures, e.g., getting the largest value stored in a data
structure, or counting. It is important to find methods for building efficient concur-
rent data structures in shared-memory systems, where n processes communicate by
reading and writing to shared multi-writer multi-reader registers.

One successful approach to building concurrent data structures is to employ the
atomic snapshot abstraction [Afek et al. 1993; Anderson 1993; Aspnes and Herlihy
1990]. An atomic snapshot object is composed of components, each of which typically
updated by a different processes; the components can be atomically read. By applying
a specific function to the components read, we can provide a specific data structure.
For example, to obtain a max register, supporting a write operation and a ReadMax
operation that returns the largest value previously written, the function returns the
component with the maximum value; to obtain a counter, supporting an increment
operation and a ReadCounter operation, the function adds up the contribution from
each process.

These constructions take a linear (in n) number of steps, due to the cost of imple-
menting atomic snapshots [Inoue and Chen 1994]. Indeed, Jayanti et al. [2000] show
that operations must take 2(n) space and Q(n) steps in the worst case, for many com-
mon data structures, including max registers and counters. This seems to indicate that
we cannot do better than snapshots.

However, careful inspection of Jayanti, Tan, and Toueg’s lower bound proof reveals
that it holds only when there are numerous operations on the data structure. Thus, it
does not rule out the possibility of having sub-linear algorithms when the number of
operations is bounded, or, more generally, the existence of algorithms whose complex-
ity depends on the number of operations. Such data structures are useful for many
applications, either because they have a limited life-time, or because several instances
of the data structure can be used.

Our Contributions. In this paper, we present polylogarithmic implementations of
key data structures that support only bounded values. The cornerstone of our con-
structions, and our first example, is an implementation of a max register that beats
the Q(n) lower bound of Jayanti et al. [2000] when log m is o(n).! If the number of val-
ues is bounded by m, its cost per operation is O(logm); for an unbounded set of values,
the cost is O(min(logv,n)), where v is the value of the register.

To implement a counter, instead of simply summing the individual process contribu-
tions, as in a snapshot-based implementation of a counter, we can use a tree of max
registers to compute this sum: take an O(logn) depth tree of two-input adders, where
the output of each adder is a max register. To increment, walk up the tree recomputing
all values on path. The cost of a read operation is O(min(logv,n)), where v is the cur-
rent value of counter, and the cost of an increment operation is O(min(logn logv,n)).
When the number of increments is polynomial, this has O(log?n) cost, which is an
exponential improvement from the trivial upper bound of O(n) using snapshots. The
resulting counter is wait-free and linearizable.

More generally, we show how a max register can be used to transform any monotone
circuit into a wait-free concurrent data structure that provides write operations set-

IThroughout the paper we use log to denote log,.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:3

ting the inputs to the circuit and a read operation that returns the value of the circuit
on the largest input values previously supplied. Monotone circuits expose the paral-
lelism inherent in the dependency of the data structure’s values on the arguments to
the operations. Formally, a monotone circuit computes a function over some finite al-
phabet of size m, which is assumed to be totally ordered. The circuit is represented
by a directed acyclic graph where each node corresponds to a gate that computes a
function of the outputs of its predecessors. Nodes with in-degree zero are input nodes;
nodes with out-degree zero are output nodes. Each gate g, with k inputs, computes
some monotone function f, of its inputs. Monotonicity means that if z; > y; for all i,
then fg(-rlv R ,l’k) > fg(yh v ayk)'

The cost of writing a new value to an input to the circuit is bounded by
O(Sdmin([logm], n), where m is the size of the alphabet for the circuit, d is the number
of inputs to each gate, and S is the number of gates whose value changes as the result
of the write. The cost of reading the output value is min([logm], O(n)). While the re-
sulting data structure is not linearizable in general, it satisfies a weaker but natural
consistency condition, called monotone consistency, which we will show is still useful
for many applications.

So far we have only described upper bounds. We show a lower bound of
min([logm],n — 1) steps for the read operation of any solo-terminating deterministic
implementation of a max register when m < n. This implies that our implementation
is optimal. A bound of min(n—1, [log m|—log ([log m] + k)) steps is shown to hold for the
read operation of any solo-terminating deterministic implementation of an m-valued
k-additive-accurate counter, which is a bounded counter in which a read operation is
allowed to return a value within an additive error of +£ of the number of increment
operations linearized before it.

Furthermore, we show a lower bound for randomized implementations of a max
register which exhibits a tradeoff between the number of steps required for read and
write operations. It is shown that in any randomized implementation of an n-valued
max register, there exist simple schedules containing n— 1 partial write operations and
one read operation in which, with probability 1 — o(1), one of the following holds:

(1) The write operation with maximum value takes more than w steps.
(2) The read operation returns an incorrect value.
(3) The read operation takes Q(logn/(logw + loglogn)) steps.

This applies for an oblivious adversary, which determines the entire schedule in ad-
vance, even when requiring only solo-termination, and allowing global coins, which
are random values shared by all processes (as opposed to local coins). In particular,
this tradeoff shows an Q(logn/loglogn) lower bound on the worst-case step complex-
ity of read operations for any randomized max register whose write operations have
polylogarithmic step complexity.

Related Work. Previously, the linear lower bound of Jayanti et al. [2000] motivated,
e.g., Aspnes and Censor [2009] to switch to approximate counting, but even this imple-
mentation has O(n*/5*¢) cost. Our construction improves this for the case of bounded
counters.

Regarding snapshot-based implementations, another approach that improves upon
the snapshot-based implementation of many data structures, is to use f-arrays, as
proposed by Jayanti [2002]. An f-array is a data structure that supports computation
of a function f over the components of an array. Instead of having a process take a
snapshot of the array and then locally apply f to the result, Jayanti implements an
f-array by having the write operations update a predetermined location according to
the new value of f, which requires a read operation to only read that location. This

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 James Aspnes et al.

construction is then extended to a tree algorithm. For implementing an f-array of m
registers, where f can be any common aggregate function, including the maximum
value or the sum of values, this reduces the number of steps required to O(logm) for a
write operation, while a read operation takes O(1) steps. These implementations use
base objects that are stronger than read / write registers (specifically, LL/SC), while we
restrict our base objects to multi-writer multi-reader registers. Hence, we do not use
this approach in this paper.

Model. We assume the standard model of an asynchronous shared-memory system
(cf. [Attiya and Welch 2004]), which consists of a set of n processes P = {pg,...,pn_1}-
Processes communicate by reading and writing to shared multi-writer multi-reader
registers.

Each step consists of some local computation and one shared memory event, which
is either a read or a write to some register. The schedule according to which processes
take steps is determined by an adversary. The system is asynchronous, which implies
that there are no timing assumptions, and specifically no bounds on the time between
two steps of a process, or between steps of different processes.

We are interested in wait-free implementations, in which any operation on the data
structure terminates within a finite number of its steps regardless of the schedule
chosen by the adversary (even if all other processes stop taking steps). The cost of an
implementation is measured by the maximum number of steps required for any opera-
tion on the data structure. Our lower bounds hold even for the weaker solo-termination
condition, in which an operation is only required to terminate within a finite number
of its steps if there are no concurrent steps by operations of other processes.

An implementation should also satisfy some consistency condition. The consistency
condition should specify the semantic requirements of all possible executions, includ-
ing possibly both complete operations, which start and terminate during the execution,
and incomplete operations, which begin during the execution but still have low-level
shared memory accesses pending. While the sequential semantics of a data structure
has to address only non-concurrent operations, our data structures are concurrent,
which means that during an execution some operations may overlap, in which case
their shared-memory accesses are interleaved. Operations whose shared memory ac-
cesses are not interleaved are called non-overlapping. Since a consistency condition
has to specify the semantic requirements for all possible concurrent executions, it also
has to address the possibility of overlapping operations.

Some of our implementations are linearizable [Herlihy and Wing 1990]. This means
that for any execution, there is a sequence that contains all the completed operations,
as well as some of the incomplete ones, that

(1) extends the order of non-overlapping operations; and
(2) preserves the sequential semantics of the implemented object.

Other implementations are not linearizable, but satisfy what we call monotone consis-
tency, a weaker yet natural consistency condition defined formally in Section 4.

In a randomized implementation, a process is allowed to flip coins as part of its lo-
cal computation, and choose its next step according to their results. We require an
operation of a randomized implementation of a data structure to be correct with high
probability, i.e., with probability 1 — o(1). The step complexity of an operation in a
randomized implementation is an upper bound on the number of steps required for
that operation with high probability. This implies that in a randomized implementa-
tion with probability 1 — o(1) every operation returns the correct value within its step
complexity.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A5

2. MAX REGISTERS

Our basic data structure is a max register, which is an object r that supports a
WriteMax(r,t) operation with an argument ¢ that records the value ¢ in r, and a
ReadMax(r) operation returning the maximum value written to the object . A max
register may be either bounded or unbounded. For a bounded max register, we assume
that the values it stores are in the range {0,...,(m — 1)}, where m is the size of the
register. We assume that any non-negative integer can be stored in an unbounded max
register. In general, we will be interested in unbounded max registers, but will consider
bounded max registers in some of our constructions and lower bounds.

One way to implement max registers is by using snapshots. Given a linear-time
snapshot protocol (e.g., [Inoue and Chen 1994]), a WriteMax operation for process p;
updates location a[i], while a ReadMax operation takes a snapshot of all locations and
returns the maximum value. Assuming no bounds on the size of snapshot array ele-
ments, this gives an implementation of an unbounded max register with linear cost (in
the number of processes n) for both WriteMax and ReadMax. We show below how to build
more efficient max registers: a recursive construction that gives costs logarithmic in
the size of the register for both WriteMax and ReadMax. We also describe (in Section 6.4)
a non-linearizable, Monte Carlo implementation with only one atomic register read
per ReadMax, but the cost of WriteMax is drastically increased; while impractical, it is
useful for illustrating the limitations of our lower bounds.

In the remainder of this section we show how to construct a max register recursively
from a tree of increasingly large max registers. Each node in this tree is a one-bit
register, that directs the reader left or right depend on its value. (See Figure 1.)

Intuitively, we can think of a read of the max register as following a path through
this tree, constructing the sequence of bits found in the registers along the path and
then treating this sequence as an element of a prefix-free code that can be decoded
to obtain the actual value. A write operation similarly walks down along the path
determined by the encoding of its input, testing to see if a larger value has already been
written. If it finds one (because it sees a 1 in a register where its bit-vector would put a
0), it exits without changing any of the bits in the tree; this mechanism prevents out-
of-date writes from entering non-linearizable values that would otherwise be observed
by out-of-date reads. But if the writer successfully reaches a leaf of the tree without
seeing evidence of a larger value, it sets the 1 bits on its path needed to cause a reader
to follow it in bottom-up order. This ordering ensures that no reader is diverted to the
new path until it has been completely marked.

For convenience of both implementation and the correctness proof, it is easiest to
describe this process recursively, where we think of a max register as built from a one-
bit atomic register switching between two smaller max registers. The smallest such
registers are trivial MaxReg, objects, which are max registers r with size m = 1 that
support only the value 0. The implementation of MaxReg, requires zero space and zero
step complexity: WriteMax(r,0) is a no-op, and ReadMax(r) always returns 0.

To get larger max registers, we combine smaller ones recursively (see Figure 1). The
base objects will consist of at most one snapshot-based max register as described ear-
lier (used to limit the depth of the tree in the unbounded construction) and a large
number of trivial MaxReg, objects and read/write registers. A recursive MaxReg ob-
ject has three components: two MaxReg objects called r.left and r.right, where r.left is
a bounded max register of size m, and one 1-bit multi-writer register called r.switch.
The resulting object is a max register whose size is the sum of the sizes of r.left and
r.right, or unbounded if r.right is unbounded.

Pseudocode for the max-register implementation is given in Algorithm 1. Writing
a value ¢ to r is done using the WriteMax(r,t) procedure. For values ¢ less than m,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

James Aspnes et al.

switch

left right

- >

switch

left right

V3 4

MaxReg() MaxReg)

Fig. 1. Implementing a max register.

a process first checks that r.switch is off, and only then writes ¢ to r.left. For larger
values, the process writes ¢t — m to r.right and then sets r.switch. Reading the maximal
value is done using the ReadMax(r) procedure. Here the process uses r.switch to choose
whether to read r.left or r.right; if it reads r.right, it adds m to the result.

1
2

18
19

shared data: switch: a 1-bit multi-writer register, initially 0
left, a MaxReg object of size m, initially O,
right, a MaxReg object of arbitrary size, initially 0
procedure WriteMax (r,t)
begin
if t < m then
if r.switch = 0 then
| WriteMax(r.left,t)
end
else
WriteMax(r.right,t —m)
r.switch <+ 1
end
end
procedure ReadMax ()
begin
if r.switch = 0 then
| return ReadMax(r.left)
else
| return ReadMax(r.right) + m
end
end

Algorithm 1: Max register implementation

An important property of this implementation is that it preserves linearizability, as
shown in the following lemma.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A7

LEMMA 2.1. If r.left and r.right are linearizable max registers, so is r.

PROOF. We assume that each of the MaxReg objects r.left and r.right is linearizable.
Thus, we can associate each operation on them with one linearization point and treat
these operations as atomic. In addition, we can associate each read or write to the
register r.switch with a single linearization point since it is atomic.

We now consider a schedule of ReadMax(r) and WriteMax(r,t) operations. These con-
sist of reads and writes to r.switch and of ReadMax and WriteMax operations on r.left and
r.right. We divide the operations on r into three categories:

— Cleft: ReadMax(r) operations that read 0 from r.switch, and WriteMax(r,t) operations
with t < m that read 0 from r.switch.

— Ciight: ReadMax(r) operations that read 1 from r.switch, and WriteMax(r,t) operations
with ¢ > m (i.e., that write 1 to r.switch).

— Cauiteh: WriteMax(r,t) operations with ¢ < m that read 1 from r.switch.

Inspection of the code shows that each completed operation on r falls into exactly one of
these categories. Notice that an operation is in Cley; if and only if it invokes an operation
on r.left, an operation is in Cign if and only if it invokes an operation on r.right, and an
operation is in Cyyiicn if and only if it invokes no operation on r.left or r.right. We order
the operations by the following four rules:

(1) We order all operations of Cie; before those of Ciight.

(2) An operation op in Cgyitch is ordered at the latest point possible before any operation
op’ that starts after op finishes. If two operations are ordered in the same point,
then they appear according to the order they are encountered.

(3) Within Ciey we order the operations according to the order at which they access
r.left, i.e., by the order of their respective linearization points in accessing r.left.

(4) Within Cjigny we order the operations according to the order at which they access
r.right, i.e., by the order of their respective linearization points in accessing r.right).

It is easy to verify that these rules are well-defined.

We first prove that these rules preserve the execution order of non-overlapping op-
erations. For two operations in the same category this is clearly implied by rules 2—4.
Since rule 1 shows that two operations from Ciet and Ciigny are also properly ordered
because an operation that starts after an operation in Ciignt finishes cannot be in Ciey, it
is left to consider the case that one operation is in Cgyiich and the other is either in Cigq
or in Ciignt. In this case, rule 2 implies that their order preserves the execution order.

We now prove that this order satisfies the specification of a max register, i.e., if a
ReadMax(r) operation op returns ¢ then ¢ is the largest value written by operations
on r of type WriteMax that are ordered before op. This requires showing that there is
a WriteMax(r,t) operation op,, ordered before op, and that there is no WriteMax(r,t')
operation op,, with ¢’ > ¢ ordered before op.

This is obtained by using the linearizability of the components. If op returns a value
t < m (i.e., it is in Cjet) then this is the value that is returned from its invocation op’
of ReadMax(r.left). By the linearizability of r.left, there is a WriteMax(r.left,¢) operation
opl, ordered before op’ in the linearization of r.left. By rule 3, this implies that the
WriteMax(r,t) operation op,, which invoked op!, is ordered before op. A similar argu-
ment for r.right applies if op returns a value ¢ > m.

To prove that no operation of type WriteMax with a larger value is ordered before
op, we assume, towards a contradiction, that there is a WriteMax(r,t') operation op,,
with ¢ > t that is ordered before op. If op returns a value t < m (i.e., it is in Cjet) then
op. cannot be in Cyignt, otherwise it would be ordered after op, by rule 1. Moreover,
op, cannot be in Cyyich, since rule 2 implies that op starts after op, finishes and

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A8 James Aspnes et al.

hence must also read 1 from r.switch which is a contradiction to op € Cig. Therefore,
opw € Cleft, but this contradicts the linearizability of r.left. If op returns a value t > m
(i.e., it is in Cjignt) then op, cannot be in Cier because t' > t. Moreover, op,,, cannot be in
Cswitch, since t' > t > m. Therefore, op,, is in Cjight, which contradicts the linearizability
of rright. O

Using Lemma 2.1, we can build a max register whose structure corresponds to an
arbitrary binary tree, where each internal node of the tree is represented by a recur-
sive max register and each leaf is a MaxReg,, or, for the rightmost leaf, a MaxReg, or
snapshot-based MaxReg depending on whether we want a bounded or an unbounded
max register. There are several natural choices, as we will discuss next.

2.1. Using a balanced binary tree

To construct a bounded max register of size 2¢, we use a balanced binary tree. Let
MaxReg, be a recursive max register built from two MaxReg, , objects, with MaxReg,

being the trivial max register defined previously. Then MaxReg, has size 2* for all k. It
is linearizable by induction on k, using Lemma 2.1 for the induction step.

We can also easily compute an exact upper bound on the cost of ReadMax and
WriteMax on a MaxReg, object. For k = 0, both ReadMax and WriteMax perform no op-
erations. For larger k, each ReadMax operation performs one register read and then
recurses to perform a single ReadMax operation on a MaxReg, ; object, while each
WriteMax performs either a register read or a register write plus at most one recur-
sive call to WriteMax. Thus:

THEOREM 2.2. A MaxReg, object implements a linearizable max register for which
every ReadMax operation requires exactly k register reads, and every WriteMax operation
requires at most k register operations.

In terms of the size of the max register, operations on a max register that supports
m values, where 2F~1 < m < 2* values, each take at most [logm] steps. Note that this
cost does not depend on the number of processes n; indeed, it is not hard to see that
this implementation works even with infinitely many processes.

2.2. Using an unbalanced binary tree

In order to implement max registers that support unbounded values, we use unbal-
anced binary trees.

Bentley and Yao [1976] provide several constructions of unbalanced binary trees
with the property that the i-th leaf sits at depth O(log). The simplest of these, called
By, constructs the tree by encoding each positive integer using a modified version of a
classic variable-length code known as the Elias delta code [Elias 1975]. In this code,
each positive integer N = 2¥ 4 ¢ with 0 < ¢ < 2F is represented by the bit sequence
§(N) = 1¥08(¢), where 3(¢) is the k-bit binary expansion of £. The first few such encod-
ings are 0,100, 101, 11000, 11001, 11010, 11011, 1110000, If we interpret a leading 0 bit
as a direction to the left subtree and a leading 1 bit as a direction to the right subtree,
this gives a binary tree that consists of an infinitely long rightmost path (corresponding
to the increasingly long prefixes 1¥), where the i-th node in this path (i = 1,2,...) has
a left subtree that is a balanced binary tree with 2¢~! leaves. (A similar construction is
used by Attiya and Fouren [2001].)

Let us consider what happens if we build a max register using the B; tree (see Fig-
ure 2). A ReadMax operation that reads the value v will follow the path corresponding
to d(v+1), and in fact will read precisely this sequence of bits from the switch registers
in each recursive max register along the path. This gives a cost to read value v that is

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A9

switch
left right
A A
switch
MaxReg()
left right
A 4
switch
left right
> 4
MaxReg(y MaxReg(y
4

snapshot-based max register,

Fig. 2. An unbalanced max register.

equal to [6(v + 1)| = 2 [log(v + 1)] + 1. Similarly, the cost of WriteMax(v) will be at most
2 [log(v +1)] + 1.

Both of these costs are unbounded for unbounded values of v. For ReadMax opera-
tions, there is an additional complication: repeated concurrent WriteMax operations
might set each switch just before the ReadMax reaches it, preventing the ReadMax from
terminating. Another complication is in proving linearizability, as the induction does
not terminate without trickery like truncating the structure just below the last node
actually used by any completed operation.

For these reasons, we prefer to backstop the tree with a single snapshot-based max
register that replaces the entire subtree at position 1", where n is the number of pro-
cesses. Using this construction, we have:

THEOREM 2.3.

There is a linearizable implementation of MaxReg for which every ReadMax opera-
tion that returns value v requires min(2 [log(v + 1)] + 1, 0(n)) register reads, and every
WriteMax operation requires at most min(2 [log(v + 1)] 4+ 1, O(n)) register operations.

If constant factors are important, the multiplicative factor of 2 can be reduced to
14 o(1) by using a more sophisticated unbalanced tree; the interested reader should
consult [Bentley and Yao 1976] for examples.

Note that the infinite-tree construction does give an obstruction-free algorithm, since
any operation does terminate when running alone.

3. COUNTERS

An immediate application of max registers is a construction of a linearizable m-valued
counter for n processes with step complexity O(min(lognlogm,n)) for increment oper-
ations and O(min(logm,n)) for read operations. This is a special case of a general con-
struction of a large class of monotone data structures based on monotone circuits that
we present in Section 4, but we describe the construction first in its own terms with-
out depending on the general construction. The complexity bounds are an exponential
improvement on the best previously known upper bound of O(n) for exact counting,
and on the bound O(n*/5<((1/8)logn)?(1/9)), where ¢ is a small constant parameter,
for approximate counting which is j-accurate [Aspnes and Censor 2009].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 James Aspnes et al.

Pseudocode for the counter is given as Algorithm 2. The counter is structured as a
binary tree of max registers. Each max register has an index, which is a bit vector
T1Z3...xT, where k is the depth of the register in the tree. At the top of the tree is a
root max register whose index is the empty sequence (). With n processes, the leaves
have depth [logn], and each process is assigned to the leaf whose index x175 . . . Z[10g n]
corresponds to the id of the process, expressed in binary.

Each leaf register records the number of increments done by the corresponding pro-
cess. Internal nodes of the tree record the total number of increments done by all
processes whose leaves lie below the node. These values are, of course, not updated
immediately; instead, when a process increments its leaf register, it takes responsibil-
ity for propagating the new value up the path to the root. It does so by reading both
children of each node along the path, and writing their sum to the node itself, before
proceeding to the next node and repeating the process.

A read operation is carried out by simply reading the root node.

shared data: MaxReg objects r[z; ... x| for each bit vector z; ...z, with
0 <k < [logn], all initially 0.
1 procedure CounterIncrement ()
2 begin
3 let z; ... 2[4, represent the current process’s identity.
4 T[l‘l...l‘[logn]]%r[xl---xﬂog'rﬂ]_'_l
5 for k + [logn] — 1 down to 0 do
6 v 721 ... 2x0]
7 U1<—T‘[J]1...,’L‘;91]
8 rlzy ... zk] < vo + v1
9 end
10 end
11 procedure ReadCounter ()
12 begin
13 | return r[()]
14 end

Algorithm 2: Counter implementation

To prove linearizability, we treat each subtree as a counter object in its own right.
We can then consider some counter C rooted at some position z; ...z, as built from
a max register r[z; ... x| together with two counters Cy and C}, corresponding to the
subtrees rooted at ;... 2,0 and z1 ... 2.1, respectively. We can think of the execution
of CounterIncrement up through the first [logn] — k iterations of the loop as carrying
out an increment operation on one of Cy or C1, followed by reading both counters and
writing the sum of the values read to r[z; ...xz;]. We will show by induction on the
height of r[z; ... x| in the tree that these internal increment and read operations are
linearizable; when we reach the root register [()], this will show that the full counter
is linearizable. The base of this induction is the leaf register r[z; ... 7[14,7], Which is
trivially linearizable as only one process ever updates this max register, letting us
assign as linearization point for increments the corresponding WriteMax and for reads
the corresponding ReadMax.

At higher levels of the tree, we have the following lemma:

LEMMA 3.1. If Cy and C, are linearizable unit-increment counters, then so is C.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:11

PrOOF. Each increment operation of C is associated with a value equal to Cy + C;
when it increments Cy or C, treating Cy and C; as atomic counters according to the
induction hypothesis.

An increment operation with an associated value v is linearized when a value v > v
is first written to the output max register r[z; ... xx]. A read operation is linearized at
the point it reads the output max register r[z; ... x;] (which we consider to be atomic).

To see that the linearization point for increment v occurs within the interval of the
operation, observe that no increment can write a value v' > v to rfz;...xx] before
increment v finishes incrementing the relevant sub-counter Cj, or C7, because before
then Cy + C; < v. Moreover, the increment v cannot finish before some v’ > v is first
written to r[z; ...xx], because v itself writes a value v > v before it finishes. Since
the read operations are also linearized within their execution interval, this order is
consistent with the order of non-overlapping operations.

This gives a valid sequential execution, since we now have exactly one increment
operation associated with every integer up to any value read from C, and there are
exactly v increment operations ordered before a read operation that returns v. O

THEOREM 3.2. There is an implementation of a linearizable m-valued unit-
increment counter of n processes where a read operation takes O(min(log m,n)) low-level
register operations and an increment operation takes O(min(lognlogm,n)) low-level
register operations.

PROOF. Linearizability follows from the preceding argument. For the complexity,
observe that the read operation has the same cost as ReadMax, while an increment
operation requires reading and updating O(1) max registers per iteration at a cost of
O(min(logm, 2%)) for the i-th iteration. The full cost of a write is obtained by summing
this quantity as i goes from 0 from [logn]. O

Note that for a polynomial number of increments, an increment takes O(log2 n) steps.
It is also possible to use unbounded max registers, in which case the value m in the
cost of a read or increment is replaced by the current value of the counter.

4. MONOTONE CIRCUITS

In this section, we show how a max register can be used to construct more sophisticated
data structures from arbitrary monotone circuits. The cost of operations on the data
structure will be a function of the number of gates whose values need to be updated
when an input changes and the size of the alphabet.

For each monotone circuit, we can construct a corresponding monotone data struc-
ture. This data structure supports operations WriteInput and ReadOutput, where each
WriteInput operation updates the value of one of the inputs to the circuit and each
ReadOutput operation returns the value of one of the outputs. Like the circuit as a
whole, the effects of WriteInput operations are monotone: attempts to set an input to
a value less than or equal to its current value have no effect.

The resulting data structure always provides monotone consistency, which is gener-
ally weaker than linearizability:

Definition 4.1. A monotone data structure is monotone consistent if the following
properties hold in any execution:

(1) For each output, there is a total ordering < on all ReadOutput operations for it,
such that if some operation R, finishes before some other operation R, starts, then
Ry < R,, and if R; < R, then the value returned by R; is less than or equal to the
value returned by Rs.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 James Aspnes et al.

(2) The value v returned by any ReadOutput operation satisfies f(z1,...,zx) < v, where
each z; is the largest value written to input ¢ by a WriteInput operation that com-
pletes before the ReadOutput operation starts or the initial value of input 7 if no
such operation exists.

(3) The value v returned by any ReadOutput operation satisfies v < f(y1,...,yx), where
each y; is the largest value written to input 7 by a WriteInput operation that starts
before the ReadOutput operation completes or the initial value of input 7 if no such
operation exists.

The intuition here is that the values at each output appear to be non-decreasing over
time (the first condition), all completed WriteInput operations are always observed
by ReadOutput (the second condition), and no spurious larger values are observed by
ReadOutput (the third condition). But when operations are concurrent, it may be that
some ReadOutput operations return intermediate values that are not consistent with
any fixed ordering of WriteInput operations, violating linearizability (an example is
given in Subsection 5.1).

We convert a monotone circuit to a monotone data structure by assigning a max
register to each input and each gate output in the circuit. We assume that these max
registers are initialized to a default minimum value, so that the initial state of the data
structure will be consistent with the circuit. A WriteInput operation on this data struc-
ture updates an input (using WriteMax) and propagates the resulting changes through
the circuit as described in Procedure WriteInput. A ReadOutput operation reads the
value of some output node, by performing a ReadMax operation on the corresponding
output. The cost of a ReadOutput operation is the same as that of a ReadMax opera-
tion: O(min(logm,n)). The cost of WriteInput operation depends on the structure of
the circuit: in the worst case, it is O(Sd min(logm,n)), where S is the number of gates
reachable from the input and d is the maximum number of inputs to each gate.

procedure UpdateGate (g)
begin
Let z1,..., x4 be the inputs to g.
for i+ 1toddo
| yi < ReadMax(x;)
end
WriteMax(g, fq(y1,.--,Ya))
end
procedure WriteInput(g,v)
begin
WriteMax(g,v)
Let g1,...gs be a topological sort of all gates reachable from g.
fori+ 1to S do
| UpdateGate(y;)
end
end
procedure ReadOutput (g)
begin
| return ReadMax(g)
end

© ® TR W N

v v
W N = O

N e e e
S WIS W

Algorithm 3: Monotone circuit implementation.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:13

THEOREM 4.2. For any fixed monotone circuit C, the WriteInput and ReadOutput
operations based on that circuit are monotone consistent.

PROOF. Consider some execution of a collection of WriteInput and ReadOutput op-
erations. We think of this execution as consisting of a sequence of atomic WriteMax and
ReadMax operations and use time to refer to points in the execution.

The first clause in Definition 4.1 follows immediately from the linearizability of max
registers, since we can just order ReadOutput operations by the order of their internal
ReadMax operations.

For the remaining two clauses, we will jump ahead to the third, upper-bound, clause
first. The proof is slightly simpler than the proof for the lower bound, and it allows us
to develop tools that we will use for the proof of the second clause.

For each input z;, let V! be the maximum value written to the register representing
x; at or before time ¢ or its initial value if no such write exists. For any gate ¢, let
Cy(x1,...,2y,) be the function giving the output of ¢ when the original circuit C' is
applied to z1,...,z, (see Figure 3). For simplicity, we allow C in this case to include
internal gates, output gates, and the registers representing inputs (which we can think
of as zero-input gates). We thus can define C, recursively by C,(z1,...,z,) = z; when
g = x; is an input gate and

Cy(@1,... zn) = fo(Cyy, (21, 20), ..., Cg, (21, .., 20))

when ¢ is an internal or output gate with inputs g;, ... g;,. Let ¢' be the actual output
of g in our execution at time ¢, i.e., the contents of the max register representing the
output of g. We claim that for all g and ¢, g* < Cy(V{,..., V).

The proof is by induction on ¢ and the structure of C. In the initial state, all max
registers are at their default minimum value and the induction hypothesis holds. Sup-
pose now that some max register g changes its value at time ¢. If this max register
represents an input, the new value corresponds to some input supplied directly to
writeInput, and we have ¢* = C,(V{,...,V}!). If the max register represents an inter-
nal or output gate, its value is written during some call to UpdateGate, and is equal to
fg(gfll, gfj, . ,gfl’:) where each g;; is some register read by this call to UpdateGate and
t; < tis the time at which it is read. Because max register values can only increase

over time, we have, for each j, gf; <gl = gfj_l < Gy, (Vi=1, ..., Vt=1) by the induction
hypothesis, and the fact that only gate g changes at time ¢. This last quantity is in turn
at most Cglj (Vi,...,V}) as only gate g changes at time ¢. By monotonicity of f, we then

Fig. 3. A gate g in a circuit computes a function of its inputs f4(g:,,- -, g:,). The inputs to the circuit are
Tl,..., Ty

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 James Aspnes et al.

get

Q
|

= folgits 952, 0i)
fg(cgzil (Vltv < wvrf)v o "ng (Vltv c 7‘/5))
Cg(V1t7 . 7V'rf)

as claimed, which completes the proof of clause 3.

We now consider clause 2, which gives a lower bound on output values. For each time
t and input x;, let v! be the maximum value written to the max register representing
x; by a WriteInput operation that finishes at or before time ¢. We wish to show that
for any output gate g, ¢* > Cy(vi,...,v}). As with the upper bound, we proceed by
induction on ¢ and the structure of C. But the induction hypothesis is slightly more
complicated, in that in order to make the proof go through we must take into account
which gate we are working with when choosing which input values to consider.

For each gate g, let v!(g) be the maximum value written to input register z; by
any instance of WriteInput that completes UpdateGate(g) at or before time ¢ or its
initial value if no such operation exists. Our induction hypothesis is that at each time
t and for each gate g, g* > C,(vi(g),... v (g)). Although in general we have v! > v!(g),
since the set of operations that give v! contains the set of operations that gives v!(g),
having ¢* > C,(vi(g),...,v}(g)) implies g* > C,y(vi,...,v), as any process that writes
to some input z; that affects the value of ¢ as part of some WriteInput operation must
complete UpdateGate(g) before finishing the operation. The claim holds for ¢ = 0, since
we assume a consistent initialization of the circuit.

Suppose now that some max register g changes its value at time ¢ or its initial value
if no such operation exists. If g is an input, the induction hypothesis holds trivially.
Otherwise, consider the set of all WriteInput operations that write to g at or before
time ¢t. Among these operations, one of them is the last to complete UpdateGate(g’)
for some input ¢’ to g. Let this event occur at time ¢’ < ¢, and call the process that
completes this operation p. We now consider the effect of the UpdateGate(g) procedure
carried out as part of this WriteInput operation. Because no other operation completes

an UpdateGate procedure for any input g;; to g between ¢’ and ¢, we have that for

each such input and each i, vj(g;,) = v (9,). Since the ReadMax operation of each
gi; in p’s call to UpdateGate(g) occurs after time ¢, it obtains a value that is at least

gf; > Cy,, (vt (96,),-- - ot (9i,)), by the induction hypothesis, and this value is at least
Cq., (vi(gi), -, vn(g:,)), by the monotonicity of Cy, and the previous observation on

IN

the relation between v!'(gi,) and v{(g;,). But then

9" > f4(Cy, (V1(gir)s - 50 (9in)), - -
Cy,, (V1(gir)s - > v (90r,)))
> fg(Cgil (vi ()5 v’lt’L(g))’ RER Cgik (Uf(g), .- 7“2(9)))
= Cy(v1(9),- -+, v3(9))-
[}

5. APPLICATIONS

In this section we consider applications of the circuit-based method for building data
structures described in Section 4. Most of these applications will be variants on coun-
ters, as these are the main example of monotone data structures currently found in
the literature. Because we are working over a finite alphabet, all of our counters will
be bounded.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:15

5.1. Generalized counters

A generalized counter takes an argument to its increment operation, which allows the
counter to be incremented by any non-negative amount.

We can construct a generalized counter from a circuit consisting of a binary tree of
adders, where each gate in the circuit computes the sum of its inputs and each in-
put to the circuit is assigned to a distinct process to avoid lost updates. This gives
an implementation essentially identical to Algorithm 2, except that now an increment
by start by adding an arbitrary non-negative value to the leaf register. As in Algo-
rithm 2, the step complexity of an increment is O(min(lognlogm,n)) and of a read is
O(min(logm,n)).

Unfortunately, unlike in the unit-increment case, it is not hard to see that our gen-
eralized counter is not linearizable, even though it satisfies monotone consistency. The
reason is that read operations it may return intermediate values that are not consis-
tent with any ordering of the increments.

Here is a small example of a non-linearizable execution, which we present to illus-
trate the differences between linearizability and monotone consistency. Consider an
execution with three writers, and look at what happens at the top gate in the circuit.
Imagine that process py executes a WriteInput operation with argument 0, p; exe-
cutes a WriteInput operation with argument 1, and p, executes a WriteInput operation
with argument 2. Let p; and p, arrive at the top gate through different intermediate
gates g1 and go; we also assume that each process reads g» before g; when executing
UpdateGate(g). Now consider an execution in which p, arrives at g first, reading 0 from
go just before ps writes 2 to go. Process ps then reads g, and g; and computes the sum
2 but does not write it yet. Process p; now writes 1 to g; and py reads it, causing pg
to compute the sum 1 which it writes to the output gate. Process p, now finishes by
writing 2 to the output gate. If both these values are observed by readers, we have a
non-linearizable schedule, as there is no sequential ordering of the increments 0, 1,
and 2 that will yield both output values.

However, for restricted applications, we can obtain a fully linearizable object, as
shown in the following sections.

5.2. Threshold objects

Another variant of a shared counter that is linearizable is a threshold object. This
counter allows increment operations, and supports a read operation that returns a
binary value indicating whether a predetermined threshold has been crossed. We im-
plement a threshold object with threshold 7" by having increment operations act as in
the generalized counter, and having a read operation return 1 if the value it reads from
the output gate is at least 7', and 0 otherwise. We show that this implementation is
linearizable even with non-uniform increments, where the requirement is that a read
operation returns 1 if and only if the sum of the increment operations linearized before
it is at least 7.

LEMMA 5.1. The implementation of a threshold object C with threshold T by a

monotone data structure with the procedures WriteInput and ReadOutput is lineariz-
able.

PROOF. We use monotone consistency to prove linearizability for the threshold ob-
ject C. Let C; and Cs be the sub-counters that are added to the final output gate g.

We order read operations according to the ordering implied by monotone consistency,
which is consistent with the order of non-overlapping read operations, and implies that
once a read operation returns 1 then any following read operation returns 1. We order
write operations according to their execution order, which is clearly consistent with the

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 James Aspnes et al.

order of non-overlapping write operations. We then interleave these orders according
to the execution order of reads and writes, which implies that this order is consistent
with the order of non-overlapping read and write operations.

The interleaving is done while making sure that the sum of increments that are
ordered before any read that returns 0 is less than 7', and that the sum of increments
that are ordered before the first read that returns 1 is at least 7. Monotone consistency
guarantees that we can do this. For a read operation that returns 0, the value read in
g is less than T, therefore the second clause of monotone consistency implies that the
sum of all writes that finish before the read starts is less than 7'. For a read operation
that returns 1, the value read in ¢ is at least T, therefore the third clause implies that
there enough increment operations that start before this read finishes that have a sum
atleastT. O

Our proof of Lemma 5.1 does not use the specification of a threshold object, but
rather the fact that it is an implementation of a monotone circuit with a binary output.
We therefore have:

LEMMA 5.2. The implementation of any monotone circuit with a binary output by
a monotone data structure with the procedures WriteInput and ReadOutput is lineariz-
able.

Note that for any binary-output circuit, we can represent the output using a 1-bit
flag initialized to 0 and set to 1 by any WriteInput operation that produces 1 as output
(essentially, we use the flag as a 2-valued bounded max register). A reader may then
do only one operation which accesses that flag and returns its value, i.e., the read
operation takes O(1) steps.

5.3. Very cheap shapshots (with expensive updates)

We can use a max register to shift the cost of snapshots to the updating processes,
assuming that we execute a bounded number of updates. While this does not reduce the
worst-case cost of operations on the snapshot algorithm (updates are still expensive),
it may be useful in situations where snapshots are more common than updates and as
a counterexample to lower bounds on the cost of bounded snapshots that do not take
the cost of updates into account (see also [Israeli et al. 1995]).

Start with some existing snapshot algorithm in which updates take time S(n) and
snapshots take time 7'(n). Augment this algorithm with (a) an array v of m registers,
each capable of holding a snapshot, and (b) an m-bounded max register. If the under-
lying snapshot algorithm does not include a count of the number of updates ¢; done by
each updating process i in its segment, add this as well.

To perform an update, use the underlying update algorithm and then take a snap-
shot using the underlying snapshot algorithm. Write this snapshot into v [; ¢;]
(note that any two views with the same total count will be identical, so it does not
matter if the view is written here more than once). Then write Y | ¢; to the max reg-
ister. The update fails if Y " | ¢; > m. The cost of an update is S(n) + T'(n) + O(log m).
Taking the best known snapshot algorithms [Attiya and Fouren 2001; Inoue and Chen
1994], in which S(n) and T'(n) are O(n), the cost of an update is O(n).

To preform a snapshot, read a total count ¢ from the max register and return v[c].
The cost of a snapshot is just O(logm).

Linearizability is easily shown by ordering operations first by the linearization order
of their views (equivalently, by total count) and then by the time at which they access
the max register.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:17

6. LOWER BOUNDS

Here we give lower bounds on the cost implementing max registers and counters de-
terministically (Sections 6.1 and 6.2) and using randomization (Section 6.3).

These lower bounds suggest a trade-off between the cost of WriteMax and ReadMax
operations. In Section 6.4 we show that this trade-off can be realized, by giving a prob-
abilistic implementation of a max register that implements ReadMax using a single
register read at the cost of impractically expensive WriteMax operations.

6.1. Lower bound for deterministic max registers

We begin by describing a lower bound of min([logm],n — 1) on the worst-case number
of atomic register operations of a ReadMax or ReadCounter operation in any determin-
istic asynchronous linearizable implementation of a bounded max register or bounded
counter, where m is the number of states of the register or counter and n is the number
of processes. For m < 2”71, this shows that the balanced tree max-register implemen-
tation of Theorem 2.2 has an optimal cost for ReadMax operations.

We show that the result holds first for a max register, and observe that the same
proof applies to counters. Our proof is based on a covering argument which applies
even for read-once objects that are only required to be correct in executions with at
most one ReadMax or ReadCounter operation.

THEOREM 6.1. For any deterministic solo-terminating implementation from atomic
registers by n processes of a linearizable max register that supports m values, there is a
ReadMax operation that takes min([logm],n — 1) low-level register operations.

PROOF. To simplify the argument, we consider only a restricted set of executions,
and evaluate algorithms based only on their performance (and correctness) on this
class of executions. Let S; be the set of all max register executions consisting of a se-
quence of (possibly concurrent) executions of the WriteMax operation with inputs in
the restricted range {1, ..., k} by processes {p1,...,pn—1}, followed by a single ReadMax
operation by pg. Let T'(m,n) be the worst-case cost of a ReadMax operation in any exe-
cution in S,, (which also includes all executions in S, C S,, for k¥ < m), and consider
some implementation of a max register that is correct on all executions in S,,, and that
minimizes this cost for given m and n. Then T'(m, n), for this implementation, will also
give a lower bound on the cost of ReadMax operations in arbitrary executions.

Consider the first register read in the ReadMax operation of pg. Because p, is deter-
ministic and takes no steps prior to its ReadMax operation, any low-level operation it
performs depends only on the outcome of its previous low-level operations. Moreover,
without loss of generality, we can assume that py performs no register write opera-
tions, since there are no steps by other processes after it begins?. This implies that
the first step by the ReadMax of py is a read of a fixed register R, not depending on the
WriteMax operations preceding it. Let ¢ be the smallest value of k for which there exists
an execution in S; in which some process writes to R. (If no such execution exists, we
can omit the read of R from the ReadMax operation, contradicting the assumption that
the algorithm is optimal.) We use this threshold ¢ to construct two new max register
implementations for smaller values of m:

(1) Because ¢t is minimal, if ¢ > 1 there is no execution in S;_; in which some process
writes to R. It follows that if we restrict the range of values to {1,...,t — 1}, we
can omit the read of R from the implementation of ReadMax and obtain 7'(t —1,n) <
T(m,n) —1,0or T(m,n) >T(t—1,n)+ 1.

2Recall that we allow the algorithm to be aware of our restricted set of executions, which implies that having
write operations during the ReadMax of pg is not optimal.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 James Aspnes et al.

pi writes read
R R
a€eS;: o ‘) ‘ ‘ ‘
\ \ \ \
WriteMax operations of ReadMax operation
values in {1,...,t} by processes by po

in{py,...,pn-1}

p; writes read

R R
B€ Sy : o ‘ v ‘ 5 ‘ 1) ‘ ‘
\ \ \ \ \
completing WriteMax ReadMax operation
WriteMax operations of by po
operations values in {¢,...,m} by

except for Di processes in
{p17 cee 7pn71} \ {pb}

Fig. 4. Proof of Theorem 6.1, Item 2: Although 6 covers R in 3, the read operation of py returns a value in
{t,...,m}, implying that it distinguishes between m — t + 1 values with one less low-level operation.

(2) Additionally, let o be an execution in S; in which a write to R occurs, and let o’
be the prefix of a preceding the first such write and 6 the write operation itself
(see Figure 4). Let o/v be the execution obtained by letting every WriteMax oper-
ation in progress at the end of o’ run to completion, excluding the operation that
executes §. Now consider any execution § = o'vvyd, where v is a sequence of non-
concurrent WriteMax operations with values in the range {¢,..., m} by processes in
{p1,...,pn-1}, excluding the process that executes J. In such executions, a following
ReadMax operation always observes § when reading R, but nonetheless returns the
largest value written in . We can thus obtain an implementation of an (m — ¢+ 1)-
valued (n — 1)-process max register by initializing the registers to the values they
have at the end of o/~ and replacing the first read in ReadMax by a fixed constant.
This gives T'(m,n) > T(m—t+1,n—1)+ 1.

We thus get a recurrence:

T(m,n) > 1+ 1£ril<n {max(T(t —1,n),T(m—t+1,n—1))},

with 7'(1,n) = 0 and T'(m, 1) = 0, we show, by double induction on » and m, that the
solution to this recurrence is

T(m,n) > min([logm],n — 1).

For n = 1, the bound holds trivially; similarly if m = 1. For larger n, and m > 1, we
have

T(m,n) >1+ 1rr)%1<m {max(T(t —1,n), T(m—t+1,n—1))}
<t<m
>14 min {max(T(t—1,n—1),T(m—-t+1,n—1))}
1<t<m

>14+T([m/2],n—1) > 1+ min([log(m/2)],n —2)
=1+ min([logm] — 1,n — 2) = min([logm],n — 1),

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:19

where the third inequality follows from the facts that 7'(m, n) is a non-decreasing func-
tion of both m and n, and that the maximum between ¢t — 1 and m — ¢ + 1 is minimized
for t = [m/2]. This completes the proof. O

6.2. Lower bound for deterministic counters

In this section we present an alternative lower bound for a k-additive-accurate counter,
defined next, using the recurrence technique from Section 6.1 for a bounded max reg-
ister.

Definition 6.2. A k-additive-accurate counter is a counter for which any
ReadCounter operation returns a value that is within +%k of the number of
CounterIncrement operation instances linearized before it.

This lower bound on the cost of implementing bounded max registers determinis-
tically does not extend trivially to counters, for the following reason. It is not known
where the CounterIncrement operation with the pending low-level operation ¢ (cover-
ing the register R) is linearized in the execution. For max registers this does not mat-
ter, since the value written by this operation gets overwritten by larger values, and the
reader only has to distinguish between those. However, for a counter, the reader has to
return the total number of increments that were linearized before its read operation,
therefore must be able to tell whether that increment operation has been linearized
before it or not.

We present a lower bound on the cost of implementing counters deterministically,
where the key idea is that some additive error is allowed for the ReadCounter opera-
tion, to account for the accumulating pending operations in he recursion. We describe a
lower bound of min(n—1, [log m] —log ([logm] + k)) on the worst-case number of atomic
register operations of a ReadCounter operation in any deterministic asynchronous lin-
earizable implementation of a bounded counter, where m is the number of states of the
counter and n is the number of processes. As in the previous subsection, our proof is
based on a covering argument which applies even for read-once objects that are only
required to be correct in executions with at most one ReadCounter operation.

THEOREM 6.3. For any deterministic solo-terminating implementation from atomic
registers by n processes of a linearizable counter that allows m CounterIncrement ()
operations, there is a k-accurate ReadCounter () operation that takes min(n—1, [logm]—
log ([logm] + k)) low-level register operations.

PROOF. To simplify the argument, we consider only a restricted set of executions,
and evaluate algorithms based only on their performance (and correctness) on this
class of executions. Let S,, ., 1 be the set of all counter executions consisting of a se-
quence of up to m (possibly concurrent) executions of the CounterIncrement operation
by processes {p1,...,pn—1}, followed by a single k-accurate ReadCounter () operation by
po. Let T'(n, m, k) be the worst-case cost of a k-accurate ReadCounter operation in any
execution in S, ,, r (which also includes all executions in S, ; x C Sy, m i for i < m), and
consider some implementation of a counter that is correct on all executions in S, ,,,
and that minimizes this cost for a given n,m and k. Then T'(n,m, k) will also give a
lower bound on the cost of ReadCounter operations in arbitrary executions.

Consider the first register read in the ReadCounter operation of py. Because pq is
deterministic and takes no steps prior to its ReadCounter operation, any low-level op-
eration it performs depends only on the outcome of its previous low-level operations.
Moreover, without loss of generality, we can assume that p, performs no register write

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 James Aspnes et al.

operations, since there are no steps by other processes after it begins®. This implies
that the first step by the ReadCounter of py is a read of a fixed register R, not depend-
ing on the CounterIncrement operations preceding it.

Let t be the smallest value of m for which there exists an execution in S, ,,, ; in
which some process writes to R. (If no such execution exists, we can omit the read of
R from the ReadCounter operation, contradicting the assumption that the algorithm is
optimal.) We use this threshold ¢ to construct two new max register implementations
for smaller values of m:

(1) Because t is minimal, if ¢ > 1 there is no execution in S, ;1 , in which some process
writes to R. It follows that if we restrict the number of increments to ¢t — 1, we can
omit the read of R from the implementation of ReadCounter and obtain T'(n,t —
1,k) <T(n,m,k)—1,or T(n,m,k) >T(n,t—1,k)+ 1.

(2) Additionally, let o be an execution in S, ;; in which a write to R occurs, and let
o’ be the prefix of o preceding the first such write and § the write operation itself.
Let o'v be the execution obtained by letting every CounterIncrement operation in
progress at the end of o/ run to completion, excluding the operation that executes
0. Now consider any execution S = o/vyd, where ~ is a sequence of non-concurrent
CounterIncrement operations by processes in {p1,...,pn—1}, excluding the process
that executes ¢. In such executions, a following ReadCounter operation always ob-
serves § when reading R, but nonetheless returns the number of increments fin-
ished in o’vy up to an error of k + 1 (since the operation of the process executing ¢
may not be finished). We can thus obtain an implementation of a (k + 1)-accurate
counter with up to (m — ¢t + 1) increments and (n — 1)-process by initializing the
registers to the values they have at the end of o’v and replacing the first read in
ReadCounter by a fixed constant. This gives T'(n,m, k) > T(n—1,m—t+1,k+1)+1.

We thus get a recurrence:
T(n,m,k) > 1+ mtin {max(T(n,t — 1,k), T(n—1,m—t+1,k+ 1))},
with T (n,m, k) = 0 for n = 1 or m < k. We show by induction that the solution to this
recurrence is
T(n,m,k) > min(n — 1, [logm] — log ([logm] + k)).

For n = 1, the bound holds trivially; similarly if m < k. For larger n, and m > k, we
have

T(n,m,k) > 1+ mtin {max(T(n,t — 1,k), T(n—1,m—t+1,k+ 1))}
1+T(n—1,[m/2],k+1)>1

+min(n — 2, [logm/2] — log ([logm/2] + (k + 1)))

= 1+ min(n — 2, [logm] — 1 —log ([logm] — 1+ (k + 1)))
min(n — 1, [logm] — log ([logm] + k)),

Y

which completes the proof. O

6.3. Lower bound for randomized max registers

We prove a lower bound on randomized implementations of a max register using Yao’s
Principle [Yao 1977]. The idea is that we can treat any randomized algorithm as a
weighted average of deterministic algorithms. A distribution over schedules that gives

3Recall that we allow the algorithm to be aware of our restricted set of executions, which implies that having
write operations during the ReadCounter of pg is not optimal.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:21

a high cost on average for any fixed deterministic algorithm, also gives a high cost on
average for any randomized algorithm. Furthermore, if an average schedule gives a
high cost for a given randomized algorithm, then there exists some specific schedule
that does so.

We state this formally as the following lemma:

LEMMA 6.4. Suppose there is a probability distribution on inputs x and an oblivi-
ous adversary strategy such that Elcost(M (x))] > k for any deterministic algorithm M.
Then for any randomized algorithm M, (even with global coins) there exists some fixed
x such that, with the same oblivious adversary strategy, Elcost(M,(z))] > k.

PROOF. Because the adversary is oblivious, its choice of schedule does not depend
on the behavior of M,.. So we can simulate M,. by randomly choosing at the start of the
execution a deterministic algorithm M; from the set of all deterministic algorithms
{Mi, Ms, ...} obtained by fixing the random bits used by ..

We are given that E[cost(M;(z))|M;] > k for any fixed M;, so E[cost(M;(z)] > k when
M; is chosen randomly. It follows that E[cost(M;(x))|z] > k for some fixed input . O

THEOREM 6.5. For any randomized implementation by n processes of a max regis-
ter, with probability 1—o(1) either some WriteMax operation takes more than w low-level
register operations, some ReadMax operation takes Q(log n/log(wlogn)) low-level register
operations, or some operation fails.

PROOF. We now show a distribution over schedules that gives a high cost for any
deterministic algorithm. We will prove the bound for m > n. For the general case, we
can replace all occurrences of n in the lower bound argument with min (m, n).

Consider a schedule 813, . .. 3,_1p, where 3; is a WriteMax operation by p; with value
i and p is a ReadMax operation by py. We denote by w the worst-case cost of any WriteMax
operation, and therefore we allocate w steps to each WriteMax operation and have no
bound on the number of steps that py takes in p.

We modify the above schedule by truncating each WriteMax operation randomly.
Specifically, we choose a prefix 5.0; of 3;, where J; is a single operation that we will
delay, with all lengths {0,...,w — 1} for 8, equally likely. We now construct a family of
schedules of the form

Qp = p
ap = Bip
Qg = 5152510

ag = 155030201 p

In each of these schedules «a;, i € {0,...,n—1}, we run ¢ WriteMax operations, where the
i-th WriteMax operation (if 7 > 1) is run to completion, but previous WriteMax operations
are used to attempt to cover registers. The covering writes are done in reverse order
because it may be that several §; operations write to the same location, and we want
the earliest value to cover any subsequent values. The key fact is that the location to
which ¢; writes and the value it writes to it do not depend on the truncation of the 3;
schedules for j > i.

We examine the sequence of values read in p by pg at the end of each «;, and show
that the set of such sequences for successful executions (in which g; finishes in w steps
and p returns the correct value i) form a prefix-free code over an alphabet of bounded
size. Formally, for every register R we define the number Sr(i) of distinct values that

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 James Aspnes et al.

can appear in each register R at the end of the different schedules «;. The proof of the
following lemma is deferred to the end of this proof:

LEMMA 6.6. Let R be a register. For every constant ¢, Sg(n — 1) exceeds 1 + cwlogn
with probability less than exp(—n°).

Therefore with high probability, no register exhibits more than O(wlogn) values. For
each execution «;, the reader sees some sequence of values, each of which is chosen
from the O(wlogn) possible values for each register. The set of reader executions can
be described by a decision tree with O(w logn)-way branching, where each leaf of the
tree corresponds to some decision by the reader. For some constant ¢y and sufficiently
large n there are at most /n possible leaves in this tree with depth smaller than
colog n/log(wlogn).

We call an execution «; good if p returns i in less than ¢y log n/log(w log n) steps, and
otherwise we call « bad. The decision tree described above implies that among the n
executions «;, there are at most 1/n good executions. For the remaining bad executions,
i.e., with probability 1 — o(1), either some WriteMax operation takes more than w steps,
some ReadMax operation takes (logn/log(wlogn)) steps, or some operation fails. This
gives the claimed lower bound. O

PROOF OF LEMMA 6.6. The idea is that once R gets covered by J; no new values
can appear in it in «;, for i > j, i.e., Sgp(i + 1) = Sgr(4). If B; writes to R then thereis a
probability of 1/w that ¢; indeed covers R, and therefore, we will show that Sg(n — 1)
is bounded from above by a geometric random variable with parameter 1/w.

For ¢ > 1, recall that

Q1 = 51 i -ﬁ;725i716i72 .. 01p
;= B1...Bi_oBi_18i0i—10;—2...01p

and consider the following possibilities, in each of which we bound from above the
value of Sg(7).

(1) If R is covered by ¢;, for some j < i — 2, then Sg(i) = Sr(: — 1).

(2) Otherwise, if Ris covered by §;_; then it could be the case that Sg(i) = Sg(i—1)+1if
B;_1 has a write to R after d;_;, which writes some previous value that is replaced
in «; by a new value written by §,_;. But in this case Si(i — 1) would not have
increased compared to Sg(i — 2), and therefore the increase in Sg(i) is already
accounted for (the inequality in Item 4 for i — 1 was a strict inequality).

(3) Otherwise, if 5; does not write to R then Sr(i) = Sr(i — 1).

(4) Otherwise, Sg(i) < Sg(i —1) + 1, where the inequality is because it is possible that
the value written by §; is equal to some previous value, and there is a 1/w chance
that R is covered by §; in o 1.

Therefore, Sg(n — 1) is bounded from above by a geometric random variable with
parameter 1/w. The probability that this variable exceeds some value z is less than or
equal to

(1= 1/w)") < eap(—1/w)Y = eap(—(z — 1) /w).

In particular, for every constant c it exceeds 1 + cwlogn with probability less than
exp(—n°). O

For w = polylog(n), the ReadMax bound is Q(log n/loglogn). To get the ReadMax bound
down to a constant, w must be polynomial in n, and indeed we provide, in the next
section, a randomized implementation that achieves this.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:23

6.4. Probabilistic max registers with low read cost

In this subsection we consider a model where the local computation of each process
may include an arbitrary number of local coin flips. The coins of different processes
are independent, i.e., the processes do not have access to a shared global coin.

It is possible to build a probabilistic version of a max register where a ReadMax op-
eration has step complexity 1 but is allowed to return an incorrect value with low
probability. This is not intended to be a practical implementation; instead, this is a
“counter-example” algorithm demonstrating that the bound on the step complexity of
WriteMax in the randomized lower bound of Theorem 6.5 is necessary.

The shared data consists of (a) an unbounded MaxReg object r, and (b) an array a of
N > n multi-writer multi-reader atomic registers. Code is given in Algorithm 4.

1 procedure ProbabilisticWriteMax(v)
2 begin
WriteMax(r,v)
fori+ 1to N do
| ali] < ReadMax(r)
end
end
procedure ProbabilisticReadMax ()
begin
10 Choose ¢ uniformly at random from {1,..., N}
11 return a[i]
12 end

© ® O ew

Algorithm 4: Probabilistic max register implementation.

The intuition is that once a ProbabilisticWriteMax(v) operation of some process
p finishes, all but n — 1 of the values in a will be at least v. The reason is that p
writes a value that is at least v to all N array locations, and each other process can
overwrite at most one of these values before re-reading r and obtaining a value at least
v thereafter. It follows that ProbabilisticReadMax returns a value at least as great as
the largest value previously written by a completed ProbabilisticWriteMax operation
with probability at least 1 — (n — 1)/N. It is also not hard to see that it never returns
a value that is too large. It follows that ProbabilisticReadMax is monotone consistent
with probability at least 1 — O(n/N), which can be made arbitrarily close to 1 at the
cost of drastically increasing the step complexity of ProbabilisticWriteMax.

THEOREM 6.7. There are monotone-consistent, probabilistic implementations of
MaxReg in which a WriteMax operation has step complexity w, a ReadMax operation has
step complexity 1, and a ReadMax operation returns an incorrect value with probability
min(1, O(n?/w)).

PROOF. By applying the preceding analysis where r is a snapshot-based max regis-
ter and N = O(w/n). (For w = o(n?), have WriteMax and ReadMax do nothing.) O

7. DISCUSSION

This paper gives a method for using multi-writer multi-reader registers to construct m-
bounded max registers with [logm] cost per operation, and unbounded max registers
with O(min(logv,n)) cost to read or write the value v. An analog data structure of a
min register can be implemented in a similar way. We prove a lower bound that shows
that the cost of our implementation is optimal.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 James Aspnes et al.

We note that it is possible to replace the linear snapshot component with the adap-
tive snapshot implementation of [Attiya et al. 2002] to obtain an unbounded max reg-
ister construction with O(min(logv, klogk)) cost to read or write the value v, where &
is the number of processes that participate during this execution.

For randomized implementations we show a lower bound of 2(log n/log(wlogn)) for
read operations, where w is the cost of write operations. This leaves open the problem
of tightening the randomized lower bound for m > n, or finding an implementation
whose cost depends only on n.

A curious fact is that our randomized lower bound applies even to algorithms sup-
plied with free global coins, since it does not rule out executions in which there are de-
pendencies between the local coins. This puts the lower bound for max register reads
higher than the O(1) upper bound on the expected individual step complexity for con-
sensus in a global-coin model.

We use max registers to construct wait-free concurrent data-structures out of any
monotone circuit, while satisfying a natural consistency condition we call monotone
consistency. The cost of a write is O(Sd min([log m], O(n))), where m is the size of the al-
phabet for the circuit, S is the number of gates whose value changes as the result of the
write, and d is the number of inputs to each gate; the cost of a read is min([logm], O(n)).

As an application, we obtain a simple, linearizable, wait-free counter implementa-
tion with a cost of O(min(lognlogv,n)) to perform an increment and O(min(logv,n))
to perform a read, where v is the current value of the counter. For polynomially-many
increments, these become O(log” 1) and O(logn), respectively, an exponential improve-
ment on the best previously known upper bounds of O(n) for an exact counting and
O(n*/5*€) for approximate counting [Aspnes and Censor 2009]. Note that bounding the
counters allows us to overcome the linear lower bound of Jayanti et al. [2000], as well
as the similar lower bounds by Fich et al. [2005] that hold even with CAS primitives.
Whether further improvements are possible is still open.

ACKNOWLEDGMENTS

The authors would like to thank Dana Angluin, David Eisenstat, Danny Hendler, and Hanna Mazzawi for
useful discussions, and the anonymous referees for helpful comments and suggestions.

REFERENCES

AFEK, Y., ATTIYA, H., DOLEV, D., GAFNI, E., MERRIT, M., AND SHAVIT, N. 1993. Atomic snapshots of
shared memory. Journal of the ACM 40, 4 (September), 873—-890.

ANDERSON, J. H. 1993. Composite registers. Distributed Computing 6, 3, 141-154.

ASPNES, J. AND CENSOR, K. 2009. Approximate shared-memory counting despite a strong adversary. In
SODA °09: Proceedings of the Nineteenth Annual ACM -SIAM Symposium on Discrete Algorithms. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 441-450.

ASPNES, J. AND HERLIHY, M. 1990. Fast randomized consensus using shared memory. Journal of Algo-
rithms 11, 3 (Sept.), 441-461.

ATTIYA, H. AND FOUREN, A. 2001. Adaptive and efficient algorithms for lattice agreement and renaming.
SIAM J. Comput. 31, 2, 642—-664.

ATTIYA, H., FOUREN, A., AND GAFNI, E. 2002. An adaptive collect algorithm with applications. Distributed
Computing 15, 2, 87-96.

ATTIYA, H. AND WELCH, J. 2004. Distributed Computing: Fundamentals, Simulations and Advanced Top-
ics. John Wiley & Sons, Hoboken, New Jersey.

BENTLEY, J. L. AND YAO, A. C.-C. 1976. An almost optimal algorithm for unbounded searching. Inf. Process.
Lett. 5, 3, 82-87.

ELIAS, P. 1975. Universal codeword sets and representations of the integers. Information Theory, IEEE
Transactions on 21, 2, 194-203.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Polylogarithmic Concurrent Data Structures A:25

FicH, F. E., HENDLER, D., AND SHAVIT, N. 2005. Linear lower bounds on real-world implementations of
concurrent objects. In FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society, Washington, DC, USA, 165-173.

HERLIHY, M. P. AND WING, J. M. 1990. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems 12, 3 (July), 463—-492.

INOUE, M. AND CHEN, W. 1994. Linear-time snapshot using multi-writer multi-reader registers. In Dis-
tributed Algorithms, 8th International Workshop, WDAG ’94, Terschelling, The Netherlands, September
29 - October 1, 1994, Proceedings. Lecture Notes in Computer Science, vol. 857. Springer, New York,
130-140.

ISRAELI, A., SHAHAM, A., AND SHIRAZI, A. 1995. Linear-time snapshot implementations in unbalanced
systems. Mathematical Systems Theory 28, 5, 469-486.

JAYANTI, P. 2002. f-arrays: implementation and applications. In PODC ’02: Proceedings of the twenty-first
annual symposium on Principles of distributed computing. ACM, New York, NY, USA, 270-279.

JAYANTI, P., TAN, K., AND TOUEG, S. 2000. Time and space lower bounds for nonblocking implementations.
SIAM Journal on Computing 30, 2, 438—456.

YAO, A. C.-C. 1977. Probabilistic computations: Toward a unified measure of complexity. In Proceedings of
the 17th Annual Symposium on Foundations of Computer Science. IEEE Computer Society, Los Alami-
tos, CA, USA, 222-227.

Received .; revised .; accepted .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

