Distributed Computing manuscript No.
(will be inserted by the editor)

Dana Angluin - James Aspnes- Zoé Diamadi - Michael J. Fischer - René Peralta

Computation in Networks of Passively Mobile Finite-State Sensors

October 17, 2005

Abstract The computational power of networks of smalthat the sensors are quite limited: each sensor has a constant
resource-limited mobile agents is explored. Two new modelsmber of bits of memory and can respond to a global start
of computation based on pairwise interactions of finite-statggnal, and two sensors can communicate only when they
agents in populations of finite but unbounded size are dae sufficiently close to each other.

fined. With a fairness condition on interactions, the concept

of stable computation of a function or predicate is defined. In this scenario, the sensors are mobile but have no con-
Protocols are given that stably compute any predicate in thel over how they move, that is, they goassively mobile
class definable by formulas of Presburger arithmetic, whiditially, we assume that the underlying pattern of movement
includes Boolean combinations of threshéldnajority, and gives rise to a communication pattern that guarantees a fair-
equivalence modulm. All stably computable predicates areness condition on the resulting computation. Intuitively, it is
shown to be ifNL. Assuming uniform random sampling ofuseful to imagine that every pair of birds in the flock repeat-
interacting pairs yields the model of conjugating automatadly come sufficiently close to each other for their sensors to
Any counter machine witlD(1) counters of capacit(n) communicate, but it will turn out that this condition is nei-
can be simulated with high probability by a conjugating auher necessary nor sufficient for our results. While this intu-
tomaton in a population of size All predicates computable ition is sufficient for understanding the protocol that follows,
with high probability in this model are shown to beRnthey the reader is urged to read carefully the formal definitions in
can also be computed by a randomized logspace machin&éttion 3.

exponential time. Several open problems and promising fu-

ture directions are discussed. Under these assumptions, there is a simple protocol en-
suring that every sensor eventually contains the correct an-
swer. At the global start signal, each sensor makes a mea-
surement, resulting in a 1 (elevated temperature) or 0 (not
elevated temperature) in a counter that can hold values from
0 to 4. When two sensors communicate, one of them sets its
counter to the sum of the two counters, and the other one
sets its counter to O. If two counters ever sum to at least 5,

€ Sensors go into a special alert state, which is then copied

. L. . t
Sg{(ﬁpose we ?ha\{[e eqlé'pfed _eachhbltrﬁl mtha %?g',cﬁ'af flo% every sensor that encounters them. The output of a sensor
with a sensor that can determine whether (n€ bird's teMpejdn i i is not in the alert state, and 1 if itis in the alert state.

ture is ejevated or not, and we wish to know whether at quﬂ/ve wait a sufficient interval after we issue the global start
5 birds in the flock have elevated temperatures. We assu al, we can retrieve the correct answer from any of the

Supported in part by NSF grants CCR-9820888, CCR-0098078, apfa'SOI'S.
CNS-0305258 (Aspnes), by ONR grant NO0014-01-1-0795 (Diamadi),

and by NSF grant CSE-0081823 (Fischer and Peralta). Now consider the question of whether at least 5% of the

A preliminary version of this paper appeared in the proceedings of R#ds in the flock h'ave e|e_/ate_d temperatures. Is th?re a pro-
23rd ACM SIGACT-SIGOPS Symposium on Principles of Distributetiocol to answer this question in the same sense, without as-

Keywords Diffuse computation finite-state agent
intermittent communicationmobile agent sensor net
stable computation

1 Scenario: A flock of birds

Computing, St. John’s, Newfoundland, Canada, July 2004. sumptions about the size of the flock? In Section 4, we show
Correspondence toMichael Fischer, Department of Computer Sci:[hat such a protocol e_X'StS' More generally, we are interested
ence, Yale University, New Haven, CT 06520-8285, USA in fundamental questions about the computational power of
Tel.: +1-203-432-1270, Fax: +1-203-432-0593 this and related models of interactions among members of a

E-mail: fischer-michael@cs.yale.edu distributed population of finite-state agents.

2 Dana Angluin et al.

2 A wider view sor values, rather than the continuous stream of sensor val-
ues more commonly considered. Sensors communicate in

Most work in distributed algorithms assumes that agentsﬁ’ﬁifs and do not have unique identifiers; thus, they update
a system are computationally powerful, capable of storiﬁ@e'r states based strictly on the pair of their current states
non-trivial amounts of data and carrying out complex cafi’d on the role each plays in the interaction—one acting as

culations. But in systems consisting of massive amountsiBftiator and the other as responder.
cheap, bulk-produced hardware, or of small mobile agents In Section 3, we define a model of computation by pair-
that are tightly constrained by the systems they run on, thvse interactions in a population of identical finite-state
resources available at each agent may be severely limitagents. Assuming a fairness condition on interactions, we
Such limitations are not crippling if the system designer hagfine the concept of stable computation of a function or
fine control over the interactions between agents; even finifgedicate by a population protocol.
state agents can be regimented into cellular automata [20] |4 section 4, we consider the question of what predi-
with computational power equivalent to linear space Turingyies can be stably computed when interactions can occur
machines. But if the system designer cannot controlltheselyé—tween all pairs of agents. We show how to construct pro-
teractions, it is not clear what the computational limits arey, |5 for any Presburger-definable predicate. This is a rich
Sensor networks are a prime example of this phenogass of arithmetic predicates that includes thresholaar-
enon. Each sensing unit is a self-contained physical pagk: majority, and simple arithmetic relations. We show that
age including its own power supply, processor and memogfaply computable predicates are closed under the Boolean
wireless communication capability, and one or more sens@fiSerations. We also show that every predicate computable in
capable of recording information about the local enviroRpis model is in nondeterministic log space. An open prob-
ment of the unit. Constraints on cost and size translate iy, js to give an exact characterization of the computational
severe limitations on power, storage, processing, and CoRdwer of stable computation in this model.
munication. Sensing units are designed to be deployed in In Section 5, we show that the all-pairs case is the weak-

large groups, using local low-power wireless communica- . : ; .
tion between units to transmit information from the sensofSt 10" Stably computing predicates by showing that it can be

back to a base station or central monitoring site. S|mullated by any populathn that cannot be separated into
Research in sensor networks has begun to explore oen-lnterac_:tlng subpopulations. The questions of what_a(_jdl-
possibilities for using distributed computation capabilitieé hal p_redlcat(_as can be computed fo_rreasonable restrictions
of such networks in novel ways to reduce communicati on thg interactions and what properties of the underly!ng in-
. . raction graph can be stably computed by a population are
costs. Aggregation operations, such as count, sum, aver i X
- : sidered in [1].
extrema, median, or histogram, may be performed on thé _)
sensor data in the network as it is being relayed to the baseln Section 6, we obtain the model of conjugating au-
station [14,16]. Flexible groups of sensors associated wiginata by adding a uniform sampling condition on interac-
targets in spatial target tracking can conserve resourcedigfis to the assumption that interactions are enabled between
inactive portions of the tracking area [8, 24]. Though sensci¥ pairs of agents. This allows us to consider computations
are usually assumed to be stationary or nearly so, permittifigt are correct with high probability and to address ques-
strategies based on relatively stable routing, this assurtighs of expected resource use. We show that this model has
tion is not universal in the sensor-network literature. For egufficient power to simulate, with high probability, a counter
ample, an assumption of random mobility and packet reljachine withO(1) counters of capacit(n). We further
dramatically increases the throughput possible for commihow that Boolean predicates computable with high proba-
nication between source-destination pairs in a wireless netity in this model are inP, and can be computed by a ran-
work [11]. domized logspace machine in exponential time. This gives a
The flock of birds scenario illustrates the question d¥artial characterization of the set of predicates computable
characterizing what computations are possible in a coopepy-Such machines, but finding an exact characterization is
tive network of passively mobile finite-state sensors. The a¥i!l open.
sumptions we make about the motion of the sensors are thatin Section 7, we describe other related work, and in Sec-
it is passive (not under the control of the sensors), too rapidn 8 we discuss some of the many intriguing questions
and unpredictable for stable routing strategies to be feasibigised by these models.
and that specified pairs of sensors, given byirdaraction
graph will repeatedly be close enough to communicate us-
ing a low-power wireless signal.
There is a global start signal transmitted by the base sta-
tion to all the sensors simultaneously to initiate a computa=
tion. When they receive the global start signal, the senscré formal model
take a reading (one of a finite number of possible input val-
ues) and attempt to compute some function or predicateWwé define a model that generalizes the flock of birds sce-
all the sensor values. This provides a “snapshot” of the serario from Section 1.

Computation in Networks of Passively Mobile Finite-State Sensors 3

i, 0<i <k, in which case we say th& is reachablefrom
C.
A population protocol < consists of finiténput and out- Thetransition graph G(«, &) of protocol.</ running
put alphabets X andY, a finite set ofstatesQ, aninput in population?” is a directed graph whose nodes are all pos-
function | : X — Q mapping inputs to states, asutput sible population configurations and whose edges are all pos-
function O: Q — Y mapping states to outputs, andran- sible transitions on those nodes. A strongly connected com-
sition function § : Q x Q — Q x Q on pairs of states. If ponent of a directed graph fimal iff no edge leads from a
é(p,q) = (p,d), we call(p,q) — (p/,q) atransition, and node in the component to a node outside. A configuration is
we defined;(p,q) = p’ and(p,q) = (. final iff it belongs to a final strongly connected component
of the transition graph.
Example.As a simple illustration, we formalize a version An executionis a finite or infinite sequence of popu-
of the count-to-five protocol from Section 1. The six statdgtion configurationsCo, Cy, Cy, ... such that for each,
aredp, .. .,0s. The input and output alphabets ate=Y = Ci — Ci;1. Aninfinite execution idair if for every possible
{0,1}. The input functionl maps 0 togo and 1 tog;. The transitionC — C/, if C occurs infinitely often in the execu-
output functionO maps all states exceg to 0 and the state tion, thenC’ occurs infinitely ofterf. A computation is an
0s to 1. The transition functiod(q;,q;) is defined as fol- infinite fair execution.

lows: if i+ j > 5, then the result i&gs, gs); if i + j < 5 then)
the result iS(d+j, qo)- Lemma 1 LetE = Cp, C, Cy, ... be a computation of pop-

. i ulation protocol<’ running in population#. Let.# be the
_ A population & consists of a sét of nagents together set of configurations that occur infinitely oftendn and let
with an irreflexive relatiore C Ax Athat we interpretasthe G . pe the subgraph of G7, %) induced byZ. G is a

directed edges of ainteraction graph. E describes which fina| strongly connected component of @, #), and every
agents may interact during the computation. Intuitively, aflement of F is final.

edge(u,v) € E means that andv are able to interact, with

u playing the role ofinitiator andv playing the role ofe- Proof Every C’' € .Z is reachable from everg¢ € .Z via

sponderin the interaction. Note that the distinct roles of thg subsequence of transitions i) so G is strongly con-
two agents in an interaction is a fundamental assumptionr@cted. Suppose — C’' andC € .%. By fairnessC’ occurs
asymmetry in our model; symmetry-breaking therefore dopfinitely often inZ, soC’ € .#. Hence G # is final, so every
not arise as a problem within the model. Though most of th¢ement ofZ is also final. O

present paper concerns the case in wiicbonsists of all

ordered pairs of distinct elements frofy) which is termed
the complete interaction graph we give definitions appro-
priate for generaiE.

When a population protocaV’ runs in a populatio”, - aq \ith nondeterministic Turing machines, we define no-
we think of each agent it as having a state from¥’s state jonq of input and output, and we define what it means for
setQ,,. Pairs of agents interact from time to time and changg opulation protocol to compute a particular output given
their states as a result. Each agent also has a current ou Eﬁrticular input. The input to a population protocol is a

value d,etermined by its current state. The collection of apping that associates an input value with each agent. The
agents’ current outputs is deemed to be the current outpy

tout of a population protocol is a mapping that associates
of the computation. These concepts are made more pre%{ﬁegutput vglug with ea?ch agent pping
below. '

: . o . Unlike Turing machines, population protocols do not
A population configuration is a mappingC: A— Q ., \ unng ! popuration p

specifying the state of each member of the popuIationCLeto t, so there is no obvious fixed time at which to view the
andC’ be population configurations, and igtv be distinct utput of the population. Rather, we say that the compu-

s Wi that oC Vi fore— tation converges if it reaches a point after which no agent
agents. We say that goes toC’ via encountere = (U.V), can sybsequently change its output value, no matter how the

3.1 Population protocols

3.2 Input-output behavior of population protocols

denotedC % C', if computation proceeds. Convergence is a global property of
C'(u) = 81(C(u),C(v)) the population configuration, so individual agents in general
C'(v) = &(C(u),C(v)) dq not I_<now when convergence has been reached. Ho_weyer,
C'(w) = C(w) for all w e A— {u,V}. with suitable stochastic assumptions on the rate at which in-

teractions occur, it is possible to bound the expected number

We say thatC can go toC’ in one step, denote@ — C/,

if C -5 C’ for some encountez € E, and we calC — C’ a 2 Note that this definition is not equivalent to the intuitive notion of

.. . * . . fairness, given in Section 1, that every permitted encounter between
tran_smon - We writeC — C' if there is a sequence of Conf'g'agents takes place infinitely often. Our formal definition only requires
urationsC = Cp,Cy,...,C¢ = C/, such thaCj — Ciy1 forall that certain configurations appear in a fair execution: it does not specify
which encounters give rise to them. On the other hand, it is also not

1 Note that we distinguish typographically between a protogol sufficient that every permitted encounter take place infinitely often. We

and an agent sét We hope that context will help the reader distinguishequire that infinitely many encounters result in specific configurations
between these two similar notations. C.

4 Dana Angluin et al.

of interactions until the output stabilizes. We explore thiEhe configurations reachable from the last one above are
approach in Section 6. those with five agents assigngd and one agent assigned
Formally, aninput assignmentis a functionx: A— X, s, and the outputs of all of them are equal to
whereA is the set of agents in the population. We &t= 0,0,0,0,0)
XA denote the set of all input assignments. The input as- "~~~/
signment determines the initial configuration of the protocorherefore,R((o, 1,0,1,1,1),(0,0,0,0,0,0)) holds, whereR
Namely, ifx € 27, then the protocol begins in configurations the input-output relation computed by this protocol. In
Cx, whereCy(w) = | (x(w)) for all agentsw. fact, Ris singled-valued, so we can write
An output assignmentis a functiony: A — Y. We
let = YA denote the set of all output assignments. Eadi0,1,0,1,1,1) = (0,0,0,0,0,0).
configurationC determines an output assignmesf where This protocol illustrates the fact that convergence re-
yc(w) = O(C(w)) for all agentsw. quires only that the outputs, and not necessarily the configu-
A configurationC is said to beoutput-stableif yo =Yc rations, eventually stop changing. We could have solved this
for all C' reachable fronC. Note that we do not require thatparticular problem with a protocol in which the configura-

C’=C, only that the output be the same. An infinite compuions themselves also stopped changing, but we do not know
tationconvergesf it contains an output-stable configuratiotow to do that in general.

C, in which case we say thatdbnverges (or stabilizes) to

output y = yc. It is immediate that an infinite computation

converges to at most one output, which we call the outpglts Families of populations
of the computation when it exists, and we say that the out-

put is undefined otherwise. Because of the nondeterminigmsection 3.2, we defined what it means for a population

inherent in the choice of encounters, the same initial configrotocol .7 running in a fixed population? to stably com-

uration may lead to different computations that stabilize ghte an input-output relation. It is natural to extend these

different outputs or do not stabilize at all. We say a proteefinjtions to families of populationsZ, }ney, whereZ, is

col </ is always-convergentf every computation on every 4 nopylation over agent s&. Write 2;, and%, for the cor-

input x converges. In this paper, we are only interested {gsponding input and output assignmentst@nThen pop-

always-convergent protocols. ___ ulation protocol can be regarded as stably computing a
An always-convergent population protoc@lrunning in - family of input-output relationR?, } .. Equivalently, let-

a population7” stably computes an input-output relation tjng 27 = UnZn and? = U, %, < can be said to stably

R. as follows. For eack € 2" andy € %, Ry (x,y) holds compute the relatioR,, = U,R?, C 2" x %' In the special

iff there is a computation of7 beginning in configuration case thaR,, is single-valued, we write as befofe, (x) =y

Cx that stabilizes to output In the special case th&, is for R, (x,y) and say thats stably computes the function

single-valued, we writeF, (x) =y for R, (x,y) and say that F,: 2 —%.

</ stably computesthe functionF., . We now define a family of populatiofs?, }ney of par-

ticular interest. Let#, be the population of size consist-

ing of the complete interaction graph on the specific agent

setA, = {1,...,n}. We callA, the standard agent setand

P, thestandard population of sizen. Because population

Example (continued)Continuing our count-to-five illustra-
tion, assume that the agents aje. . ., us and the interaction
graph is complete. Let the input assignmgiite described

by the vector protocols depend only on the states of agents, not on their
names, there is no loss of generality in assuming a fixed
(0,1,0,1,1,1), agent set.

assigning input symbols to the agenis. ., ug in that order.

The corresponding input configuration is 3.4 Computation on other domains

1(X) = (co, A1, Go, ., G, o), As defined in Sections 3.2 and 3.3, a population protetol
which leads to the following possible computation: computes a relatioR,, on 2" x %. We call 2" thenatural
input domain and# the natural output domain for .
In order to use population protocols to compute on other
domains, we need suitable input and output encoding con-
ventions. Aninput encoding conventionfor domain D,
06 is a functionE, : 2~ — Dy, and anoutput encoding con-

() =5)
() — ()
(%o, 92,90, 9o, Go; d2) — (o, G4, do; do, %o, Yo) vention for Do is a functionEp : % — Dg. If Ej(x) =u
() — ()

—

—
=

0o, 91,90, 91,01, 01 Fo, 92, 9o, 9o, 01,01

6,

—

5

—
=

QOaQZ7QO7QO,%7$ q07QZ7q0>q07%7%

—
=

32 (resp.Eo(y) = v), we say thai representsu_(resp.y rep-

resentsv). In this terminology, we can define thmatural
input and output encoding conventionsto be simply the
3 ArelationRis single-valued if/xvyvz(R(x,y) AR(x,2) = y=2). identity functions onZ" and%/, respectively.

—
—

—

0o, 94,90, do; 9o, do Go; 90,94, 90,00, do)-

Computation in Networks of Passively Mobile Finite-State Sensors 5

E, and Eo are not required to be either one-to-one Similarly, the integer-based output conventionas-
or onto. Thus, a given element @, (respectivelyDo) sumesy C Z = Do and define€o(y) = S weay(W) for out-
might have zero, one, or more than one representationputy € 7.

Z (respectively?’). We naturally associate witR,, the

represented input-output refation S,y Dy x Do, where - gy mple of an integer functiokive describe a population
S~ (u,v) holds iff there exisx € 2™ andy € ¢ such that protocol.< to compute the functiori(m) = |m/3], the in-
E(X) = u, Eo(y) = v, andR (x.y) holds. We say thaRy, teqer quotient ofnand 3. We tak& =Y = {0,1}. An input
(under the encoding conventioks andEo) is representa- assignmenk representsn = E; (x), the number of agents
tive independentiff for all xi,x2 € 2 such thatEi (x1) = 5ssigned 1, and similarly for output assignments. Given the
Ei 0), standard populatior”,, all values ofm < n can be repre-
Eo(y) | R(x1,¥)} = {Eo(y) | R(X2,y)}. sented, so the partial integer functi@j, (m) compute.d by
{Eof)_| (_)} (B] ())} &/ running in 2, is f(m) restricted tom < n. From this, it
Thus, if Ry is representative independent aBg (U,v) easily follows thate? computesf over the family of stan-
holds, then for alk representing, there existy represent- qarg populations.
ing v such thaiR,,(x,y) holds. We say that/ stably com- The states irQ are ordered pair§i, j) of integers such
putesS,, if </ is always-convergent and representative indgyat 0< i < 2 and 0< j < 1. LetC be a configuration. We
pendent. In the special case tl_&‘g} is smgle—valued, We Say interpretC as a pair of integer@, g), wherer is the sum over
that< stably computes a partial functionG,, : Di — Do. gl agents of the first coordinate of the state, griglthe sum
In words, if 7 stably computeS§,,, thenS,,/(u,v) holds f the second coordinate.
iff for every representation af, there exists a computation e input map maps 1 to the statél,0) and O to the

of o starting from that representation that stabilizes to affate (0,0). The output magd maps statdi, j) to j. The

output representing Moreover, since every computation ok ansition function is defined as follows((1,0), (1,0)) =

o/ stabilizes, if.e/ starts with a representation of some gz’ 0),(0,0)), and ifi +k > 3 thens((i,0), (k,0)) = ((i +

D, the computation stabilizes to an output that represer&g 3,0),(0,1)). All other transitions are defined to leave the

somev € Do. WhenS,, is single-valued, the computationpair of states unchanged.

stabilizes to an output that represeis (u). By induction, one can show that @ is any reachable

configuration andr, q) is the integer pair represented By

DomainZX Integer input and output values are representéiienm= r + 3q. Initially, r = mandq= 0. Transitions of the

diffusely across the population rather than being stored ffirst type can accumulate two 1's to a 2 but do not change ei-

cally by individual agents. We describe two natural encodinigerr or g. Transitions of the second type redudey 3 and

conventions for vectors of integers. increasey by 1, leaving the quantity 4 3q invariant. Even-
The symbol-count input conventionassumes an arbi- tually, no more transitions of either type will be possible. At

trary input alphabeX = {o1,...,0k} and D, = NK. The this time,r < 2, in which case) = |m/3|, as desired. We

k-tuple represented by an assignmert 2" is E(Xx) = note that if the output map were changed to the identity (and

(ng,...,ny), wheren; is the number of agents to whioh the output alphabeY changed accordingly), this protocol

assignso;. Note that thek-tuple (ny,...,ny) is only repre- would compute the ordered pdin mod 3 |m/3]).

sentable in a population of sire= in;.

Similarly, the symbol-count output convention as- pomainx+ Strings inputs are represented diffusely across
sumes éan arbltr.ary output alphabét= {rl,...,w}_ and ihe population, with thei® input symbol being as-
Do = N" and definefo(y) = (my,...,m), wherem isthe gigned to thei agent. We assume an ordered agent
number of agents whose current outputiis setA = {a,...,ay} and an arbitrary input alphabet =

Theinteger-based input conventiorcan represer®(1) {o1,...,0k}. Thestring input convention definesD; = X*

integers with absolute values bounded®fy) in a popula- andE, (x) = x(ay) -... - X(an), wherex € 2.
tion of sizen and can represe@(1) integers of any size in

the family of standard populations. It assumes. Z¥ and
D, = ZX for somek. Thus, inputx € 2~ assigns &-tuple of
integersx(w) to each agentv. Thek-tuple represented by
is Ei(X) = SweaX(w), the sum across the population of al
assigned input tuples.

Note that ifX contains the zero vector-8 (0,0,...,0)
and each of the unit vectoes= (0,...,1,...,0), wheresg is

Predicates.A predicate can be regarded as a function whose
output is a truth value. Thell-agents predicate output
onvention assumesy = {0,1} and requiresevery agent

0 agree on the output. Formally, l@tw) = 0 and1(w) =

1 be constant output assignments 41, and letDg =
{false, true, L }. We define

0 in all coordinates except forand 1 ati, then all tuples in false if y=0
Nk for which the sum of the elements is boundedrbyan Eo(y) = ¢ true if y=1
be represented in a population of sizelf, in addition, X 1 otherwise

contains—eg for eachi, then all tuples irzk for which the
sum of the absolute values of the elements is bounded byhus, every output assignment in which the agents do not
can be so represented. agree represents.

6 Dana Angluin et al.

Let E; be an input encoding convention ovBy, and Proof Immediate from the fact thd (x) = ¥(ou1,...,0n),
let Eo be the all-agents predicate output convention. Weherex € .27, E, is the symbol-count input convention, and
say that protocoles’ stably computes a predicate orD; Xxrepresentss ... oy under the string input convention.O
if 7 stably computes a total functiog®,, : D; — Do and

G, (u) #.L for anyu € D;. Thus, every computation of/ In light of Corollary 3 and Lemma 4, we will often iden-
converges to an output in which all agents have the saffff¥ alanguage. with the predicaté” (L) when talking about
output value 0 or 1. population protocols over the family of standard populations

and talk loosely about being accepted under the symbol-

Example.The formal count-to-five protocol described” ountinput convention.

above stably computes the predicatexaf 2" that is true

iff xassigns 1 to at least 5 different agents. 3.6 Other predicate output conventions.

. i One might ask whether the class of stably computable predi-
3.5 Symmetry in standard populations cates onZ” changes if we adopt a weaker output convention.
For example, suppose we take= {0,1} as in the all-agents

All agents in standard populatiot?, are identical, so it predicate output convention, but we change the output en-
makes no difference to which agent each input symbol dgging function to

assigned. Under the all-agents predicate output convention,
it also makes no difference which agent produces which owt- (y) = false if y=0
put symbol since all agents are required to produce the sanie true otherwise
output.

Formally, a predicaté on 2" is invariant under agent

renaming if F(x) = F(xo) for every permutatiom onAy. Theorem 5 Let y be predicate onz” and & a population

of size n over the complete interaction graph. There exists
A protocol.«/ that stably computeg according to the all-
agents predicate output convention iff there exists a protocol
2 that stably computeg according to the zero/non-zero

Proof Suppose population protocef running in %, com- Predicate output convention.

EUte; prter?(l,ciitéii{éulietltnre?:tignpsetggrtfgorg ?J?;”d ab;d Proof The forward direction is immediate since the all-

Tﬁe(n%)is easilp showrr: thaR, (xo 7 Ony) SinEeG i ;;1 agents predicate output convention is more restrictive than
redicate undeyr the redicg‘[{e out 7L31/t coﬁvention yihe outﬂ&? zero/non-zero predicate output convention.

P P P ’ PULEor the converse, assumié stably computes accord-

,‘?hsast'g’:n;tegzésyaezgg(sj?%;uggmjg'Oiyi;li_%;;(txfggro)wj ing to the zero/non-zero predicate output conventic_)n. We
G.,(x) as desired PR construct a protocolzf_ that stably computey according
4 ' to the all-agents predicate output convention.
Intuitively, we wantes to simulateZ step by step. When

Language acceptancket y; be the characteristic function % stabilizes, all agents in7 should eventually choose out-
of L, thatis,y (o) =trueiff o € L. We say that# acceptsL put 0 if all agents inZ have chosen 0; otherwise, all agents
iff o7 stably computeg, under the string input convention.in .7 should eventually choose 1. The problem with this ap-

We say a language isymmetric if it is closed under proach is that there is no way for the agentszofto know
permuting the letters in a word. The following is immediat&hen % has stabilized. Hence, we need a subprotocol that
from Theorem 2: runs in parallel with the simulation of8 to monitor #’s

Corollary 3 Let L C £* be a language accepted by a popg;tpUtS and distribute the correct output bit to the agents of

ulation _protocol over the family of standard populations. 'The states of7 are triples(/, b,), whereq s a state of
Then L is symmetric. % and/ andb are single bits called “leader” and “output”,

All that matters for acceptance of symmetric languagé@sPectively. We call any agent with= 1 aleadet Initially
is the number of occurrences of each input symbolX et ¢ =1,0=0, andqis the agents initial state in protoce#.

{o1,...,04} ando € X*. TheParikh map ¥ takeso to the 1he output function mapg’, b, g) tob. . .
the vector(ny, ..., ny), wheren; is the number of times; When two agents interact, they update their state fields
oceurs inc [21]. according to protocol. The leader fields interact accord-

ing to the usual leader-election protocol, namely, when two
Lemma 4 Let L be a symmetric language over alphaBet leaders encounter each other, one remains a leader and the
of size k. Then L is accepted by population protogoliff other sets its leader bit to 0. Otherwise, the leader bits do
¥ (L) is stably computed by under the symbol-count inputnot change, with one exception: When a non-leader whose
convention. current output in protoca¥ is 1 encounters a leader whose

Call this thezero/non-zero predicate output convention

Theorem 2 Every predicate onZ" that is stably com-
putable by a population protocol running in standard pop
lation &7, is invariant under agent renaming.

Computation in Networks of Passively Mobile Finite-State Sensors 7

current output in protoca® is 0, the two agents swap leader % is the parallel composition of7 and %, together

bits. Finally, the output bib of a leader always follows its with a suitably chosen output function. L&, and Q

current output in protoca#s, that is, at the end of every en-be the states afy and 4, respectively. Lets’ have states

counter, the leader updatbsccordingly. A non-leader setsQy = Q. x Q4. The input function, mapss € X to state

its output bit to the output bit of the last leader that it erd/(s),1%(s)). The transition functiody is defined by

countered. Lo

This works because eventuali stabilizes to an output 9¢ ((P1, P2), (d1,d2)) = ((P1, P2), (01, %))

assignmeny and there is only a single leader. If one or morgere

agents stabilize to output 1 i, then leadership transfers to

one of those agents and does not change subsequently. 16al(p1,d1) = (p1,d1) and 8% (p2,q2) = (P5,dh)-

agents stabilize to output O i, then leadership also doe

not change subsequently. The leader’s output value is 1 o

depending on whether the output &f is greater than 0 or P

equal to 0. After the leadership and the leader’s output valgg. ((qy,) = £ (O, (1), O (a2)).

have stabilized, then every other agent assumes the correct

output value upon its next encounter with the leader and does We must show tha¥” stably computeg (F,G). Every

not change it thereafter. O fair execution of¢ projects onto a fair execution of (re-
spectively#) by erasing the second (respectively first) com-

Similar leader-based techniques can be used to show thatent of each state pair. Since every fair execution/of

other natural predicate output conventions are also equigid % converges, then also every fair executiorizoton-

lent to the all-agents convention, e.qg., representing false \@tges.

the integer 0 and true by the integer 1 (i.e., one agent has Now, suppose a fair execution @f stabilizes to output

output 1 and the others have output 0). assignmeny.. Lety,, andyy be the stable outputs of the

corresponding embedded computationso&nd. %, respec-

tively. Sinces and# both compute predicates according to

4 Computing predicates by population protocols the predicate output convention, then all agents agree on the
output in each embedded computation, gpdandy 4 each

In this section, we explore the predicates that are stably cor@present a truth valug,, andb, respectively. By the def-

putable by population protocols running in standard poj#ition of Oy, it follows thatyy represents the truth value

ulations using the predicate output convention. We co@{b.,,bz). Sinces stably compute§ and# stably com-

sider predicates with both the natural input convention aftitesG, it follows that%” stably computeg (F,G), as de-

also the integer input convention. We show that families &fred. g

predicates related to the well-studied family of Presburger-
definable predicates over the integers [22] are all stafgprollary 7 Any Boolean formula over stably computable

computable by population protocols. It is an open probleRiedicates with a common input set X is stably computable.
whether population protocols can compute more. We ¢
clude this section with a theorem that shows our results
not sensitive to reasonable changes in the conventions used
for representing the output of predicates.

Pe)e output function applie5 to the outputs of the two com-
onent protocols. That is,

?fréoof Immediate by repeated application of Lemma 60

4.2 Presburger definable predicates

Presburger arithmetic [22,10,9,15] is the first-order theory
of the integers under addition and less than. It is a rich but

We begin by showing that the family of population—deddable theory, enabling one to define predicates such as
rity and majority. In this section, we review the proper-

computable predicates is closed under the Boolean opdt& , i -
tionsF.) P P ties of Presburger arithmetic and the closely-related semilin-

ear sets. In the next section, we show that every predicate
Lemma 6 Let X be an input set, and lef Be an input en- definable in Presburger arithmetic is stably computable by
coding convention over domain DLet F and G be predi- population protocols.
cates over Pthat are stably computable by population pro- The usual definition of Presburger arithmetic consid-
tocols over X. Lef be any 2-place Boolean function. Ther¢rs a first-order logical language with one function sym-
the predicate’ (F,G) is stably computable by a populationPol “+", constants “0” and “1”, predicate symbols=" and
protocol with input set X. “ w

4.1 Boolean closure of population predicates

<”, the usual logical operators oi\”, “ V", and “=", vari-

ablesxy, Xz, ..., and quantifiersV” and “3”. Formulas are
Proof Let &7 stably computd= and % stably computeG. interpreted with quantifiers ranging over the integess. is
We assume that7 and % have the same input s&t We usual integer addition. “0” and “1” have their usual mean-
construct a population protoc®f, also with input seX, to ings as integers.=” and “<” are interpreted as the integer
stably computé (F,G). relations of equality and less than.

8 Dana Angluin et al.

Aformulaé(xy,..., %) with free variablesy, ..., x, de- which the only quantifiers appear in subformulas express-
fines a predicateF, : 7Z¥ — {0,1} as follows: For inte- ing =m. While he does not explicitly consider either our ex-
gersuy, ..., Uy, Fo(uy,....u) = 1if ¢(xa,...,X) evaluates tended language or predicates definable by open formulas,
to true whenxy,..., X, are interpreted asy, ..., Uy, respec- his methods would seem to easily extend to our case.
tively, andFy (ug, ..., ux) = 0 otherwise. It is unclear where our form of Theorem 10 first ap-

The predicates definable in Presburger arithmetic grears, although it is well known in the folklore. This result
closely related to the semilinear sets. A ket NK is lin- was mentioned in Ginsburg and Spanier [10] and probably
ear if there are vectorsg, vi, . . .,Vm € NK such that elsewhere. Kracht presents a proof [15] that he attributes to
Monk [19]. ad
LZ{V0+K1V1+...—|-K‘me ‘ K‘]_,...,K'mEN}.
A set issemilinearif it is the finite union of linear sets. Example.We now return to the question raised at the end of

)) ~ Section 1 of whether at least 5% of the birds in the flock have
Theorem 8 (Ginsburg and Spanier) A subset ofN* is glevated temperatures. Using the symbol-count input con-
semilinear iff it is definable in Presburger arithmetic. vention, the sensors in the flock encode a pairx;), where
is the number of birds with normal temperatures and
he number of birds with elevated temperatures. The ques-
tion we wish to answer is whethry > 0.05(Xp+x1). This is

Although Presburger arithmetic seems to talk only abo@sSily seen to be equivalent to the predicate; 20xo + Xi.
addition, the use of quantifiers allows some predicates #Will follow from Theorem 12 that this predicate is stably
volving multiplication and division to be defined. Letbe Ccomputable.

a constant, and let, be the 2-place predicate such that
X =mY holds iff x=y (modm). This can be defined by a
formula&m(x,y) as follows. For any variable or constamt
let mq be the expression that adds togethrecopies ofq,
i.e.,mg= q+qg+...+q. Then

N—————

Proof This was proved originally by Ginsburg and Spanielxgot
[10]. Kracht gives a more recent simplified proof [15]. O

4.3 Computing Presburger predicates by population
protocols

In this section, we show that every Presburger-definable

mtimes predicate is stably computable by a population protocol us-
df ing the integer input encoding convention. We first show that
Em(x,y) =3Zq((x+z=y) Amq=2). all Presburger definable predicates under the symbol-count

input convention are stably computable. We then use this re-

integersq andz exist exactly wherx =y (modm), as de- sult to show the computability of all Presburger definable
sired. ' predicates under the integer input convention.

An extensionof an interpreted first-order theory result$ emnma 11 Let X = {o1,..., 0k} be an arbitrary input al-
from augmenting the theory with new predicates and ngyiahet. Let g ¢, and m be integer constants with m
symbols to denote them. An extension that does not changernen the following predicates on non-negative integers
the class of definable predicates is calethservative Let X1,...,% are stably computable in the family of standard

extended Presburger arithmeticresult from augmenting honjations under the symbol-count input convention:
Presburger arithmetic with relation symbats, denoting
equivalence modulm, form> 2. 1. iax <c.

2. Yiax =c (modm).

Lemma 9 Extended Presburger arithmetic is a conserva- . . .
tive extension of Presburger arithmetic. Proof We define population protocols for computing the

two predicates as follows. Let= max(|c|+ 1,m,max |ai|),
Proof Immediate from the fact thdy, defines=n,. O wheremis taken to be O for the threshold protocol. In both
protocols, the state spac€gis the sef{0,1} x {0,1} x {u e

Our definition of§m makes essential use of quantifiersz . —s< u < s}, and the input function mapsa; € X to
Rather surprisingly, once we augment Presburger arithmetico, a;). The first bit in each state is a “leader bit” that
with =n, quantifiers are no longer needed. is used to elect a unique leader who collects the value of
the linear combination. The second bit is an output bit that
records for each agent the output value computed by the last
&&ader it encountered. The third field is a “count” field used
to accumulate the linear combination of tkeon the left-

Proof Presburger, in his original 1929 paper [22], showand side. The output m&psimply maps(-,b, -) tob.
the decidability of closed formulas of Presburger arithmetic W& now give the transition rules for the two protocols
without the “<” operator. His proof method is to transform@nd Prove their correctness. We start with the threshold pro-

any closed formuthinto an easily-decided normal form intocol, as the analysis is more involved; we then argue the
correctness of the remainder protocol by analogy with the

4 A closed formula is one with no free variables. argument of the threshold protocol.

Em(x,y) is satisfied only whem =y — x andq = z/m. Such

Theorem 10 (Presburger) Every definable predicate of
Presburger arithmetic can be defined in the extended |
guage by a quantifier-free formula.

Computation in Networks of Passively Mobile Finite-State Sensors 9

For any integersi, U’ with —s < u,u’ < s, define reducesp, and no transition increasgs We let¢ continue
p . , to be the identity of the leader.
q(u,u) = max(—s,min(s,u+u)) Supposey, = s, and there is somg# ¢ for whichu; < 0;
and then an encounter betweénand j sets the count field of
the initiator (which becomes the leader)de-u; and sets
r(uu) =u+u —q(u,u). the count field of the responder to 0. This redugeby

—u;j > 0. If, on the other hand, = —s and there is some
j # ¢ for whichu; > 0, then an encounter betweémand j
again sets the count field of the responder to 0, reduping
If —s< u, < sand there is somg¢# ¢ with uj # 0, then in
an encounter betweehand j either (a)uj > 0, the initia-

Observe that bothg(u,u’) and r(u,u’) lie in the range
[—s...g and thatg(u,u’) +r(u,u’) = u+U'. Letb(u,u’) be
1if g(u,u’) < cand 0 otherwise.

The transition rule is given by the formula

(0,-,u), (¢) — tor's count becomes miny + uj,s) = U + min(uj,s— u),
and p drops by mirjuj,s—u) > 0; or (b) in the symmet-
(1,b(u,u'),q(u,u)), (0,b(u,u),r(u,u’)) ric caseu; < 0, p drops by mirf—uj,s+uj) > 0. So in any

configuration with a single leader that is not stable, there ex-
if at least one of or /' is 1. If both/ and /' are zero, the ists a transition that reducgs by fairness, a transition that
encounter has no effect. reduces eventually occurs.

Informally, the initiator becomes a leader if either agent |t remains to show that other transitions will not increase
was a leader before the transition; the transition assignsg@ashe remaining possible transitions are (a) those between
much of the sum ofi andu’ to the initiator as possible, with two non-leaders, which are no-ops and thus do not affect
the remained assigned to the responder. The output bitgtsf those that involve a leadémwith u, = s and an agent
both agents are set to 1 if and only if the part of the suwith u; > 0, which do not change because in such cases
assigned to the initiator is less thanWe now show that the initiator becomes a leader with couis, u;) = sand the
all output values converge to the truth valgg aix; < ¢) by responder receivess, u;j) = u;; and (c) those that involve a
proving a sequence of claims about any fair execution. leader/ with u, = —sand an agen with u; < 0, which are

symmetric to the previous case. These last two cases also
The protocol converges to a single lead®efine A(C) to demonstrate that once a stable configuration with a unique
be the set of agents whose leader bit equals 1 in configader/ with |u,| = sis reached, the value held by the leader
urationC. Then|A(Co)| = n. Any encounter between twodoes not change. For a stable configuration Jith< s, the
leaders reducels\ (C)| by one, and no encounter increaseféict thatp = 0 implies that the leader never encounters a
|A(C)|. By the fairness condition, if there are two leader§ionzero count in another agent, so again the leader’s value
they eventually meet. It follows that after finitely many step3ever changes.
|A(C)| = 1. Sincep is non-negative, bounded, never rises, and even-
tually falls in any non-stable configuration with a unique
The single leader's value converges oax —s,min(s, leader, it follpws that the protoc_ol eventually converges to
sia%)). For each agentletuj(C) be the value of its count & stable configuration once a unique leader exists.
field in configurationC. From the definition of the input
mappingl, we havey;u;j(Co) = Jjax, whereC is the Convergence of the output fields to the correct valuea
initial configuration. Because the transition rule preservetable configuration, iff;ax < c, then the leader’s count
the sum of the count fields of the two participating agents; is eithery; ajx; or —s < c. In either casé(u, + u;) gives
¥ jUj(C) continues to equégf;aix throughout the computa- the correct output, and any encounter between a leader and

tion. another agent sets the output fields of both agents to 1. No
For a given configuratiol, defineA(C) as above to other transition sets the output field of any agent to 0, and
be the set of agents that are leaders, and defi@ = by fairness the leader eventually encounters all other agents;

Y jza(c)uj(C)|. For notational simplicity, and when theit follows that after some finite interval, all agents output 1.
meaning is clear, we will writg instead ofp(C) andu; in- Alternatively, if 3;ax > c, then the leader's coun is ei-
stead ofu;(C). Call a configuratiorC stable if there is a thery;aix ors;in either case encounters between the leader

unique leadef and one of the following conditions holds: and another agent sets both agents’ outputs to 0, and again
all agents eventually converge, this time to 0. This completes

1. p=0.) the the proof of correctness for the threshold protocol.
2. u =s, andu; > Oforall j 7 £. We now turn to the remainder protocol. Here the transi-
3. U= —s,anduj <Oforall j # . tion rule is given by the formula

By checking the three cases, it is not hard to see that ina. 'y /
stable configurationy, = max(—s, min(s, ¥; aix)). 1), (¢ u) = (Lb, (u) modm), (0.,0),

We will now show that the protocol converges to a stable at least one of? or ¢ is 1, whereb is 1 if u+u =c¢
configuration by showing that from any configuration witimodm) and O otherwise. If botlf and¢’' are zero, the en-
a unique leader that is not stable, there is a transition tlwatunter has no effect.

10 Dana Angluin et al.

Repeating the argument for the threshold algorithm, viRroof Let ®(ys,...,yk) be a Presburger-definable predicate
immediately see that the protocol eventually converges t@a ZK. We will convert & to a new Presburger-definable
single leader. Inspection of the transition rule reveals thatedicate over free variables, where each variable,
(¥ju;j(C)) modmis invariant throughout the protocol, anctounts the occurrence of specific tokens representing each
that any non-leader has count 0. It follows that when a singtevectorv = (vy,Vvy, ..., V) in X.
leader exists, its count field is exactly ; u;(Co)) modm = Recall that in the integer-based input convention, each
(Siax) modm. Further encounters between the single rgr is the sum over all agents of theh vector coordinate.
maining leader and other agents eventually set all outfddéfine

fields toy;ax = c (modm), as claimed. O K
Theorem 12 Any Presburger-definable predicate on non® =31, Yk @(V1,- -, k) /_/\ (yi = Z(ViXV> :
negative integers is stably computable in the family of stan- =1 ve

dard populations under the symbol-count input conventiombserve that the valuesin each sum are constants, so that
@' is a formula in Presburger arithmetic, which is stably
computable on the standard population by Theorem 12. Ob-
serve further thatd’ is true if and only if® is satisfied by

a set of valueyy, ..., Yk that are equal to the integer values
Bﬁen by the integer-based input convention. It follows that

Proof Given a Presburger formuld, apply Theorem 10 to
convert it to a quantifier-free formul@’ over the extended
language described in Section 4.2. This form@awill be

a Boolean formula over predicates that can be written in o
of the following three forms:

@ is stably computable. a
Yax+c < Hhbixtc 1)
Zaixi +c = zbixi +c) Example.Consider the Presburger predicate
> axi+cp =m) bixi+cp 3 D(yny2) L (y1—2y,=0 (mod 3).

If we can show that each such predicate is stably comet
putable, thend’ is stably computable by Corollary 7.
By rearranging terms, predicates of the form (1) invohX = {(0,0),(1,0),(=1,0),(0,1),(0,-1)}
ing inequalities can be rewritten as be an input alphabet. The related predicate
> dixi <c,
where eaclt; = g — by andc = ¢ — ¢1; such predicates can
be stably computed by the first case of Lemma 11.
Predicates of the form (2) involving equality can be re- A Y2 =X01) = X0,-1))
placed by the AND of a pair of predicates:

@ L 3y v, (y1—2y,=0 (mod 3
AY1=X1,0) — X(-1,0)

has five free variables,,,), one for eactfu,v) € X. Let Ejnt

daxi+c <y bix+ca+1 be the integer input convention a&f be the symbol-count
2 ax o > Z bix +Cp — 1 input convention on the same sétlt is easily verified that

These two predicates can then be stably computed by thEE>C(x)) = ®(E™(x))
first case of Lemma 11 and their AND can be stably co
puted by Lemma 6.

Predicates of the form (3) can be rewritten as

Yor everyx ¢ 2.

Corollary 14 A symmetric language € X* is accepted by
Zdixi =m ¢, a population protocol if its image under the Parikh map is a

wherec and thed; are defined as in the first case: suchémilinear set.
predicates can be stably computed by the second cas

f . . .
Lemma 11. O PRof Let L C X* be a symmetric language whose image

under the Parikh mal is a semilinear set. From Theo-

Theorem 12 places strong restrictions on the inpdem8,¥(L)is dgfinable in Presburger arithmetic. From The-
and it would appear that it would only permit computin@rem 12, there is a protocaf to stably computé (L) under
Presburger-definable predicates on non-negative values tAgtsymbol-count input convention. From Lemmaz4,ac-
sum to less than. However, it is possible to extend the receptsL. O
sult of Theorem 12 to the integer-based input convention by
building a translator for the integer-based input convention
into the Presburger formula itself. The result is: 4.4 Predicates not stably computable

Corollary 13 Any Presburger-definable predicate @i is Theorem 12 gives a partial characterization of the stably
stably computable in the standard populatiot, with the computable predicates in the population model with all pairs
integer-based input convention. enabled. We do not know if this characterization is complete.

Computation in Networks of Passively Mobile Finite-State Sensors 11

However, we can obtain an upper bound on the set of pred- We present the proof in the following sections. First, we

icates stably computable in this model by showing that it @nstruct the simulator?’. Next, we relate the reachable

contained in the complexity cladi.. configurations ine7 to the reachable configurations.int’.
Because stably computable predicates in this model &ke then conclude that’ correctly computeg.

symmetric, it is sufficient to represent a population configu-

ration by the multiset of states assigned to the agents. Silafi

there arelQ| possible states and the population consists atnis at least 4; we will need this assumption to avoid get-

n agents, each population configuration can thu§ be rep{iﬁ’g our agents tangled. The case wheke4 can be handled
sented byQ| counters oflogn] bits each. A population pro- by a parallel simulation that collects up to three input val-

tocol step can be simulated by drawing two elements fro s together, computes the resulting output by table lookup,

mg ggg;iﬁt :ﬁggg%éﬁ?sttrg?ﬁg'?nnurtlijsrg'on and returnlngnd overrides the output of the main simulation if it (stably)
9 ’ computes that is indeed less than 4.

Suppose there is a population protocel that stably The computation ok7 is simulated using one agent in

computes a predicaté in the family of standard popula- P .

. . ; o to hold the state of each agentif,. Simulated agents

where we ntepreL a tringoflengthn a6 an element o, TIGrate fom agent o agent i this allows any two i
P g 9 ' ult’:\ted agents to interact infinitely often. The key idea is

We describe a nondeterministic Turing machine to acCedlhave any interaction iry’ choose nondeterministically

Lr in spa_ceO(Iogn). To accgpt inpug, the Turing machine between swapping the states of the two interacting agents
must verify two conditions: that there is a configuration r simulating an interaction in7: most of the details of

{ﬁgf:%brl]% fcrgrr:;i(xgrgntiovéhIf:agu:glagefrso?gﬁ v(\)/ﬁitgr?tsé’m?en he simulation involve implementing this hondeterministic
9 .choice with deterministic transitions. To do so, the state

state has output 0. The first condition is verified by guessiig. o 1 is augmented to add two “batonss, (for the

and checking a polynomial-length sequence of multiset rez; 1y 2 4R (for responder) which move somewhat inde-
resentations of population configurations reaching such a

The second condition is the complement of a similar reactfeindently ofthe simulated agents. The presence or not of the
o " o pleme {tio batons is used to control what effect an interaction has:
bility condition. It is in nondeterministi©(logn) space be-

cause this class is closed under complement [13]. It follo 2R interaction that involves no batons swaps the states; an
P : ifteraction that involves one baton moves the baton; and an

struction ofe’. First assume without loss of generality

that: interaction that involves both batons simulates a transition in
Theorem 15 All predicates stably computable in the modet”'.
with all pairs enabled are in the class NL. Formally, lete have input alphabeX, output alphabet

. . Y, state spac®, input functionl, output functionO, and
Itis an open problem to characterize exactly the powerf?gnsition functions. DefineQ = Q x {D,SR —} where
this model of stable computation. Concretely, we conjectug® f PN

that predicat h ; f 2 and % — _ _i_s a default initial state of the baton fiel& marks the

’a predicates Such ax Is a power of 2= and 2= Xx_ jnitiator haton,R marks the responder baton, andnarks a
y’ are not stably computable by pOpu|6.1t.I0n protocols. Oupjank” or absent baton. To avoid a profusion of parentheses
intuttion Is that t_he mode| lacks the ability to SEQUENCE Qq \yill write ordered pairs i)’ using simple concatenation
iterate computations, and we suspect that a pumping Iemga_,qD for (g,D). The transition functiors’ is shown in '
of some form exists for the mode. Figure 1. Finally, defin¢’(X) =1 (X)D andO’'(gB) = O(q).
Let <7’ be the population protocdX,Y,Q’,1’,0',d").

Group (a) transitions consume all initil batons, pro-

ducing at least on& and at least on® baton; group (b)
eventually reduces the set of non-blank batons to exactly

Some interaction graphs may permit very powerful COMPYhesand oneR. The remaining groups implement (c) baton

B e rement (0 st siaghing,and €rarsions Not
grap Y t group (e) transitions also swap batons; this is done to

a linear-space Turing machine. In this section, we prove thé1 bw S andR batons to pass each other in narrow graphs

the complete interaction graph we have been assuming b " he necessary to bring duplicates together in the
until now is in a sense theeakesstructure for stably com- initial stage

puting predicates, in that any predicate that is stably com- Note that the group of an'-transition can be uniguely

putablg in a complete interactiqn grap'h can also be “Oentified by looking at the changes to the baton fields. If the
puted in any weakly-connected interaction graph. number ofD batons decreases, it is group (a). If the number
Theorem 16 For any population protocaks, there exists a of Sor R batons decreases, it is group (b). If exactly éhe
population protocole?’ such that for every n, ifZ stably or Smoves from one agent to another, it is group (c). If the
computes predicater on the standard populatio®?,, and batons don’t change, it is group (d). If @&andR switch

if &' is any population with agents 1,2,...,n and a weaklplaces, it is group (e).

connected interaction graph, thex’ stably computeg on We now make precise the sense in whigh“simulates”

K /. A simulateds/-configurationC is obtained by ignoring

5 Computation with restricted interactions

12 Dana Angluin et al.

Group (8): (xD,yD) +— (xSYR) Lemma 18 Let C be final ine’. Then Cis clean.
XD7 = X—, . .
EX*,;Sg - EX*vyng Proof By Lemma 17, there is a clean configuratidireach-
able fromC'. SinceC' is final, then so i©’, andC’ is reach-
Group (b): (xSy§ — (xSy-) able fromD’. No .2’-transition takes a clean configuration
(xRYyR) — (XRy-) to an unclean one; hendg, is also clean. |
Group (c): ((;(3,5:3 - Ei:i% Lemma 19 LetC=C’, where C is reachable in7 and C is
’ reachable ine’. Suppose € D’ in «7’. Then C5 D and
Group (d): (Xx—.y—) < (y—%) D = D' for someg-configuration D.
Group (e): (xSyR) +~— (XRYS) Proof Proof is by induction on the lengthof the execution
YRx§ — (YSXR) c 5D,

Key: xandy range over all states @ Base case: Ik =0, it suffices to tak® = C.
" represents any no-baton. Inductive case: Suppose the Iemrr_\a hoIdskferl. Let
X,y) = 8(x.y). C'=Cj—C; — ... —C =D’ By the induction hypothe-
sis, there exist€§y_; such thaC = C,_; andCy_1 = Gy If
Fig. 1 Transition functiond’ for simulator in proof of Theorem 16. C,_; — C, is a transition in groups (a)-(d), th&@} , = C,
so we choos&€ = C¢ 1. If it belongs to group (e), then
p(C,_,) — p(Cy) is ane/-transition by construction. Let

both the batons and agent order in.aft-configurationC’. e the agent permutation such tfat, = 7(p(C._,)). De-
Let p(C') be the configuratio€ obtained fronC’ by eras- k-1

: : - fineCc = n(p(C))). Itis easily seen that = C,_; — Cc and
ing the second component of each agent’s stat jirthat k :

is, for all a € A, if C'(a) = pB, thenC(a) = p. Let 7 be Cx EC{_(. Hence, the Iem_ma holds ferby choosingD = Cy
a permutation of agents. For any.< or .<7’-configuration By induction, the claim holds for aK. 0

Cy, letn(Cy) = Cp, whereCy(n(a)) = Cu(a). SayCis aQ- | emma 20 Let C be a reachable clean configuration.of.
restriction of C' if there is a permutatiom of the agent®\ | ¢t C be a reachable configuration @f such that C= C'.

such thatt(p(C’)) = C; in other words, th&) components . . . " P
of theC’ states equal th@ states modulo reordering the pop-ir?gr[’)cﬁe[)(,:%? S;Smlf;,)_ssc')?#?g{”gggﬁ%on' Then C— D

ulation members. _

Call two configuration€ andC of <7 equivalent, writ- (uv) .
tenC =C, if C = x(C) for some permutation of the agents. PrOOf_S”pEOSEE de'a, er,‘c‘iugte'e N (\K/’V)' Suppgse
For convenience, we extend the definition of equivalengéu) =P, C(v) = q, and(p'.¢) = 6(p,q). We proceed to

/
to the union of</- and «7’-configurations. IfC is an /- constru_ctD Co
configuration and’ is an.</’-configuration, then le€ = C’ Begin by fixing a spanning tree in the interaction graph
if C is a Q-restriction ofC’, and close= ur,lder reflexivity of 92’. We restrict attention to encounters described by edges

g . . : / /- inthe spanning tree. Statpsandq are the state components
ﬁ);[]nerp]eicgﬁé\?vr;dt;r:gsnzlvgy.ifl?o:;{(cci())r;‘lglzcr:e;t)l'()nﬁl andc, of two distinct nodes irC’. Similarly, batonsS andR lie
1 2 in two distinct nodes. We describe a sequence of transitions
whose effect will be to move stafeand batorR along span-
ning tree edges to some nodeand to similarly move state

Lemma 17 Let C be any configuration of#’ reachable 9and batorSto some node’, whereu’ andv are the end-

from an initial configuration ¢. Then C = D’ for some points of some edge. .
clean configuration D Using a sequence of group (c) transitions, move $he

andR batons to distinct leaves of the spanning tree J.&e
Proof EitherC' = Cy or C' contains at least or@baton and the leaf now c/ontaining ba/tcta and Iet\/_ be some adjacent
at least on& baton. This is because the only transitions thAde- Thus{u’,V) or (V,u) (or both) is an edge; choose
can be applied t€ change twd batons into arBand an ©N€ and call ie. Usmg a sequence of group (d) transitions,
R, respectively, and no subsequent transition can remove fAgVe Statep to nodeu’ and move state to nodev'. Using a
lastSor the lasR. sequence of group (c) transitions, move balt_um nodev'.
Starting fromC’, apply group (a) transitions @ to re- Finally, apply a group (e) transition ®to obtainD’. . .
move allD batons. If there are two or mo&batons, apply We have thus construected a sequence of configurations
group (c) and group (€) transitions to bring them to adjac€at=Cp =C1 =... =C;_; — G =D'. Itis easily seen th&
nodes, and apply a group (b) transition to eliminate one. Re-aQ-restriction ofC,_, via some permutation that maps
peat until only onéSbaton remains. In a similar way, repeate/ to u andV to v. SinceD’ is identical toC,_, except for
edly eliminateR batons until only one remains. LBt be the the states of/ andV/, and the simulated state components
resulting configuratiorD’ contains exactly on8and oneR of u’ andV' have been replaced ky andq, respectively, it
baton and n® batons, as desired. O follows thatD is aQ-restriction ofD’.]

uyv
—

Call an .«”’-configurationclean if it has exactly oneS
and oneR baton and n® batons.

Computation in Networks of Passively Mobile Finite-State Sensors 13

Lemma 21 Let C=C/, where C and Care reachable con- Let us add a probabilistic assumption on how the next
figurations of«” and.<”’, respectively, and Qs final in.«7’. pair to interact is chosen. Many assumptions would be rea-
Then Cis final ine. sonable to study. We consider one of the simplest: the or-

dered pair to interact is chosen at random, independently and

Proof LetG(«7’, 27') be the transition graph 6#’ and %', uniformly from all ordered pairs corresponding to edges in
and let.”’ be the final strongly connected component afe interaction graph. When the interaction graph is com-
G(«/',2') that containg’. Let.# be the set of all reach- plete, this is the model afonjugating automata, inspired
able.s7-configuration® such thaD = D’ for someD’ € .. by models introduced by Diamadi and Fischer to study the
Hence,C € .. We now show that” is a union of final acquisition and propagation of knowledge about trustworthi-
strongly connected components@fes, #y). ness in populations of interacting agents [5].

It suffices to show that i€; € .7 andC; — Cy, thenC, € Random pairing is sufficient to guarantee fairness with
.7 andC, = C;. By definition of., there exist<C; € ./ Probability 1, so any protocol that stably computes a predi-
such thaC} = C;. By Lemma 18, sinc€] is final, thenC] ~categin afair model computegwith probability 1 on every
is clean. By repeated application of Lemma 20, there exig@ut in the corresponding random-pairing model, assuming

!, = C, such thatC; = C,. Since.””” is final, thenC, ¢ both run on the same 'p'opulation. .
2 2 > 172 % However, probabilities also allow us to consider prob-

& andC; — Cy. By Lemma 19C, — Gy andCy = C; for jog where we only compute the correct answer with high
some.-configurationCy. If C; = Cy, we are*d@e. If ot probability, or to describe the expected number of interac-
we have established th@{ = C; = C, andCy, — Cy. Hence tions until a protocol converges. Given a functibmapping
C1 = n(Cy) for some agent permutation, soC; — 7(C;). 2 to %, a population protocal7, and an inpuk, we define

From this, it follows that the probability thate# computesf on inputx to be the prob-
‘ .k ability of all computations beginning with(x) that stabilize
m°(C1) — m°(7(Cy)), with output f (x).
. . , For example, for the (momh) protocol, we can compute
k h k _
where z* is the k" iterate of z, that is, 7(C1) = poth the expected number of interactions in a computation
n(m(...7(Cq1)...)) ktimes. Hence, until there is just one leader and the expected number of fur-

ther interactions until every member of the population has
interacted with the unique leader.

The time (meaning the number of interactions) to get a
single leader is equal to the sum of the times until two lead-

C1 5 (Cy) 5 n(n(Cr)) = ... 5 aK(Cy),

For somekg, 7k is the identity function, so in particular,

CL= n(Cy) 5 ﬂko(cl) —Cy. ers meet witm, n—1, ... leaders; this is
n n
HenceC, = Cy, as desired. O ;(IZ) = (n—1)>2
=10

We now complete the proof of Theorem 16.))) . _
Once there is a unique leader, it must participate in

Proof We must ShOW that every Computationﬁf on input @(n|0g n) Intel’aCtIOI’IS on averag.e be'fore |t _enCOuntQI’S .EV—
x stabilizes toy(x). Let Z/ be a computation of7’ on input €ry other member of the population (immediate application
x. LetC’ occur infinitely often inz’. By Lemma 1’ is final. Of the Coupon Collector Problem). But since the leader par-
By Lemma 19C' = C for some reachable configuratigrof ~ ticipates in only(n—1)/(3) = 2/n of the interactions, this
<. By Lemma 21C s final in.<Z. Lety = yc be the output translates into a total ab (nlogn) interactions in the full
determined byC. Since.<# computes a predicate, thgris population.
the constant assignme@tor 1, andy is correct fory. The Summing these two bounds, the expected total number
output determined b@’ is some permutation of, but since of interactions until the output is correct &(n?logn). In
yis the constant function, all permutationsycdre identical. general, we are interested in protocols that accomplish their
Hence, the output determined BYis y, which is correct. tasks in an expected number of interactions polynomial in
We conclude that?’ stably computeg. 0 the population size.
Generalizing this argument to the constructions of
Lemma 11, Theorem 12, and Corollary 13, we obtain the
following:

6 Computation with randomized interactions:

conjugating automata Theorem 22 Let y be a Presburger definable predicate.
u e Then there is a conjugating automaton (randomized popu-
Stability” is probably not a strong enough guarantee fQgtion protocol) that computes with probability 1, where

most practical situations, but it is the best we can offer givefle nopulation converges to the correct answer in expected
only the fairness condition. To make stronger guarantees, we

must put some additional Cons_traints on the interactions be- Note that such protocols do not terminate with a final answer; they
tween members of the population. remain capable of resuming indefinitely.

14 Dana Angluin et al.

total number of interactions @&,n?logn), where k, is a 6.1 The benefits of a leader
constant depending og.

Given a leader agent, it is possible to simulate a counter

Proof Observe that the construction used in Theorem 12 iggachine with a finite-state controller (whose state is stored
volves (a) electing a unique leader, followed by (b) cOmy the |eader) and increment, decrement, and zero-test op-
puting in parallel zero or more base predicates of the foriations, where the zero-test operation succeeds with high
Y ax <coryax =c (modm); and (c) combining the re- ,ohapility (Theorem 24). Using an initial leader election
sults of these base computations according to the formiiyiocol and a standard reduction from Turing machines to
and distributing the results to all agents. _ counter machines due to Minsky [18], we can show that a
We have already observed that Stepz(a) t@EE) ime. i gating automata can thus simulate logspace Turing ma-
We will now show that step (b) takes(n“logn) time. We chines on inputs given in unary (Theorem 25).
have already shown that computing a single sum (mmpd

takesO(n?logn) time, as the leader just needs to encounter) .
each other agent once. Simulating counterdf we are allowed to designate a leader

For the threshold predicate, the situation is slightly mo#8 the input configuration, that is, one agent that starts in
complicated; it is possible that some encounters between ghélistinguished state, then the leader can organize the rest
leader and another agent will not make progress, becausehte population to simulate a counter machine viti)
leader is already “maxed out” and cannot collect any valuggunters of capacit(n), with high probability. We assume
from the other agent. Defime_ as the number of agents carthroughout this section that the interaction graph is com-
rying negative values anm, as the number of agents carryplete-

ing positive values. Then in any configuration with a unique We use the representation described in Section 3.4 for
leader, integers in arithmetic computations. For a simulatiorkof

. . " counters in which countercan take on a maximum value of

1. Ifthe leader’s count is non-positive and the other agents$, each state is mapped t&duple of nonnegative integers
count is positive, then, drops by one. in [0...cq] x --- x [0...¢J. The sum of componeritover

2. Ifthe leader's count is non-negative and the other agenty, nopulation gives the current contents of couitéhie
count is negative, them. drops by one. assume that the inputs to the counter machine are supplied in
Now consider the length of the interval starting fronglesignated counters and the leader simulates the finite-state

some configuration until eithen_ or n, drops. If the control of the counter machine.

leader’s count is positive, them_ drops after an expected To decrement counteéythe leader waits to encounter an

O(n?/n_) interactions. If the leader’s count is negative, theagent with componerit of its state greater than zero, and

n, drops after an expecte@(n?/n.) interactions. In either decrements it. Incrementing countes similar; component

case, there is at most one interval in which the leader’s coumiaust be less than its maximum valoe These operations

has the appropriate sign for each distinct value.obrn,, Wwill happen with probability 1, assuming that they are pos-

and its expected length is at ma®tn?/n_) or O(n?/n,), sible. However, testing counteérfor zero is different; the

depending again on the sign of the leader’s count. Summilegder must attempt to decide whether there are any agents

all such intervals for botim_ andn, gives a total expected with component greater than zero. We give a method that is

time bounded by correct with high probability. It is the ability to make (pos-
sibly incorrect) decisions that enables effective sequencing
"2 " 2 and iteration of computations in this model
Oo(n“/n_ Oo(n“/n S ’ .
n,z=1 (n/)+n+z=1 (m/n.) The leader initially labels one other agent (the timer)

with a special mark. The leader waits for one of two events:
= O(nan) = O(nzlog n). (1) an interaction with an agent with a nonzero component
or (2)k consecutive interactions with the timer. If an event of
This establishes that a single instance of the threshold prggbe (1) occurs first, then the simulated counter is certainly
icate can also be computed@{n®logn) time. not zero. Event (2) has low probability, so if it occurs first,
To show that all the base predicates running in parahe probability is high that the leader has encountered ev-
lel take O(n?logn) time, letT;, i = 1...k be the time for ery other agent in the meantime, so the leader may conclude
the i-th such predicate, wherle is the (finite) number of (with a small probability of error) that the value of simulated
such predicates. Thetimax Ti] < E[y; Ti] = O(kr?logn) = counteri is zero. The parametércontrols the probability of
O(r?logn). error, at the expense of increasing the expected number of
Finally, step (c) requires that the leader encounter evefteractions.
other agent at least once, which we have already shown takesthe probability that the leader prematurely concludes
O(n?logn) time. Thus the total time for the Theorem 12 conthat there are no tokens of a particular type depends on the
struction isO(nlogn). That the same asymptotic expecteumber of such tokens. We can model this game as an urn
time bound applies to Corollary 13 follows from the fact thadrocess, where at each step (corresponding to some interac-
the proof of the corollary just constructs a new constant-siggn between the leader and one of the 1 other tokens), a
Presburger formula and applies Theorem 12toit. O token is drawn from the urn, examined, and replaced. If the

Computation in Networks of Passively Mobile Finite-State Sensors 15

token is one ofmcounter tokens, the leadeins it correctly N-K(N—1)
determines that there is at least one counter token in the urn.” m+N-%(N —1—m)
If the token is an unmarked token or a timer token, the leader N_1

replaces it and continues to draw. The leddsesifitdraws = —— .
) : . . MN<4+(N—1—m)
k timer tokens in a row without drawing any other token.

For simplicity, we writeN = n— 1 for the size of the For the upper bound, observe that
urn in this process. We also assume that the timer token is N_1 N 1
distinct from all the counter tokens, although later we will - < = -
allow the agent carrying the timer token to also carry pafN‘-+(N—1—m) = mN¢ mN<

ken, then the probability of seeing the timer token befokgjs state we first draw the timer token zero or more times,

a counter token drops to zero, and the expected numbeggfowed by a non-timer token. The expected number of such
steps until the first counter token is drawn when therenareqgraws until we get the first non-timer (without any condi-

counter tokens is exactly/m. _ tioning) is i, and conditioning on not drawing the timer
However, in the case where the timer token and counigfimes in a row can only reduce this value. Having drawn a
tokens are distinct, we have: non-timer, the probability that it is a counter token is again

mN%; if it is not, we start over from the beginning.

Lemma 23 With an urn containing N tokens, of which Letting T be the expected number of draws, we have:

are counter tokens antla timer token:

1. The probability of drawing the timer token k times in g - (N > + <N -1- m) T
row before drawing a counter token is exactly “AN-1 N-—1

N—-1 ol Solving forT gives
K “1-m = mNe1°
MmN+ (N—1—m) — mN N/(N—1)

2. Conditioned on not drawing the timer token k times inh = 1-(N—1-m)/(N—1)
row before drawing a counter token, and provided-r@, N N
the expected number of draws up to and including the= = —.
first draw of a counter token is less than or equal taiN (N-1)—=(N-1-m) m

3. When m= 0, the expected number of dIEaWS until the For the third part, we again consider sampling from the
timer token is drawn k times in a row is(°). urn without stopping, and start with 0 or more timer token

draws, followed by a non-timer token draw. Each such phase

Proof We consider first the probability of losing, i.e., thq: P
o ; ; ncludes an ex ecteﬁ{\‘— draws, and has probabili of
probability that we dravik timer tokens in a row before draw—inCIuding K timgr tokeﬁls. Stopping aftekrtri)mer tokg’ns can

ing a counter token. At the start of the process, there isoﬁl reduce the time. so we have
probability of N=K that we draw the timer token on every y ’

one of the firsk draws. Call this everit. If L does not oc- N K

cur, then we draw the timer token between O kndl times, ' = (_1) +(A=-NTT,

followed by some non-timer token Since all non-timer to-

kens are equally likely to bg, the probability thax is a from whichT < N¥ (&) = O(Nk). 0
counter token conditioned dnnotoccurring isg™;; in this

case the process endsxlfs not a counter token, then the ~ We now use Lemma 23 to bound the time and error of

process starts over from the beginning. performing azero testoperation in a population protocol,
Letting p be the probability of losing, we have where a unique leader wishes to determine if there are no
nonzero counter tokens in the rest of the population. As in
p=PrL+(1—PrL]) (1- m p. the urn process, the leader gives up if it sees the timer token
N-1 (held by one of the other agents) knconsecutive interac-

tions, without first seeing a nonzero counter value.

Solving this equation fop gives We again assume that the timer token sits on an agent

B PrL] with a zero counter value, and that there aragents with
P= 1—(1—PrL]) (1_L) nonzero counter values. To translate the time bounds of
N—-1 ; ;
Nk Lemma 23 into expected steps of the population process,

_ we must not only substitute— 1 for N, but must also take
1—(1— Nk (NIEM) into account the fact that when testing for zero, only a frac-

N‘k(N—l) tion 2/n of all interactions involve the leader. This gives
= an expected number of population protocol steps per draw
(N=1)—=(1-N¥)(N-1-m) of ®(n), so that the time bounds for a zero test become
NN -1) O(n?/m) whenm > 0 andO(nk*1) whenm = 0. We sum-

(N—1)—(N—1—-m)+N-KN=-1—m) marize these bounds as:

16 Dana Angluin et al.

Theorem 24 Given a standard population with n agents, obutput of every configuration in the rest of the computation
which one is a leader agent, one carries a timer token, amglcorrect.

m carry counter tokens, and a zero test operation that waits

e e UM Smating a Turing machinte have jst shown how 0
kens With no intervening encounter between the leader and"Y out zero tests and to elect a leader with high probabil-
any other token: ity. We now show how to simulate a logspace Turing ma-

chine with high probability, using a standard reduction due

1. The probability that the zero test incorrectly reports ze® Minsky [18] from Turing machines to counter machines.
when m> Ois zero if the timer token is on the same agent The central idea of Minsky's construction is to represent
as a counter token an@ (n~¥/m) otherwise. a Turing machine tape as two stacks, and then represent each

2. Conditioned on a correct outcome, the expected timetick as a counter value using &dgl-numbering scheme
complete a zero test is(@ /m) when m> 0and Q(n*+1) where the sequence of symbaisxs, ... Xm is stored as
when m= 0. m

xb',

How to elect a leadeif we do not have a unique leader in_)) N)
the input configuration, it is possible to establish one usigere each symbol is assigned a positive numerical value
the ideas of the leader bit, as in the proof of Lemma 11, affAdb is a constant base that exceeds the value of all the
the timer mark, as in the counter simulation above. symbols. Pushing a new symbglcorresponds to setting

At the global start signal, every agent receives its inpGt— CP+X; a pop operation consists of setting— [c/b]
symbol (which it remembers for the duration of the comp@nd returning the remainder. The product and quotient oper-
tation), sets its leader bit equal to 1, and clears its timer ma#ons can each be implemented using a second counter that

(indicating that it is not a timer). Any agent whose leadé@ccumulates the new vaIu_e wh|_Ie the first counter is d_eqre-

bit equals 1 begins an initialization phase: it marks the firgiented to zero; the_ remalrjder IS accumulated in the finite-

non-timer agent that it encounters as a timer and attemptate controller (or in our simulation, the leader agent) dur-
to initialize every other agent. It uses the event of encouid the quotient operation. A total of three counters—one for
tering a timerk times in a row to determine the end of th&ach side of the tape plus an extra accumulator—are used for
initialization phase. the simulation. _ _ _
Of course, at first every agent is attempting to run the ini- We represent these counters using the integer-based in-
tialization phase, so there will be general chaos. WheneWit convention. Each agent other than the leader and the
two agents with leader bit equal to 1 encounter each oth¥fjer stores a vector of values in the range.®/ for some
one (the loser) sets its leader bit to 0, and the other (the wi the value of counteris the sum of the-th positions in
ner) keeps its leader bit 1. If the loser has already markedfgse vectors, and may be as larggras 2)M. A counter
timer, the winner waits until it encounters a timer and turrig Zero if and only if every agent holds a zero share of the
it back into a non-timer before proceeding. The winner th&@unter. _ _

restarts the initialization phase (not creating another timer if T0 multiply the value of counterby b, storing the result

it has already released one). When initialized, agents withcounterj (which is assumed to start at zero), the leader

leader bit equal to O revert to a state representing only thejfecutes the following simple loop:

input and their Ie_ader bit, bu‘.[they retain their timer statu.s.. 1. Test counterfor zero: if zero, exit the loop.

_ _If an agent Wlt.h Iea(_:ier bit equal to 1 completes the ini- 5 Decrement counter

tialization phase_, it beglns the computation (e._g., S|mulat|_ng 3. Increment countefb times.
a counter ma@chnje, as in the preceding sectlo'n). If durlng 4. Repeat from step 1.
the computation it encounters another agent with leader bit

equal to 1, the two proceed as indicated above, one setting The first step uses the zero-test protocol with waiting pa-

its leader bit to 0, and the other restarting the initializatiommeterk. When countei has a nonzero valug the num-

phase, with appropriate housekeeping to ensure retrievabef of interactions to complete the zero tesPig1”/m) and

the extra timer, if any. the probability of error iD(n~%/m), wherem > [¢/M] is
After a period of unrest lasting an expect@dn?) inter- the number of agents with nonzero shares in the counter

actions, there will be just one agent with leader bit equal (fheorem 24). The second step can be combined with the

1. After the interaction eliminating the last rival, this luckyzero test, since the first encounter between the leader and

winner will succeed in initializing all other agents with highan agent with non-zero counter valuean also decrement
probability (because there is only one timer in the populéhe counter. The third step requires waiting foencoun-
tion) and proceed with the computation as the unique leaders between the leader and agents with counter shares less

If and when the counter machine halts, the unique leadban M; assuming there is always at least one such agent,

can propagate that fact (along with the output, if a functidhis requires an expecte®(br?) interactions. Note that the

of one output is being computed) to all the other agents.décond step does not add any probability of error: the timer

there have been no errors during the (final) simulation, tkeken is not used to bound the time for this step, as the leader

Computation in Networks of Passively Mobile Finite-State Sensors 17

is guaranteed to eventually encounter a counter agent tha. Simulating conjugating automata
not full.
The last zero test has= 0, and take(nk*1) interac- In this section, we show that either deterministic polyno-

tions, again by Theorem 24. mial time or randomized logarithmic space (with exponen-
For an initial counter value bounded M, the total tial time) is sufficient to recognize predicates computable

probability of error is with probability at least 12+ € by conjugating automata.
M . Suppose that a conjugating automateh computes a

o n _of m2nk Z 1 — o(n*logn) predicateF with probability at least 12+ €. ThenF can
,Zl [¢/M] e h ’ be computed by a polynomial-time Turing machine. As be-

T fore, we assume that a stringf symbols fromX represents

and the total time is an input assignment to <7, so thatn represents both the
nM n2 input length and the population size.

0 (; <) + bn2> +0O(n**) On inputx, a polynomial-time Turing machine can con-
S\ [¢/M] struct the matrix representing the Markov chain whose states

) kil are the multiset representations of the population configu-
=O(n"logn+n"""). rations reachable frorh(x), since there are at moat? of
them. Solving for the stationary distribution of the states,
the Turing machine can determine a set of configurations of
probability greater than /R. that all have the same output
F] hich must be correct, as an incorrect output can only ap-
péar with probability less thary2— €). The Turing machine

mented once for evelypasses through the loop insteadof then writes this common output to its output tape and halts.

. . . ; Under the same condition§; can be computed by a
times per pass. So again the probability of error for a single ; ; ; : - A

. N andomized Turing machine with probability2+ &’ using
qu_ot|ent o_peratlog O(n "k’fln) and the expected numbe spaceO(logn). A randomized Turing machine simulates the
of interactiongD(n“logn+ n*"+).

Finallv. th bound v for th automaton by using a finite number©flogn)-bit counters
inally, the same bounds apply for the same reasor]stg)ckeep track of the number of members of the population in

the initialization step where the unique surviving leader inj- 1\ ciate. Using coin flips, it simulates drawing a random
tializes all the other agents; again, we are simply waiting f Lir of population memberé and updating the counters ac-
Fhe Ieadgr to encounter all the non-timer agents before s &fding to the transition function o . By running the sim-

ing the timerk times in a rOW. _ lation for long enough, the randomized Turing machine can
_We now have all the pieces we need to show the simuigs 51most certain of being in a terminal strongly connected
tion result. component of the states of the Markov chain, at which point
e1he Turing machine halts and writes the output of the current

For a push operation, the additior@(xr?) expected in-
teractions needed to add xis dominated by the time for
the product even whekis small.

For the quotient operation, the analysis is essentially t
same, the only difference being that counités only incre-

Theorem 25 Let f(x) be a function in logspace, where th configuration on its output tape
Input xis represented in unary. Le(_ﬁ‘) __O(n), whered is How long is this? The number of distinct simulated con-
an integer, be the worst-case running time of some Iogspe*

ce . : >
: ; , ; am l¢]
Turing machine that computes f. Then for any fixed mtegéguratlons is less th +_1)_ , So the dmmeter\g\f th? state
¢ > 0, there is a conjugating automaton that, when run igPace of the Markov chain is less thae- (n+1)%. Given
the standard population with n members, computes for anY state that is not in a terminal component, there is some

any x< n with probability of error Gn—Clogn) in expected Path of length at most that leads to a state that is. It fol-
time Cind+zlogn+n2d+°+1) lows that in each interval ofl simulated transitions, there

is a probability of at leastn(n— 1))~ > n=24 of reaching a
Proof Letk = c+d, wherek is the waiting parameter of thet€rminal component. So the probabilityrdtreaching a ter-
zero test operation. minal component aftakd simulated transitions is less than
Simulating one step of the Turing machine invol@4) oK
product and quotient operations, each of which contributéé— n Zd) < exp(K/nZd) :
O(n*logn) to the error probability. The total probability of
error is then

T(n)O(nKlogn) = O(n9n~(¢*% jogn) = O(n~Clogn).

It follows that we can achieve any constant probability d
of convergence after

O(dr?®) = O((n+ 1)\an2(n+1)\Q\)
The expected running time for the simulation, including

the initial leader election phase, is = O(2(Q+2n+D%igny _ o2y
O(n?) +T(n)O(n?logn + nk+1) simulated transitions.
To wait this long, the randomized Turing machine allo-
= O(n%*2logn+ n2d+e+ly, cates a counter afflogn] bits and flips a coin before each

O simulated interaction, adding 1 to the counter on heads, and

18 Dana Angluin et al.

clearing the counter on tails. The simulation is stopped whdistinct graph structures. In this work the primary focus is
the counter overflows, that is, when there have been at leagbn the expressiveness of the models, whereas we consider
n° consecutive heads. The probability that this event occlussues of computational power and resource usage.

starting at any particular time is9": it follows that dur-

ing the firstt trials the expected number of times that it oc-

curs (and thus the probability that it occurs at least on
is at mostt2~"". Thus we expect to finish in time with

probability o(1) providedt = o(2"). Settingt = 2™ and | addition to the open problem of characterizing the power
¢ = 3|Q| thus gives aw(1) probability of failing to converge of stable computation, many other intriguing questions and
before the simulation stops. It follows that the randomizegirections are suggested by this work. One direction we have
logspace simulation produces a correct answer with proR&plored [2] is to define a novel storage device, tine,
bility at least Y2+ & — 6 —o(1) = 1/2+ ¢ for sufficiently which contains a multiset of tokens from a finite alphabet.
largen. _ It functions as auxiliary storage for a finite control with in-

We have just shown: put and output tapes, analogous to the pushdown or work
tfa_lpe of traditional models. Access to the tokens in the urn is
aby uniform random sampling, making it similar to the model
a%feconjugating automata.

We have primarily considered the case of a complete in-
teraction graph, which we have shown in Theorem 16 pro-
vides the least computational power of all weakly-connected
interaction graphs in the stable computation model. The
guestion of characterizing the power of stable computations

. . . on particular restricted interaction graphs remains open. We
In a Petri net, a finite collection of tokens may occupy ong

of a finite set of places, and transition rules specify how Han also consider the interaction graph itself as part of the

tokens may move from place to pla&¥iewing the states of n?put and ask what interesting properties of its underlying

a population brotocol as places and the pobulation memb raph can be stably computed by a population protocol. This
Pop P P € pop O5F3blem may have applications in analyzing the structure of
as tokens, our models can also be interpreted as partic

kinds of Petri nets. Randomized Petri nets were introduc&\ Elﬁgiisggicgrﬂsé\/\éﬂtk% [Sl?me initial work in this direc-
by Volzer [23] using a transition rule that does not depen :

on the number of tokens in each input place, in contrast toIAgnlerlt/?/;eségr%raisr:irrlz(;[tlic())?bcgtv\?génn':r?g(te\lvé)satoer?sniﬂgir
conjugating automata where the probability of an interactidn Y Y 9

betveen apartcar Sate pai ncreases wih the numbel JFrecior, ML hevanstion nctan e esticted
agents possessing those two states. 9 y P '

. . eeping the state of the initiator the same. Although there
The Chemical Abstract Machine of Berry and Boudol [S;F]e still protocols to decide whether the number of 1's in the

is an abstract machine designed to model a situation. : ; ” ;
which components move about a system and commu put is at leask, this COﬂd!tIOﬂ appears to restrict the class
§tab|y computable predicates severely.

cate when they come into contact, based on a metaphoP h dels in thi o hot” of th
molecules in a solution governed by reaction rules. A con-) e models in this paper assume a “snapshot’ of the
cept of enforced locality using membranes to confine subdgputs 1 taken when the 9'°b?" start signal IS rec.elved. A
lutions allows the machines to implement classical proce del gccommodatmg streaming Inputs, as is ty_plcally as-
calculi or concurrent generalizations of the lambda calculusé'"mad in sensor networks, would be very interesting.

Ibarra, Dang, and Egecioglu [12] consider a related We have assumed uniform sampling of pairs to inter-

model of catalytic P systems. They show that purely caﬁ%t’ bu;[hfor somell applllcanocr)ls |t.(;nay. makg hstegse to (I:.OH'
alytic systems with one catalyst define precisely the semiliRder other sampiing rules. Yne 1dea I1s weignted sampiing,

ear sets, and also explore other models equivalent in podierVNich population members are sampled according to

to vector addition systems. The relationships between thd S'Fwe'ghts’ pos§|bly depending on t.he.'r current states. We
models and ours is an intriguing topic. conjecture that with reasonable restrictions on the weights,

Brand and Zafiropulo [4] define a model of communi‘-"".aightecj sampling yields the same power as uniform sam-

c§)Discussion and open problems

Theorem 26 The set of predicates accepted by a conjug
ing automaton with probabilityl /2 + ¢ is contained in P.
Further, they can be computed by a randomized logsp
machine in exponential time.

7 Other related work

de- The interaction rules we consider are deterministic and
épecify pairwise interactions. What happens if the rules are
loss of synchronization nondeterministic, or specify interactions of larger groups, or

Milner's bigraphical reactive systems [17] address the jallow the interaction to increase or decrease the population?

sues of modeling locality and connectivity of agents by two OUr bound on the number of interactions in Theorem 22
applies only to stable computations of Presburger-definable

6 See [6,7] for surveys of Petri nets. predicates. The bounds on the simulation results in the

queues. They focus on general properties of protocols
fined in the model, such as the possibility of deadlock

Computation in Networks of Passively Mobile Finite-State Sensors 19

Turing-machine simulation in Theorem 25 are higher, but Technical Report TR-1207, January 2001, available at URL

still polynomial (for polynomial error bounds). Itis not clear _ ftp://ftp.cs.yale.edu/pub/TR/tr1207.ps ,

whether there arany useful computations of a conjugating & ESParza, J.: Decidability and complexity of Petri net problems-
t ton that : th | ial time: iust an introduction. In: G. Rozenberg, W. Reisig (eds.) Lectures on

automaton that require more than polynomial ime; Just @S petrj Nets I: Basic models., pp. 374—428. Springer Verlag (1998).

logspace machines do not have enough states to exploit su-published as LNCS 1491.

perpolynomial time bounds, it may be that the lack of struc?. Esparza, J., Nielseh, M.: Decibility issues for Petri nets - a survey.
ture in a conjugating automaton’s memory means that in- Journal of Informatik Processing and Cyberne86€3), 143—-160

creasing its time bound adds no actual power (1994)
9 p ' 8. Fang, Q., Zhao, F., Guibas, L.: Lightweight sensing and communi-

Furthermore, we give bounds on the expected total num- cation protocols for target enumeration and aggregation. In: Pro-
ber of interactions, but other resource measures may be moreceedings of the 4th ACM International Symposium on Mobile ad
appropriate in some applications. For many applications, in- hoc networking & computing, pp. 165-176. ACM Press (2003)

b - 9. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Pres-
teractions happen in parallel, so that the total number of i burger arithmetic. In: Complexity of ComputatioBJAM-AMS

teractions may not be well correlated with wall-clock time; proceedingsvol. VII, pp. 27-41. American Mathematical Soci-
defining a useful notion of time is a challenge. Alternatively, ety (1974) _ _
if we consider only the number of interactions in which at0. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas,

least one state changes (which might be correlated with the ?{‘geé‘;‘”guages' Pacific Journal of Mathemati€i 285-296

energy required by the computation), then the bounds cgn Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of
be finite even in the stable computation model, and the ex- ad hoc wireless networks. IEEE/ACM Transactions on Network-
pected bounds can be smaller in the conjugating automataing 10(4), 477-486 (2002) _ _
model. 12. Ibarra, O.H., Dang, Z., Egecioglu, O.: Catalytic p systems, semi-

- . linear sets, and vector addition systems. Theor. Comput. Sci.
Finally, we have not addressed the issue of fault toler- 312(2-3), 379-399 (2004)

ance, which is of course of immense practical importancei. immerman, N.: Nondeterministic space is closed under comple-
real sensor networks. In one sense, our underlying model mentation. SIAM J. ComputL7(5), 935-938 (1988)
should be very robust in the face of faults since we afé- Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion:

; ; : : a scalable and robust communication paradigm for sensor net-
making such weak assumptions about when interactions oc works. In: Proceedings of the 6th Annual International Con-

cur. If an agent dies, say from an exhausted battery, the in- ference on Mobile computing and networking, pp. 56-67. ACM
teractions between the remaining agents are unaffected. Of Press (2000)

course, many of the algorithms we describe here would rig Kracht, M.: The Mathematics of Languadgtudies in Genera-

survive the failure of a single agent, especially those based g\f;tgroagmar vol. 63. Mouton de Gruyter (2003). ISBN 3-11-

on leader election. Itis a challenging open problem to desiggl madden, S.R., Frankiin, M.J., Hellerstein, J.M., Hong, W.: TAG: a

fault-tolerant algorithms for some of the problems addressed Tiny AGgregation service for ad-hoc sensor networks (December,

here, or show that fault-tolerant solutions do not exist. 2002). In OSDI 2002: Fifth Symposium on Operating Systems
Design and Implementation

17. Milner, R.: Bigraphical reactive systems: basic theory. Tech. rep.,
University of Cambridge (2001). UCAM-CL-TR-523

9 Acknowledgments 18. Minsky, M.L.. Computation: Finite and Infinite Machines.

Prentice-Hall Series in Automatic Computation. Prentice-Hall,

: ; _ Inc., Englewood Cliffs, N.J. (1967)
The authors wish to thank Richard Yang for valuable a Monk, J.D.: Mathematical Logic. Springer, Berlin, Heidelberg

vice regarding these ideas, David Eisenstat for the original (1976)
parity protocol and other discussions, and the anonymousze- von Neumann, J.: Theory and organization of complicated au-
viewers of an earlier version of this paper for their thought- tomata. In: A.W. Burks (ed.) Theory of Self-Reproducing Au-

ful comments and suggestions. We thank Jingiang Han for a tomata [by] John von Neumann, pp. 29-87 (Part One). University
ful di f the final draft of thi of lllinois Press, Urbana (1949). Based on transcripts of lectures
Caretul reading of the Tinal drait or this paper. delivered at the University of lllinois, in December 1949. Edited

for publication by A.W. Burks.

21. Parikh, R.J.: On context-free languages. J. AC3#), 570-581

(1966). DOI http://doi.acm.org/10.1145/321356.321364

22. Presburger, M.Uber die Vollsindigkeit eines gewissen Sys-

. . . tems der Arithmetik ganzer Zahlen, in welchem die Addition als

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Per- ginzige Operation hervortritt. In: Comptes-Rendus du | Césgr
alta, R.: Stably computable properties of network graphs. In: ge Mattematiciens des Pays Slaves, pp. 92-101. Warszawa (1929)
IEEE/ACM International Conference on Distributed Computing3. \pizer, H.: Randomized non-sequential processes. In: Proceedings
in Sensor Systems (2005). To appear of CONCUR 2001-Concurrency Theory, pp. 184-201 (2001)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J,, Peralta, Ry zhao, F., Liu, J., Liu, J., Guibas, L., Reich, J.: Collaborative signal
Urn automata. Tech. Rep. YALEU/DCS/TR-1280, Yale Univer- ang information processing: An information directed approach.

sity Department of Computer Science (2003) _ Proceedings of the IEE1(8), 1199-1209 (2003)
3. Berry, G., Boudol, G.: The Chemical Abstract Machine. Theoret-

ical Computer Scienc@6, 217—-248 (1992)

4. Brand, D., Zafiropulo, P.. On communicating finite-state ma-
chines. J. ACM3((2), 323-342 (1983)

5. Diamadi, Z., Fischer, M.J.: A simple game for the study of
trust in distributed systems. Wuhan University Journal of Nat-
ural Sciencest(1-2), 72—-82 (2001). Also appears as Yale

References

