
Distributed Computing manuscript No.
(will be inserted by the editor)

Dana Angluin · James Aspnes· Zoë Diamadi · Michael J. Fischer · René Peralta

Computation in Networks of Passively Mobile Finite-State Sensors

October 17, 2005

Abstract The computational power of networks of small
resource-limited mobile agents is explored. Two new models
of computation based on pairwise interactions of finite-state
agents in populations of finite but unbounded size are de-
fined. With a fairness condition on interactions, the concept
of stable computation of a function or predicate is defined.
Protocols are given that stably compute any predicate in the
class definable by formulas of Presburger arithmetic, which
includes Boolean combinations of threshold-k, majority, and
equivalence modulom. All stably computable predicates are
shown to be inNL. Assuming uniform random sampling of
interacting pairs yields the model of conjugating automata.
Any counter machine withO(1) counters of capacityO(n)
can be simulated with high probability by a conjugating au-
tomaton in a population of sizen. All predicates computable
with high probability in this model are shown to be inP; they
can also be computed by a randomized logspace machine in
exponential time. Several open problems and promising fu-
ture directions are discussed.

Keywords Diffuse computation· finite-state agent·
intermittent communication· mobile agent· sensor net·
stable computation

1 Scenario: A flock of birds

Suppose we have equipped each bird in a particular flock
with a sensor that can determine whether the bird’s tempera-
ture is elevated or not, and we wish to know whether at least
5 birds in the flock have elevated temperatures. We assume

Supported in part by NSF grants CCR-9820888, CCR-0098078, and
CNS-0305258 (Aspnes), by ONR grant N00014-01-1-0795 (Diamadi),
and by NSF grant CSE-0081823 (Fischer and Peralta).

A preliminary version of this paper appeared in the proceedings of the
23rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, St. John’s, Newfoundland, Canada, July 2004.

Correspondence to:Michael Fischer, Department of Computer Sci-
ence, Yale University, New Haven, CT 06520–8285, USA
Tel.: +1-203-432-1270, Fax: +1-203-432-0593
E-mail: fischer-michael@cs.yale.edu

that the sensors are quite limited: each sensor has a constant
number of bits of memory and can respond to a global start
signal, and two sensors can communicate only when they
are sufficiently close to each other.

In this scenario, the sensors are mobile but have no con-
trol over how they move, that is, they arepassively mobile.
Initially, we assume that the underlying pattern of movement
gives rise to a communication pattern that guarantees a fair-
ness condition on the resulting computation. Intuitively, it is
useful to imagine that every pair of birds in the flock repeat-
edly come sufficiently close to each other for their sensors to
communicate, but it will turn out that this condition is nei-
ther necessary nor sufficient for our results. While this intu-
ition is sufficient for understanding the protocol that follows,
the reader is urged to read carefully the formal definitions in
Section 3.

Under these assumptions, there is a simple protocol en-
suring that every sensor eventually contains the correct an-
swer. At the global start signal, each sensor makes a mea-
surement, resulting in a 1 (elevated temperature) or 0 (not
elevated temperature) in a counter that can hold values from
0 to 4. When two sensors communicate, one of them sets its
counter to the sum of the two counters, and the other one
sets its counter to 0. If two counters ever sum to at least 5,
the sensors go into a special alert state, which is then copied
by every sensor that encounters them. The output of a sensor
is 0 if it is not in the alert state, and 1 if it is in the alert state.
If we wait a sufficient interval after we issue the global start
signal, we can retrieve the correct answer from any of the
sensors.

Now consider the question of whether at least 5% of the
birds in the flock have elevated temperatures. Is there a pro-
tocol to answer this question in the same sense, without as-
sumptions about the size of the flock? In Section 4, we show
that such a protocol exists. More generally, we are interested
in fundamental questions about the computational power of
this and related models of interactions among members of a
distributed population of finite-state agents.

2 Dana Angluin et al.

2 A wider view

Most work in distributed algorithms assumes that agents in
a system are computationally powerful, capable of storing
non-trivial amounts of data and carrying out complex cal-
culations. But in systems consisting of massive amounts of
cheap, bulk-produced hardware, or of small mobile agents
that are tightly constrained by the systems they run on, the
resources available at each agent may be severely limited.
Such limitations are not crippling if the system designer has
fine control over the interactions between agents; even finite-
state agents can be regimented into cellular automata [20]
with computational power equivalent to linear space Turing
machines. But if the system designer cannot control these in-
teractions, it is not clear what the computational limits are.

Sensor networks are a prime example of this phenom-
enon. Each sensing unit is a self-contained physical pack-
age including its own power supply, processor and memory,
wireless communication capability, and one or more sensors
capable of recording information about the local environ-
ment of the unit. Constraints on cost and size translate into
severe limitations on power, storage, processing, and com-
munication. Sensing units are designed to be deployed in
large groups, using local low-power wireless communica-
tion between units to transmit information from the sensors
back to a base station or central monitoring site.

Research in sensor networks has begun to explore the
possibilities for using distributed computation capabilities
of such networks in novel ways to reduce communication
costs. Aggregation operations, such as count, sum, average,
extrema, median, or histogram, may be performed on the
sensor data in the network as it is being relayed to the base
station [14,16]. Flexible groups of sensors associated with
targets in spatial target tracking can conserve resources in
inactive portions of the tracking area [8,24]. Though sensors
are usually assumed to be stationary or nearly so, permitting
strategies based on relatively stable routing, this assump-
tion is not universal in the sensor-network literature. For ex-
ample, an assumption of random mobility and packet relay
dramatically increases the throughput possible for commu-
nication between source-destination pairs in a wireless net-
work [11].

The flock of birds scenario illustrates the question of
characterizing what computations are possible in a coopera-
tive network of passively mobile finite-state sensors. The as-
sumptions we make about the motion of the sensors are that
it is passive (not under the control of the sensors), too rapid
and unpredictable for stable routing strategies to be feasible,
and that specified pairs of sensors, given by aninteraction
graph, will repeatedly be close enough to communicate us-
ing a low-power wireless signal.

There is a global start signal transmitted by the base sta-
tion to all the sensors simultaneously to initiate a computa-
tion. When they receive the global start signal, the sensors
take a reading (one of a finite number of possible input val-
ues) and attempt to compute some function or predicate of
all the sensor values. This provides a “snapshot” of the sen-

sor values, rather than the continuous stream of sensor val-
ues more commonly considered. Sensors communicate in
pairs and do not have unique identifiers; thus, they update
their states based strictly on the pair of their current states
and on the role each plays in the interaction—one acting as
initiator and the other as responder.

In Section 3, we define a model of computation by pair-
wise interactions in a population of identical finite-state
agents. Assuming a fairness condition on interactions, we
define the concept of stable computation of a function or
predicate by a population protocol.

In Section 4, we consider the question of what predi-
cates can be stably computed when interactions can occur
between all pairs of agents. We show how to construct pro-
tocols for any Presburger-definable predicate. This is a rich
class of arithmetic predicates that includes threshold-k, par-
ity, majority, and simple arithmetic relations. We show that
stably computable predicates are closed under the Boolean
operations. We also show that every predicate computable in
this model is in nondeterministic log space. An open prob-
lem is to give an exact characterization of the computational
power of stable computation in this model.

In Section 5, we show that the all-pairs case is the weak-
est for stably computing predicates by showing that it can be
simulated by any population that cannot be separated into
non-interacting subpopulations. The questions of what addi-
tional predicates can be computed for reasonable restrictions
on the interactions and what properties of the underlying in-
teraction graph can be stably computed by a population are
considered in [1].

In Section 6, we obtain the model of conjugating au-
tomata by adding a uniform sampling condition on interac-
tions to the assumption that interactions are enabled between
all pairs of agents. This allows us to consider computations
that are correct with high probability and to address ques-
tions of expected resource use. We show that this model has
sufficient power to simulate, with high probability, a counter
machine withO(1) counters of capacityO(n). We further
show that Boolean predicates computable with high proba-
bility in this model are inP, and can be computed by a ran-
domized logspace machine in exponential time. This gives a
partial characterization of the set of predicates computable
by such machines, but finding an exact characterization is
still open.

In Section 7, we describe other related work, and in Sec-
tion 8 we discuss some of the many intriguing questions
raised by these models.

3 A formal model

We define a model that generalizes the flock of birds sce-
nario from Section 1.

Computation in Networks of Passively Mobile Finite-State Sensors 3

3.1 Population protocols

A population protocol A consists of finiteinput and out-
put alphabets X andY, a finite set ofstatesQ, an input
function I : X → Q mapping inputs to states, anoutput
function O : Q→Y mapping states to outputs, and atran-
sition function δ : Q×Q→ Q×Q on pairs of states. If
δ (p,q) = (p′,q′), we call(p,q) 7→ (p′,q′) a transition , and
we defineδ1(p,q) = p′ andδ2(p,q) = q′.

Example.As a simple illustration, we formalize a version
of the count-to-five protocol from Section 1. The six states
areq0, . . . ,q5. The input and output alphabets areX = Y =
{0,1}. The input functionI maps 0 toq0 and 1 toq1. The
output functionO maps all states exceptq5 to 0 and the state
q5 to 1. The transition functionδ (qi ,q j) is defined as fol-
lows: if i + j ≥ 5, then the result is(q5,q5); if i + j < 5 then
the result is(qi+ j ,q0).

A population P consists of a setAof nagents1 together
with an irreflexive relationE⊆A×A that we interpret as the
directed edges of aninteraction graph. E describes which
agents may interact during the computation. Intuitively, an
edge(u,v) ∈ E means thatu andv are able to interact, with
u playing the role ofinitiator andv playing the role ofre-
sponder in the interaction. Note that the distinct roles of the
two agents in an interaction is a fundamental assumption of
asymmetry in our model; symmetry-breaking therefore does
not arise as a problem within the model. Though most of the
present paper concerns the case in whichE consists of all
ordered pairs of distinct elements fromA, which is termed
thecomplete interaction graph, we give definitions appro-
priate for generalE.

When a population protocolA runs in a populationP,
we think of each agent inP as having a state fromA ’s state
setQA . Pairs of agents interact from time to time and change
their states as a result. Each agent also has a current output
value determined by its current state. The collection of all
agents’ current outputs is deemed to be the current output
of the computation. These concepts are made more precise
below.

A population configuration is a mappingC : A→ Q
specifying the state of each member of the population. LetC
andC′ be population configurations, and letu,v be distinct
agents. We say thatC goes toC′ via encounter e= (u,v),
denotedC

e→C′, if

C′(u) = δ1(C(u),C(v))
C′(v) = δ2(C(u),C(v))
C′(w) = C(w) for all w∈ A−{u,v}.

We say thatC can go toC′ in one step, denotedC→ C′,
if C

e→C′ for some encountere∈ E, and we callC→C′ a
transition . We writeC

∗→C′ if there is a sequence of config-
urationsC = C0,C1, . . . ,Ck = C′, such thatCi →Ci+1 for all

1 Note that we distinguish typographically between a protocolA
and an agent setA. We hope that context will help the reader distinguish
between these two similar notations.

i, 0≤ i < k, in which case we say thatC′ is reachablefrom
C.

The transition graph G(A ,P) of protocolA running
in populationP is a directed graph whose nodes are all pos-
sible population configurations and whose edges are all pos-
sible transitions on those nodes. A strongly connected com-
ponent of a directed graph isfinal iff no edge leads from a
node in the component to a node outside. A configuration is
final iff it belongs to a final strongly connected component
of the transition graph.

An execution is a finite or infinite sequence of popu-
lation configurationsC0, C1, C2, . . . such that for eachi,
Ci →Ci+1. An infinite execution isfair if for every possible
transitionC→C′, if C occurs infinitely often in the execu-
tion, thenC′ occurs infinitely often.2 A computation is an
infinite fair execution.

Lemma 1 Let Ξ = C0, C1, C2, . . . be a computation of pop-
ulation protocolA running in populationP. LetF be the
set of configurations that occur infinitely often inΞ , and let
GF be the subgraph of G(A ,P) induced byF . GF is a
final strongly connected component of G(A ,P), and every
element of F is final.

Proof Every C′ ∈ F is reachable from everyC ∈ F via
a subsequence of transitions inΞ , so GF is strongly con-
nected. SupposeC→C′ andC ∈F . By fairness,C′ occurs
infinitely often inΞ , soC′ ∈F . Hence,GF is final, so every
element ofF is also final. ut

3.2 Input-output behavior of population protocols

As with nondeterministic Turing machines, we define no-
tions of input and output, and we define what it means for
a population protocol to compute a particular output given
a particular input. The input to a population protocol is a
mapping that associates an input value with each agent. The
output of a population protocol is a mapping that associates
an output value with each agent.

Unlike Turing machines, population protocols do not
halt, so there is no obvious fixed time at which to view the
output of the population. Rather, we say that the compu-
tation converges if it reaches a point after which no agent
can subsequently change its output value, no matter how the
computation proceeds. Convergence is a global property of
the population configuration, so individual agents in general
do not know when convergence has been reached. However,
with suitable stochastic assumptions on the rate at which in-
teractions occur, it is possible to bound the expected number

2 Note that this definition is not equivalent to the intuitive notion of
fairness, given in Section 1, that every permitted encounter between
agents takes place infinitely often. Our formal definition only requires
that certain configurations appear in a fair execution; it does not specify
which encounters give rise to them. On the other hand, it is also not
sufficient that every permitted encounter take place infinitely often. We
require that infinitely many encounters result in specific configurations
C′.

4 Dana Angluin et al.

of interactions until the output stabilizes. We explore this
approach in Section 6.

Formally, aninput assignmentis a functionx : A→ X,
whereA is the set of agents in the population. We letX =
XA denote the set of all input assignments. The input as-
signment determines the initial configuration of the protocol.
Namely, ifx∈X , then the protocol begins in configuration
Cx, whereCx(w) = I(x(w)) for all agentsw.

An output assignment is a functiony : A→ Y. We
let Y = YA denote the set of all output assignments. Each
configurationC determines an output assignmentyC, where
yC(w) = O(C(w)) for all agentsw.

A configurationC is said to beoutput-stable if yC′ = yC
for all C′ reachable fromC. Note that we do not require that
C′ = C, only that the output be the same. An infinite compu-
tationconvergesif it contains an output-stable configuration
C, in which case we say that itconverges (or stabilizes) to
output y = yC. It is immediate that an infinite computation
converges to at most one output, which we call the output
of the computation when it exists, and we say that the out-
put is undefined otherwise. Because of the nondeterminism
inherent in the choice of encounters, the same initial config-
uration may lead to different computations that stabilize to
different outputs or do not stabilize at all. We say a proto-
col A is always-convergentif every computation on every
input x converges. In this paper, we are only interested in
always-convergent protocols.

An always-convergent population protocolA running in
a populationP stably computes an input-output relation
RA as follows. For eachx∈X andy∈ Y , RA (x,y) holds
iff there is a computation ofA beginning in configuration
Cx that stabilizes to outputy. In the special case thatRA is
single-valued3, we writeFA (x) = y for RA (x,y) and say that
A stably computesthe functionFA .

Example (continued).Continuing our count-to-five illustra-
tion, assume that the agents areu1, . . . ,u6 and the interaction
graph is complete. Let the input assignmentx be described
by the vector

(0,1,0,1,1,1),

assigning input symbols to the agentsu1 . . . ,u6 in that order.
The corresponding input configuration is

I(x) = (q0,q1,q0,q1,q1,q1),

which leads to the following possible computation:

(q0,q1,q0,q1,q1,q1)
(2,4)−→ (q0,q2,q0,q0,q1,q1)

(q0,q2,q0,q0,q1,q1)
(6,5)−→ (q0,q2,q0,q0,q0,q2)

(q0,q2,q0,q0,q0,q2)
(2,6)−→ (q0,q4,q0,q0,q0,q0)

(q0,q4,q0,q0,q0,q0)
(3,2)−→ (q0,q0,q4,q0,q0,q0).

3 A relationR is single-valued if∀x∀y∀z(R(x,y)∧R(x,z)⇒ y = z).

The configurations reachable from the last one above are
those with five agents assignedq0 and one agent assigned
q4, and the outputs of all of them are equal to

(0,0,0,0,0,0).

Therefore,R((0,1,0,1,1,1),(0,0,0,0,0,0)) holds, whereR
is the input-output relation computed by this protocol. In
fact,R is singled-valued, so we can write

F(0,1,0,1,1,1) = (0,0,0,0,0,0).

This protocol illustrates the fact that convergence re-
quires only that the outputs, and not necessarily the configu-
rations, eventually stop changing. We could have solved this
particular problem with a protocol in which the configura-
tions themselves also stopped changing, but we do not know
how to do that in general.

3.3 Families of populations

In Section 3.2, we defined what it means for a population
protocolA running in a fixed populationP to stably com-
pute an input-output relation. It is natural to extend these
definitions to families of populations{Pn}n∈N, wherePn is
a population over agent setAn. WriteXn andYn for the cor-
responding input and output assignments onAn. Then pop-
ulation protocolA can be regarded as stably computing a
family of input-output relations{Rn

A }n∈N. Equivalently, let-
ting X =

⋃
nXn andY =

⋃
nYn, A can be said to stably

compute the relationRA =
⋃

nRn
A ⊆X ×Y . In the special

case thatRA is single-valued, we write as beforeFA (x) = y
for RA (x,y) and say thatA stably computes the function
FA : X → Y .

We now define a family of populations{Pn}n∈N of par-
ticular interest. LetPn be the population of sizen consist-
ing of the complete interaction graph on the specific agent
setAn = {1, . . . ,n}. We callAn thestandard agent setand
Pn thestandard population of sizen. Because population
protocols depend only on the states of agents, not on their
names, there is no loss of generality in assuming a fixed
agent set.

3.4 Computation on other domains

As defined in Sections 3.2 and 3.3, a population protocolA
computes a relationRA onX ×Y . We callX thenatural
input domain andY thenatural output domain for A .

In order to use population protocols to compute on other
domains, we need suitable input and output encoding con-
ventions. An input encoding convention for domain DI
is a functionEI : X → DI , and anoutput encoding con-
vention for DO is a functionEO : Y → DO. If EI (x) = u
(resp.EO(y) = v), we say thatx representsu (resp.y rep-
resentsv). In this terminology, we can define thenatural
input and output encoding conventionsto be simply the
identity functions onX andY , respectively.

Computation in Networks of Passively Mobile Finite-State Sensors 5

EI and EO are not required to be either one-to-one
or onto. Thus, a given element ofDI (respectivelyDO)
might have zero, one, or more than one representation in
X (respectivelyY). We naturally associate withRA the
represented input-output relation SA ⊆ DI ×DO, where
SA (u,v) holds iff there existx ∈X andy ∈ Y such that
EI (x) = u, EO(y) = v, andRA (x,y) holds. We say thatRA
(under the encoding conventionsEI andEO) is representa-
tive independent iff for all x1,x2 ∈X such thatEI (x1) =
EI (x2),

{EO(y) | R(x1,y)}= {EO(y) | R(x2,y)}.

Thus, if RA is representative independent andSA (u,v)
holds, then for allx representingu, there existsy represent-
ing v such thatRA (x,y) holds. We say thatA stably com-
putesSA if A is always-convergent and representative inde-
pendent. In the special case thatSA is single-valued, we say
thatA stably computes a partial functionGA : DI →DO.

In words, ifA stably computesSA , thenSA (u,v) holds
iff for every representation ofu, there exists a computation
of A starting from that representation that stabilizes to an
output representingv. Moreover, since every computation of
A stabilizes, ifA starts with a representation of someu∈
DI , the computation stabilizes to an output that represents
somev ∈ DO. WhenSA is single-valued, the computation
stabilizes to an output that representsGA (u).

DomainZk Integer input and output values are represented
diffusely across the population rather than being stored lo-
cally by individual agents. We describe two natural encoding
conventions for vectors of integers.

The symbol-count input conventionassumes an arbi-
trary input alphabetX = {σ1, . . . ,σk} and DI = Nk. The
k-tuple represented by an assignmentx ∈ X is EI (x) =
(n1, . . . ,nk), whereni is the number of agents to whichx
assignsσi . Note that thek-tuple (n1, . . . ,nk) is only repre-
sentable in a population of sizen = ∑i ni .

Similarly, the symbol-count output convention as-
sumes an arbitrary output alphabetY = {τ1, . . . ,τ`} and
DO = N` and definesEO(y) = (m1, . . . ,m`), wheremi is the
number of agents whose current output isτi .

Theinteger-based input conventioncan representO(1)
integers with absolute values bounded byO(n) in a popula-
tion of sizen and can representO(1) integers of any size in
the family of standard populations. It assumesX ⊆ Zk and
DI = Zk for somek. Thus, inputx∈X assigns ak-tuple of
integersx(w) to each agentw. Thek-tuple represented byx
is EI (x) = ∑w∈Ax(w), the sum across the population of all
assigned input tuples.

Note that ifX contains the zero vector 0= (0,0, . . . ,0)
and each of the unit vectorsei = (0, . . . ,1, . . . ,0), whereei is
0 in all coordinates except fori and 1 ati, then all tuples in
Nk for which the sum of the elements is bounded byn can
be represented in a population of sizen. If, in addition, X
contains−ei for eachi, then all tuples inZk for which the
sum of the absolute values of the elements is bounded byn
can be so represented.

Similarly, the integer-based output convention as-
sumesY⊆Z` = DO and definesEO(y) = ∑w∈Ay(w) for out-
puty∈ Y .

Example of an integer functionWe describe a population
protocolA to compute the functionf (m) = bm/3c, the in-
teger quotient ofmand 3. We takeX = Y = {0,1}. An input
assignmentx representsm = EI (x), the number of agents
assigned 1, and similarly for output assignments. Given the
standard populationPn, all values ofm≤ n can be repre-
sented, so the partial integer functionGn

A (m) computed by
A running inPn is f (m) restricted tom≤ n. From this, it
easily follows thatA computesf over the family of stan-
dard populations.

The states inQ are ordered pairs(i, j) of integers such
that 0≤ i ≤ 2 and 0≤ j ≤ 1. LetC be a configuration. We
interpretC as a pair of integers(r,q), wherer is the sum over
all agents of the first coordinate of the state, andq is the sum
of the second coordinate.

The input mapI maps 1 to the state(1,0) and 0 to the
state(0,0). The output mapO maps state(i, j) to j. The
transition function is defined as follows:δ ((1,0),(1,0)) =
((2,0),(0,0)), and if i + k≥ 3 thenδ ((i,0),(k,0)) = ((i +
k−3,0),(0,1)). All other transitions are defined to leave the
pair of states unchanged.

By induction, one can show that ifC is any reachable
configuration and(r,q) is the integer pair represented byC,
thenm= r +3q. Initially, r = mandq= 0. Transitions of the
first type can accumulate two 1’s to a 2 but do not change ei-
therr or q. Transitions of the second type reducer by 3 and
increaseq by 1, leaving the quantityr +3q invariant. Even-
tually, no more transitions of either type will be possible. At
this time,r ≤ 2, in which caseq = bm/3c, as desired. We
note that if the output map were changed to the identity (and
the output alphabetY changed accordingly), this protocol
would compute the ordered pair(m mod 3,bm/3c).

DomainΣ ∗ Strings inputs are represented diffusely across
the population, with theith input symbol being as-
signed to theith agent. We assume an ordered agent
set A = {a1, . . . ,an} and an arbitrary input alphabetX =
{σ1, . . . ,σk}. Thestring input convention definesDI = X∗

andEI (x) = x(a1) · . . . ·x(an), wherex∈X .

Predicates.A predicate can be regarded as a function whose
output is a truth value. Theall-agents predicate output
convention assumesY = {0,1} and requiresevery agent
to agree on the output. Formally, let0(w) = 0 and1(w) =
1 be constant output assignments inY , and let DO =
{false, true,⊥}. We define

EO(y) =

 false if y = 0
true if y = 1
⊥ otherwise.

Thus, every output assignment in which the agents do not
agree represents⊥.

6 Dana Angluin et al.

Let EI be an input encoding convention overDI , and
let EO be the all-agents predicate output convention. We
say that protocolA stably computes a predicate onDI
if A stably computes a total functionGA : DI → DO and
GA (u) 6=⊥ for anyu∈ DI . Thus, every computation ofA
converges to an output in which all agents have the same
output value 0 or 1.

Example.The formal count-to-five protocol described
above stably computes the predicate ofx ∈X that is true
iff x assigns 1 to at least 5 different agents.

3.5 Symmetry in standard populations

All agents in standard populationPn are identical, so it
makes no difference to which agent each input symbol is
assigned. Under the all-agents predicate output convention,
it also makes no difference which agent produces which out-
put symbol since all agents are required to produce the same
output.

Formally, a predicateF onX is invariant under agent
renaming if F(x) = F(x◦π) for every permutationπ onAn.

Theorem 2 Every predicate onX that is stably com-
putable by a population protocol running in standard popu-
lation Pn is invariant under agent renaming.

Proof Suppose population protocolA running inPn com-
putes predicateGA . Let π be a permutation onAn and
RA (x,y) the input-output relation stably computed byA .
Then it is easily shown thatRA (x◦π,y◦π). SinceGA is a
predicate under the predicate output convention, the output
assignmenty is a constant function, soy◦π = y. It follows
that y◦ π and y encode the same output, soGA (x◦ π) =
GA (x) as desired. ut

Language acceptanceLet χL be the characteristic function
of L, that is,χL(σ) = true iff σ ∈ L. We say thatA acceptsL
iff A stably computesχL under the string input convention.

We say a language issymmetric if it is closed under
permuting the letters in a word. The following is immediate
from Theorem 2:

Corollary 3 Let L⊆ Σ ∗ be a language accepted by a pop-
ulation protocol over the family of standard populations.
Then L is symmetric.

All that matters for acceptance of symmetric languages
is the number of occurrences of each input symbol. LetX =
{σ1, . . . ,σk} andσ ∈ X∗. TheParikh map Ψ takesσ to the
the vector(n1, . . . ,nk), whereni is the number of timesσi
occurs inσ [21].

Lemma 4 Let L be a symmetric language over alphabetΣ

of size k. Then L is accepted by population protocolA iff
Ψ(L) is stably computed byA under the symbol-count input
convention.

Proof Immediate from the fact thatEI (x) = Ψ(σ1, . . . ,σn),
wherex∈X , EI is the symbol-count input convention, and
x representsσ1 . . .σn under the string input convention.ut

In light of Corollary 3 and Lemma 4, we will often iden-
tify a languageL with the predicateΨ(L) when talking about
population protocols over the family of standard populations
and talk loosely aboutL being accepted under the symbol-
count input convention.

3.6 Other predicate output conventions.

One might ask whether the class of stably computable predi-
cates onX changes if we adopt a weaker output convention.
For example, suppose we takeY = {0,1} as in the all-agents
predicate output convention, but we change the output en-
coding function to

EO(y) =
{

false if y = 0
true otherwise.

Call this thezero/non-zero predicate output convention.

Theorem 5 Let ψ be predicate onX andP a population
of size n over the complete interaction graph. There exists
a protocolA that stably computesψ according to the all-
agents predicate output convention iff there exists a protocol
B that stably computesψ according to the zero/non-zero
predicate output convention.

Proof The forward direction is immediate since the all-
agents predicate output convention is more restrictive than
the zero/non-zero predicate output convention.

For the converse, assumeB stably computesψ accord-
ing to the zero/non-zero predicate output convention. We
construct a protocolA that stably computesψ according
to the all-agents predicate output convention.

Intuitively, we wantA to simulateB step by step. When
B stabilizes, all agents inA should eventually choose out-
put 0 if all agents inB have chosen 0; otherwise, all agents
in A should eventually choose 1. The problem with this ap-
proach is that there is no way for the agents ofA to know
whenB has stabilized. Hence, we need a subprotocol that
runs in parallel with the simulation ofB to monitor B’s
outputs and distribute the correct output bit to the agents of
A .

The states ofA are triples〈`,b,q〉, whereq is a state of
B and` andb are single bits called “leader” and “output”,
respectively. We call any agent with` = 1 a leader. Initially
` = 1, b = 0, andq is the agent’s initial state in protocolB.
The output function maps〈`,b,q〉 to b.

When two agents interact, they update their state fields
according to protocolB. The leader fields interact accord-
ing to the usual leader-election protocol, namely, when two
leaders encounter each other, one remains a leader and the
other sets its leader bit to 0. Otherwise, the leader bits do
not change, with one exception: When a non-leader whose
current output in protocolB is 1 encounters a leader whose

Computation in Networks of Passively Mobile Finite-State Sensors 7

current output in protocolB is 0, the two agents swap leader
bits. Finally, the output bitb of a leader always follows its
current output in protocolB, that is, at the end of every en-
counter, the leader updatesb accordingly. A non-leader sets
its output bit to the output bit of the last leader that it en-
countered.

This works because eventuallyB stabilizes to an output
assignmenty and there is only a single leader. If one or more
agents stabilize to output 1 inB, then leadership transfers to
one of those agents and does not change subsequently. If all
agents stabilize to output 0 inB, then leadership also does
not change subsequently. The leader’s output value is 1 or 0
depending on whether the output ofB is greater than 0 or
equal to 0. After the leadership and the leader’s output value
have stabilized, then every other agent assumes the correct
output value upon its next encounter with the leader and does
not change it thereafter. ut

Similar leader-based techniques can be used to show that
other natural predicate output conventions are also equiva-
lent to the all-agents convention, e.g., representing false by
the integer 0 and true by the integer 1 (i.e., one agent has
output 1 and the others have output 0).

4 Computing predicates by population protocols

In this section, we explore the predicates that are stably com-
putable by population protocols running in standard pop-
ulations using the predicate output convention. We con-
sider predicates with both the natural input convention and
also the integer input convention. We show that families of
predicates related to the well-studied family of Presburger-
definable predicates over the integers [22] are all stably
computable by population protocols. It is an open problem
whether population protocols can compute more. We con-
clude this section with a theorem that shows our results are
not sensitive to reasonable changes in the conventions used
for representing the output of predicates.

4.1 Boolean closure of population predicates

We begin by showing that the family of population-
computable predicates is closed under the Boolean opera-
tions.

Lemma 6 Let X be an input set, and let EI be an input en-
coding convention over domain DI . Let F and G be predi-
cates over DI that are stably computable by population pro-
tocols over X. Letξ be any 2-place Boolean function. Then
the predicateξ (F,G) is stably computable by a population
protocol with input set X.

Proof Let A stably computeF andB stably computeG.
We assume thatA andB have the same input setX. We
construct a population protocolC , also with input setX, to
stably computeξ (F,G).

C is the parallel composition ofA and B, together
with a suitably chosen output function. LetQA and QB
be the states ofA andB, respectively. LetC have states
QC = QA ×QB. The input functionIC mapss∈ X to state
(IA (s), IB(s)). The transition functionδC is defined by

δC ((p1, p2),(q1,q2)) = ((p′1, p′2),(q
′
1,q
′
2))

where

δA (p1,q1) = (p′1,q
′
1) and δB(p2,q2) = (p′2,q

′
2).

The output function appliesξ to the outputs of the two com-
ponent protocols. That is,

OC ((q1,q2)) = ξ (OA (q1),OB(q2)).

We must show thatC stably computesξ (F,G). Every
fair execution ofC projects onto a fair execution ofA (re-
spectivelyB) by erasing the second (respectively first) com-
ponent of each state pair. Since every fair execution ofA
andB converges, then also every fair execution ofC con-
verges.

Now, suppose a fair execution ofC stabilizes to output
assignmentyC . Let yA andyB be the stable outputs of the
corresponding embedded computations ofA andB, respec-
tively. SinceA andB both compute predicates according to
the predicate output convention, then all agents agree on the
output in each embedded computation, andyA andyB each
represent a truth valuebA andbB, respectively. By the def-
inition of OC , it follows that yC represents the truth value
ξ (bA ,bB). SinceA stably computesF andB stably com-
putesG, it follows thatC stably computesξ (F,G), as de-
sired. ut

Corollary 7 Any Boolean formula over stably computable
predicates with a common input set X is stably computable.

Proof Immediate by repeated application of Lemma 6.ut

4.2 Presburger definable predicates

Presburger arithmetic [22,10,9,15] is the first-order theory
of the integers under addition and less than. It is a rich but
decidable theory, enabling one to define predicates such as
parity and majority. In this section, we review the proper-
ties of Presburger arithmetic and the closely-related semilin-
ear sets. In the next section, we show that every predicate
definable in Presburger arithmetic is stably computable by
population protocols.

The usual definition of Presburger arithmetic consid-
ers a first-order logical language with one function sym-
bol “+”, constants “0” and “1”, predicate symbols “=” and
“<”, the usual logical operators of “∧”, “∨”, and “¬”, vari-
ablesx1,x2, . . ., and quantifiers “∀” and “∃”. Formulas are
interpreted with quantifiers ranging over the integers. “+” is
usual integer addition. “0” and “1” have their usual mean-
ings as integers. “=” and “<” are interpreted as the integer
relations of equality and less than.

8 Dana Angluin et al.

A formulaφ(x1, . . . ,xk) with free variablesx1, . . . ,xk de-
fines a predicateFφ : Zk → {0,1} as follows: For inte-
gersu1, . . . ,uk, Fφ (u1, . . . ,uk) = 1 if φ(x1, . . . ,xk) evaluates
to true whenx1, . . . ,xk are interpreted asu1, . . . ,uk, respec-
tively, andFφ (u1, . . . ,uk) = 0 otherwise.

The predicates definable in Presburger arithmetic are
closely related to the semilinear sets. A setL ⊆ Nk is lin-
ear if there are vectorsv0,v1, . . . ,vm∈ Nk such that

L = {v0 +κ1v1 + . . .+κmvm | κ1, . . . ,κm∈ N}.
A set issemilinear if it is the finite union of linear sets.

Theorem 8 (Ginsburg and Spanier) A subset ofNk is
semilinear iff it is definable in Presburger arithmetic.

Proof This was proved originally by Ginsburg and Spanier
[10]. Kracht gives a more recent simplified proof [15].ut

Although Presburger arithmetic seems to talk only about
addition, the use of quantifiers allows some predicates in-
volving multiplication and division to be defined. Letm be
a constant, and let≡m be the 2-place predicate such that
x≡m y holds iff x≡ y (modm). This can be defined by a
formulaξm(x,y) as follows. For any variable or constantq,
let mq be the expression that adds togetherm copies ofq,
i.e.,mq = q+q+ . . .+q︸ ︷︷ ︸

m times

. Then

ξm(x,y) df= ∃z∃q((x+z= y)∧mq = z).

ξm(x,y) is satisfied only whenz= y−x andq = z/m. Such
integersq andz exist exactly whenx≡ y (modm), as de-
sired.

An extensionof an interpreted first-order theory results
from augmenting the theory with new predicates and new
symbols to denote them. An extension that does not change
the class of definable predicates is calledconservative. Let
extended Presburger arithmetic result from augmenting
Presburger arithmetic with relation symbols≡m denoting
equivalence modulom, for m≥ 2.

Lemma 9 Extended Presburger arithmetic is a conserva-
tive extension of Presburger arithmetic.

Proof Immediate from the fact thatξm defines≡m. ut

Our definition ofξm makes essential use of quantifiers.
Rather surprisingly, once we augment Presburger arithmetic
with ≡m, quantifiers are no longer needed.

Theorem 10 (Presburger) Every definable predicate of
Presburger arithmetic can be defined in the extended lan-
guage by a quantifier-free formula.

Proof Presburger, in his original 1929 paper [22], shows
the decidability of closed formulas of Presburger arithmetic
without the “<” operator. His proof method is to transform
any closed formula4 into an easily-decided normal form in

4 A closed formula is one with no free variables.

which the only quantifiers appear in subformulas express-
ing≡m. While he does not explicitly consider either our ex-
tended language or predicates definable by open formulas,
his methods would seem to easily extend to our case.

It is unclear where our form of Theorem 10 first ap-
pears, although it is well known in the folklore. This result
was mentioned in Ginsburg and Spanier [10] and probably
elsewhere. Kracht presents a proof [15] that he attributes to
Monk [19]. ut

Example.We now return to the question raised at the end of
Section 1 of whether at least 5% of the birds in the flock have
elevated temperatures. Using the symbol-count input con-
vention, the sensors in the flock encode a pair(x0,x1), where
x0 is the number of birds with normal temperatures andx1
is the number of birds with elevated temperatures. The ques-
tion we wish to answer is whetherx1≥ 0.05(x0+x1). This is
easily seen to be equivalent to the predicate 20x1 ≥ x0 +x1.
It will follow from Theorem 12 that this predicate is stably
computable.

4.3 Computing Presburger predicates by population
protocols

In this section, we show that every Presburger-definable
predicate is stably computable by a population protocol us-
ing the integer input encoding convention. We first show that
all Presburger definable predicates under the symbol-count
input convention are stably computable. We then use this re-
sult to show the computability of all Presburger definable
predicates under the integer input convention.

Lemma 11 Let X = {σ1, . . . ,σk} be an arbitrary input al-
phabet. Let ai , c, and m be integer constants with m≥
2. Then the following predicates on non-negative integers
x1, . . . ,xk are stably computable in the family of standard
populations under the symbol-count input convention:

1. ∑i aixi < c.
2. ∑i aixi ≡ c (modm).

Proof We define population protocols for computing the
two predicates as follows. Lets= max(|c|+1,m,maxi |ai |),
wherem is taken to be 0 for the threshold protocol. In both
protocols, the state spaceQ is the set{0,1}×{0,1}×{u∈
Z : −s≤ u≤ s}, and the input functionI mapsσi ∈ X to
(1,0,ai). The first bit in each state is a “leader bit” that
is used to elect a unique leader who collects the value of
the linear combination. The second bit is an output bit that
records for each agent the output value computed by the last
leader it encountered. The third field is a “count” field used
to accumulate the linear combination of thexi on the left-
hand side. The output mapO simply maps(·,b, ·) to b.

We now give the transition rules for the two protocols
and prove their correctness. We start with the threshold pro-
tocol, as the analysis is more involved; we then argue the
correctness of the remainder protocol by analogy with the
argument of the threshold protocol.

Computation in Networks of Passively Mobile Finite-State Sensors 9

For any integersu,u′ with −s≤ u,u′ ≤ s, define

q(u,u′) = max(−s,min(s,u+u′))

and

r(u,u′) = u+u′−q(u,u′).

Observe that bothq(u,u′) and r(u,u′) lie in the range
[−s. . .s] and thatq(u,u′)+ r(u,u′) = u+ u′. Let b(u,u′) be
1 if q(u,u′) < c and 0 otherwise.

The transition rule is given by the formula

(`, ·,u),(`′, ·,u′) 7→

(1,b(u,u′),q(u,u′)),(0,b(u,u′), r(u,u′))

if at least one of̀ or `′ is 1. If both ` and`′ are zero, the
encounter has no effect.

Informally, the initiator becomes a leader if either agent
was a leader before the transition; the transition assigns as
much of the sum ofu andu′ to the initiator as possible, with
the remained assigned to the responder. The output bits of
both agents are set to 1 if and only if the part of the sum
assigned to the initiator is less thanc. We now show that
all output values converge to the truth value(∑i aixi < c) by
proving a sequence of claims about any fair execution.

The protocol converges to a single leader.DefineΛ(C) to
be the set of agents whose leader bit equals 1 in config-
urationC. Then |Λ(C0)| = n. Any encounter between two
leaders reduces|Λ(C)| by one, and no encounter increases
|Λ(C)|. By the fairness condition, if there are two leaders,
they eventually meet. It follows that after finitely many steps
|Λ(C)|= 1.

The single leader’s value converges tomax(−s,min(s,
∑i aixi)). For each agentj let u j(C) be the value of its count
field in configurationC. From the definition of the input
mapping I , we have∑ j u j(C0) = ∑i aixi , whereC0 is the
initial configuration. Because the transition rule preserves
the sum of the count fields of the two participating agents,
∑ j u j(C) continues to equal∑i aixi throughout the computa-
tion.

For a given configurationC, defineΛ(C) as above to
be the set of agents that are leaders, and definep(C) =
∑ j 6∈Λ(C) |u j(C)|. For notational simplicity, and when the
meaning is clear, we will writep instead ofp(C) andui in-
stead ofui(C). Call a configurationC stable if there is a
unique leader̀ and one of the following conditions holds:

1. p = 0.
2. u` = s, andu j ≥ 0 for all j 6= `.
3. u` =−s, andu j ≤ 0 for all j 6= `.

By checking the three cases, it is not hard to see that in a
stable configuration,u` = max(−s,min(s,∑i aixi)).

We will now show that the protocol converges to a stable
configuration by showing that from any configuration with
a unique leader that is not stable, there is a transition that

reducesp, and no transition increasesp. We let` continue
to be the identity of the leader.

Supposeu` = s, and there is somej 6= ` for whichu j < 0;
then an encounter between` and j sets the count field of
the initiator (which becomes the leader) tos+ u j and sets
the count field of the responder to 0. This reducesp by
−u j > 0. If, on the other handu` = −s and there is some
j 6= ` for which u j > 0, then an encounter between` and j
again sets the count field of the responder to 0, reducingp.
If −s< u` < s and there is somej 6= ` with u j 6= 0, then in
an encounter betweeǹand j either (a)u j > 0, the initia-
tor’s count becomes min(u` + u j ,s) = u` + min(u j ,s− u`),
and p drops by min(u j ,s− u`) > 0; or (b) in the symmet-
ric caseu j < 0, p drops by min(−u j ,s+u j) > 0. So in any
configuration with a single leader that is not stable, there ex-
ists a transition that reducesp; by fairness, a transition that
reducesp eventually occurs.

It remains to show that other transitions will not increase
p. The remaining possible transitions are (a) those between
two non-leaders, which are no-ops and thus do not affectp;
(b) those that involve a leader` with u` = s and an agentj
with u j ≥ 0, which do not changep because in such cases
the initiator becomes a leader with countq(s,u j) = sand the
responder receivesr(s,u j) = u j ; and (c) those that involve a
leader̀ with u` =−s and an agentj with u j ≤ 0, which are
symmetric to the previous case. These last two cases also
demonstrate that once a stable configuration with a unique
leader̀ with |u`|= s is reached, the value held by the leader
does not change. For a stable configuration with|u`|< s, the
fact that p = 0 implies that the leader never encounters a
nonzero count in another agent, so again the leader’s value
never changes.

Sincep is non-negative, bounded, never rises, and even-
tually falls in any non-stable configuration with a unique
leader, it follows that the protocol eventually converges to
a stable configuration once a unique leader exists.

Convergence of the output fields to the correct value.In a
stable configuration, if∑i aixi < c, then the leader’s count
u` is either∑i aixi or−s< c. In either caseb(u` +u j) gives
the correct output, and any encounter between a leader and
another agent sets the output fields of both agents to 1. No
other transition sets the output field of any agent to 0, and
by fairness the leader eventually encounters all other agents;
it follows that after some finite interval, all agents output 1.
Alternatively, if ∑i aixi ≥ c, then the leader’s countu` is ei-
ther∑i aixi or s; in either case encounters between the leader
and another agent sets both agents’ outputs to 0, and again
all agents eventually converge, this time to 0. This completes
the the proof of correctness for the threshold protocol.

We now turn to the remainder protocol. Here the transi-
tion rule is given by the formula

(`, ·,u),(`′, ·,u′) 7→ (1,b,(u+u′) modm),(0,b,0),

if at least one of̀ or `′ is 1, whereb is 1 if u+ u′ ≡ c
(modm) and 0 otherwise. If both̀ and`′ are zero, the en-
counter has no effect.

10 Dana Angluin et al.

Repeating the argument for the threshold algorithm, we
immediately see that the protocol eventually converges to a
single leader. Inspection of the transition rule reveals that
(∑ j u j(C)) modm is invariant throughout the protocol, and
that any non-leader has count 0. It follows that when a single
leader exists, its count field is exactly(∑ j u j(C0)) modm=
(∑i aixi) modm. Further encounters between the single re-
maining leader and other agents eventually set all output
fields to∑i aixi ≡ c (modm), as claimed. ut

Theorem 12 Any Presburger-definable predicate on non-
negative integers is stably computable in the family of stan-
dard populations under the symbol-count input convention.

Proof Given a Presburger formulaΦ , apply Theorem 10 to
convert it to a quantifier-free formulaΦ ′ over the extended
language described in Section 4.2. This formulaΦ ′ will be
a Boolean formula over predicates that can be written in one
of the following three forms:

∑aixi +c1 < ∑bixi +c2 (1)

∑aixi +c1 = ∑bixi +c2 (2)

∑aixi +c1 ≡m ∑bixi +c2 (3)

If we can show that each such predicate is stably com-
putable, thenΦ ′ is stably computable by Corollary 7.

By rearranging terms, predicates of the form (1) involv-
ing inequalities can be rewritten as

∑dixi < c,

where eachdi = ai−bi andc = c2−c1; such predicates can
be stably computed by the first case of Lemma 11.

Predicates of the form (2) involving equality can be re-
placed by the AND of a pair of predicates:

∑aixi +c1 < ∑bixi +c2 +1

∑aixi +c1 > ∑bixi +c2−1

These two predicates can then be stably computed by the
first case of Lemma 11 and their AND can be stably com-
puted by Lemma 6.

Predicates of the form (3) can be rewritten as

∑dixi ≡m c,

where c and thedi are defined as in the first case; such
predicates can be stably computed by the second case of
Lemma 11. ut

Theorem 12 places strong restrictions on the input,
and it would appear that it would only permit computing
Presburger-definable predicates on non-negative values that
sum to less thann. However, it is possible to extend the re-
sult of Theorem 12 to the integer-based input convention by
building a translator for the integer-based input convention
into the Presburger formula itself. The result is:

Corollary 13 Any Presburger-definable predicate onZk is
stably computable in the standard populationPn with the
integer-based input convention.

Proof Let Φ(y1, . . . ,yk) be a Presburger-definable predicate
on Zk. We will convert Φ to a new Presburger-definable
predicate over free variablesxv, where each variablexv
counts the occurrence of specific tokens representing each
k-vectorv = 〈v1,v2, . . . ,vk〉 in X.

Recall that in the integer-based input convention, each
yi is the sum over all agents of thei-th vector coordinate.
Define

Φ
′ = ∃y1, . . . ,yk : Φ(y1, . . . ,yk)∧

k∧
i=1

(
yi = ∑

v∈X
vixv

)
.

Observe that the valuesvi in each sum are constants, so that
Φ ′ is a formula in Presburger arithmetic, which is stably
computable on the standard population by Theorem 12. Ob-
serve further thatΦ ′ is true if and only ifΦ is satisfied by
a set of valuesy1, . . . ,yk that are equal to the integer values
given by the integer-based input convention. It follows that
Φ is stably computable. ut

Example.Consider the Presburger predicate

Φ(y1,y2)
df= (y1−2y2≡ 0 (mod 3)).

Let

X = {(0,0),(1,0),(−1,0),(0,1),(0,−1)}

be an input alphabet. The related predicate

Φ
′ df= ∃y1,y2 (y1−2y2≡ 0 (mod 3)

∧ y1 = x(1,0)−x(−1,0)

∧ y2 = x(0,1)−x(0,−1))

has five free variablesx(u,v), one for each(u,v) ∈ X. Let Eint
I

be the integer input convention andESC
I be the symbol-count

input convention on the same setX. It is easily verified that

Φ
′(ESC

I (x)) = Φ(Eint
I (x))

for everyx∈X .

Corollary 14 A symmetric language L⊆ X∗ is accepted by
a population protocol if its image under the Parikh map is a
semilinear set.

Proof Let L ⊆ X∗ be a symmetric language whose image
under the Parikh mapΨ is a semilinear set. From Theo-
rem 8,Ψ(L) is definable in Presburger arithmetic. From The-
orem 12, there is a protocolA to stably computeΨ(L) under
the symbol-count input convention. From Lemma 4,A ac-
ceptsL. ut

4.4 Predicates not stably computable

Theorem 12 gives a partial characterization of the stably
computable predicates in the population model with all pairs
enabled. We do not know if this characterization is complete.

Computation in Networks of Passively Mobile Finite-State Sensors 11

However, we can obtain an upper bound on the set of pred-
icates stably computable in this model by showing that it is
contained in the complexity classNL.

Because stably computable predicates in this model are
symmetric, it is sufficient to represent a population configu-
ration by the multiset of states assigned to the agents. Since
there are|Q| possible states and the population consists of
n agents, each population configuration can thus be repre-
sented by|Q| counters ofdlogne bits each. A population pro-
tocol step can be simulated by drawing two elements from
the multiset, applying the transition function and returning
the resulting two elements to the multiset.

Suppose there is a population protocolA that stably
computes a predicateF in the family of standard popula-
tions. DefineLF to be the set of stringsx such thatF(x) = 1,
where we interpret a stringx of lengthn as an element ofXn.
We describe a nondeterministic Turing machine to accept
LF in spaceO(logn). To accept inputx, the Turing machine
must verify two conditions: that there is a configurationC
reachable fromI(x) in which all states have output 1, and
there is no configurationC′ reachable fromC in which some
state has output 0. The first condition is verified by guessing
and checking a polynomial-length sequence of multiset rep-
resentations of population configurations reaching such aC.
The second condition is the complement of a similar reacha-
bility condition. It is in nondeterministicO(logn) space be-
cause this class is closed under complement [13]. It follows
that:

Theorem 15 All predicates stably computable in the model
with all pairs enabled are in the class NL.

It is an open problem to characterize exactly the power of
this model of stable computation. Concretely, we conjecture
that predicates such as “x is a power of 2” and “z = x×
y” are not stably computable by population protocols. Our
intuition is that the model lacks the ability to sequence or
iterate computations, and we suspect that a pumping lemma
of some form exists for the model.

5 Computation with restricted interactions

Some interaction graphs may permit very powerful compu-
tations by population protocols; for example, a population
whose interaction graph is a directed line can easily simulate
a linear-space Turing machine. In this section, we prove that
the complete interaction graph we have been assuming up
until now is in a sense theweakeststructure for stably com-
puting predicates, in that any predicate that is stably com-
putable in a complete interaction graph can also be com-
puted in any weakly-connected interaction graph.

Theorem 16 For any population protocolA , there exists a
population protocolA ′ such that for every n, ifA stably
computes predicateψ on the standard populationPn, and
if P ′ is any population with agents 1,2,. . . ,n and a weakly-
connected interaction graph, thenA ′ stably computesψ on
P ′.

We present the proof in the following sections. First, we
construct the simulatorA ′. Next, we relate the reachable
configurations inA to the reachable configurations inA ′.
We then conclude thatA ′ correctly computesψ.

Construction ofA ′. First assume without loss of generality
thatn is at least 4; we will need this assumption to avoid get-
ting our agents tangled. The case wheren< 4 can be handled
by a parallel simulation that collects up to three input val-
ues together, computes the resulting output by table lookup,
and overrides the output of the main simulation if it (stably)
computes thatn is indeed less than 4.

The computation ofA is simulated using one agent in
P ′ to hold the state of each agent inPn. Simulated agents
migrate from agent to agent inP ′; this allows any two sim-
ulated agents to interact infinitely often. The key idea is
to have any interaction inA ′ choose nondeterministically
between swapping the states of the two interacting agents
or simulating an interaction inA ; most of the details of
the simulation involve implementing this nondeterministic
choice with deterministic transitions. To do so, the state
space inA ′ is augmented to add two “batons”,S (for the
initiator) andR (for responder) which move somewhat inde-
pendently of the simulated agents. The presence or not of the
two batons is used to control what effect an interaction has:
an interaction that involves no batons swaps the states; an
interaction that involves one baton moves the baton; and an
interaction that involves both batons simulates a transition in
A .

Formally, letA have input alphabetX, output alphabet
Y, state spaceQ, input functionI , output functionO, and
transition functionδ . DefineQ′ = Q×{D,S,R,−} where
D is a default initial state of the baton field,S marks the
initiator baton,R marks the responder baton, and− marks a
“blank” or absent baton. To avoid a profusion of parentheses
we will write ordered pairs inQ′ using simple concatenation,
e.g.,qD for (q,D). The transition functionδ ′ is shown in
Figure 1. Finally, defineI ′(X) = I(X)D andO′(qB) = O(q).
Let A ′ be the population protocol(X,Y,Q′, I ′,O′,δ ′).

Group (a) transitions consume all initialD batons, pro-
ducing at least oneS and at least oneR baton; group (b)
eventually reduces the set of non-blank batons to exactly
oneSand oneR. The remaining groups implement (c) baton
movement, (d) state swapping, and (e)A -transitions. Note
that group (e) transitions also swap batons; this is done to
allow S andR batons to pass each other in narrow graphs,
which may be necessary to bring duplicates together in the
initial stage.

Note that the group of anA ′-transition can be uniquely
identified by looking at the changes to the baton fields. If the
number ofD batons decreases, it is group (a). If the number
of S or R batons decreases, it is group (b). If exactly oneR
or Smoves from one agent to another, it is group (c). If the
batons don’t change, it is group (d). If anS and R switch
places, it is group (e).

We now make precise the sense in whichA ′ “simulates”
A . A simulatedA -configurationC is obtained by ignoring

12 Dana Angluin et al.

Group (a): (xD,yD) 7→ (xS,yR)
(xD,y∗) 7→ (x−,y∗)
(x∗,yD) 7→ (x∗,y−)

Group (b): (xS,yS) 7→ (xS,y−)
(xR,yR) 7→ (xR,y−)

Group (c): (xS,y−) ↔ (x−,yS)
(xR,y−) ↔ (x−,yR)

Group (d): (x−,y−) ↔ (y−,x−)

Group (e): (xS,yR) 7→ (x′R,y′S)
(yR,xS) 7→ (y′S,x′R)

Key: x andy range over all states inQ.
∗ represents any non-D baton.
(x′,y′) = δ (x,y).

Fig. 1 Transition functionδ ′ for simulator in proof of Theorem 16.

both the batons and agent order in anA ′-configurationC′.
Let ρ(C′) be the configurationC obtained fromC′ by eras-
ing the second component of each agent’s state inC′, that
is, for all a ∈ A, if C′(a) = pB, thenC(a) = p. Let π be
a permutation of agentsA. For anyA or A ′-configuration
C1, let π(C1) = C2, whereC2(π(a)) = C1(a). SayC is aQ-
restriction of C′ if there is a permutationπ of the agentsA
such thatπ(ρ(C′)) = C; in other words, theQ components
of theC′ states equal theC states modulo reordering the pop-
ulation members.

Call two configurationsC andC̄ of A equivalent, writ-
tenC≡ C̄, if C̄= π(C) for some permutationπ of the agents.
For convenience, we extend the definition of equivalence
to the union ofA - and A ′-configurations. IfC is an A -
configuration andC′ is anA ′-configuration, then letC≡C′

if C is a Q-restriction ofC′, and close≡ under reflexivity,
symmetry, and transitivity. ForA ′-configurationsC′1 andC′2,
it then follows thatC′1≡C′2 iff ρ(C1)≡ ρ(C2).

Call anA ′-configurationclean if it has exactly oneS
and oneRbaton and noD batons.

Lemma 17 Let C′ be any configuration ofA ′ reachable
from an initial configuration C′0. Then C′

∗→ D′ for some
clean configuration D′.

Proof EitherC′ = C0 orC′ contains at least oneSbaton and
at least oneRbaton. This is because the only transitions that
can be applied toC0 change twoD batons into anSand an
R, respectively, and no subsequent transition can remove the
lastSor the lastR.

Starting fromC′, apply group (a) transitions toC′ to re-
move allD batons. If there are two or moreSbatons, apply
group (c) and group (e) transitions to bring them to adjacent
nodes, and apply a group (b) transition to eliminate one. Re-
peat until only oneSbaton remains. In a similar way, repeat-
edly eliminateRbatons until only one remains. LetD′ be the
resulting configuration.D′ contains exactly oneSand oneR
baton and noD batons, as desired. ut

Lemma 18 Let C′ be final inA ′. Then C′ is clean.

Proof By Lemma 17, there is a clean configurationD′ reach-
able fromC′. SinceC′ is final, then so isD′, andC′ is reach-
able fromD′. No A ′-transition takes a clean configuration
to an unclean one; hence,C′ is also clean. ut

Lemma 19 Let C≡C′, where C is reachable inA and C′ is
reachable inA ′. Suppose C′

∗→ D′ in A ′. Then C
∗→ D and

D≡ D′ for someA -configuration D.

Proof Proof is by induction on the lengthk of the execution
C′
∗→ D′.
Base case: Ifk = 0, it suffices to takeD = C.
Inductive case: Suppose the lemma holds fork−1. Let

C′ = C′0→C′1→ . . .→C′k = D′. By the induction hypothe-

sis, there existsCk−1 such thatC
∗→Ck−1 andCk−1≡C′k−1. If

C′k−1→C′k is a transition in groups (a)-(d), thenC′k−1 ≡C′k,
so we chooseCk = Ck−1. If it belongs to group (e), then
ρ(C′k−1)→ ρ(C′k) is anA -transition by construction. Letπ
be the agent permutation such thatCk−1 = π(ρ(C′k−1)). De-

fineCk = π(ρ(C′k)). It is easily seen thatC
∗→Ck−1→Ck and

Ck ≡C′k. Hence, the lemma holds fork by choosingD = Ck
By induction, the claim holds for allk. ut

Lemma 20 Let C′ be a reachable clean configuration ofA ′.
Let C be a reachable configuration ofA such that C≡C′.
Suppose C→ D is a possibleA -transition. Then C′

∗→ D′

and D≡ D′ for someA ′-configuration D′.

Proof SupposeC
(u,v)→ D via encountere = (u,v). Suppose

C(u) = p, C(v) = q, and(p′,q′) = δ (p,q). We proceed to
constructD′.

Begin by fixing a spanning tree in the interaction graph
of P ′. We restrict attention to encounters described by edges
in the spanning tree. Statesp andq are the state components
of two distinct nodes inC′. Similarly, batonsS and R lie
in two distinct nodes. We describe a sequence of transitions
whose effect will be to move statep and batonRalong span-
ning tree edges to some nodeu′, and to similarly move state
q and batonS to some nodev′, whereu′ andv′ are the end-
points of some edge.

Using a sequence of group (c) transitions, move theS
andRbatons to distinct leaves of the spanning tree. Letu′ be
the leaf now containing batonS, and letv′ be some adjacent
node. Thus,(u′,v′) or (v′,u′) (or both) is an edge; choose
one and call ite. Using a sequence of group (d) transitions,
move statep to nodeu′ and move stateq to nodev′. Using a
sequence of group (c) transitions, move batonR to nodev′.
Finally, apply a group (e) transition toe to obtainD′.

We have thus constructed a sequence of configurations
C′=C′0≡C′1≡ . . .≡C′k−1

e→C′k = D′. It is easily seen thatC
is aQ-restriction ofC′k−1 via some permutationπ that maps
u′ to u andv′ to v. SinceD′ is identical toC′k−1 except for
the states ofu′ andv′, and the simulated state components
of u′ andv′ have been replaced byp′ andq′, respectively, it
follows thatD is aQ-restriction ofD′. ut

Computation in Networks of Passively Mobile Finite-State Sensors 13

Lemma 21 Let C≡C′, where C and C′ are reachable con-
figurations ofA andA ′, respectively, and C′ is final inA ′.
Then C is final inA .

Proof Let G(A ′,P ′) be the transition graph ofA ′ andP ′,
and letS ′ be the final strongly connected component of
G(A ′,P ′) that containsC′. Let S be the set of all reach-
ableA -configurationsD such thatD≡D′ for someD′ ∈S ′.
Hence,C ∈ S . We now show thatS is a union of final
strongly connected components ofG(A ,Pn).

It suffices to show that ifC1∈S andC1
∗→C2, thenC2∈

S andC2
∗→C1. By definition ofS , there existsC′1 ∈S ′

such thatC′1 ≡C1. By Lemma 18, sinceC′1 is final, thenC′1
is clean. By repeated application of Lemma 20, there exists
C′2 ≡ C2 such thatC′1

∗→ C′2. SinceS ′ is final, thenC′2 ∈
S ′ andC′2

∗→C′1. By Lemma 19,C2
∗→ C̄1 andC̄1 ≡C′1 for

someA -configurationC̄1. If C̄1 = C1, we are done. If not,
we have established thatC1≡C′1≡ C̄1 andC1

∗→ C̄1. Hence

C̄1 = π(C1) for some agent permutationπ, soC1
∗→ π(C1).

From this, it follows that

π
k(C1)

∗→ π
k(π(C1)),

where πk is the kth iterate of π, that is, πk(C1) =
π(π(. . .π(C1) . . .)) k times. Hence,

C1
∗→ π(C1)

∗→ π(π(C1))
∗→ . . .

∗→ π
k(C1),

For somek0, πk0 is the identity function, so in particular,

C̄1 = π(C1)
∗→ π

k0(C1) = C1.

Hence,C2
∗→C1, as desired. ut

We now complete the proof of Theorem 16.

Proof We must show that every computation ofA ′ on input
x stabilizes toψ(x). Let Ξ ′ be a computation ofA ′ on input
x. LetC′ occur infinitely often inΞ ′. By Lemma 1,C′ is final.
By Lemma 19,C′ ≡C for some reachable configurationC of
A . By Lemma 21,C is final inA . Let y = yC be the output
determined byC. SinceA computes a predicate, theny is
the constant assignment0 or 1, andy is correct forψ. The
output determined byC′ is some permutation ofy, but since
y is the constant function, all permutations ofy are identical.
Hence, the output determined byC′ is y, which is correct.

We conclude thatA ′ stably computesψ. ut

6 Computation with randomized interactions:
conjugating automata

“Stability” is probably not a strong enough guarantee for
most practical situations, but it is the best we can offer given
only the fairness condition. To make stronger guarantees, we
must put some additional constraints on the interactions be-
tween members of the population.

Let us add a probabilistic assumption on how the next
pair to interact is chosen. Many assumptions would be rea-
sonable to study. We consider one of the simplest: the or-
dered pair to interact is chosen at random, independently and
uniformly from all ordered pairs corresponding to edges in
the interaction graph. When the interaction graph is com-
plete, this is the model ofconjugating automata, inspired
by models introduced by Diamadi and Fischer to study the
acquisition and propagation of knowledge about trustworthi-
ness in populations of interacting agents [5].

Random pairing is sufficient to guarantee fairness with
probability 1, so any protocol that stably computes a predi-
categ in a fair model computesg with probability 1 on every
input in the corresponding random-pairing model, assuming
both run on the same population.

However, probabilities also allow us to consider prob-
lems where we only compute the correct answer with high
probability, or to describe the expected number of interac-
tions until a protocol converges. Given a functionf mapping
X to Y , a population protocolA , and an inputx, we define
the probability thatA computesf on inputx to be the prob-
ability of all computations beginning withI(x) that stabilize
with output f (x).

For example, for the (modm) protocol, we can compute
both the expected number of interactions in a computation
until there is just one leader and the expected number of fur-
ther interactions until every member of the population has
interacted with the unique leader.

The time (meaning the number of interactions) to get a
single leader is equal to the sum of the times until two lead-
ers meet withn, n−1, . . . leaders; this is

n

∑
i=2

(n
2

)(i
2

) = (n−1)2.

Once there is a unique leader, it must participate in
Θ(nlogn) interactions on average before it encounters ev-
ery other member of the population (immediate application
of the Coupon Collector Problem). But since the leader par-
ticipates in only(n−1)/

(n
2

)
= 2/n of the interactions, this

translates into a total ofΘ(n2 logn) interactions in the full
population.

Summing these two bounds, the expected total number
of interactions until the output is correct isΘ(n2 logn). In
general, we are interested in protocols that accomplish their
tasks in an expected number of interactions polynomial inn,
the population size.5

Generalizing this argument to the constructions of
Lemma 11, Theorem 12, and Corollary 13, we obtain the
following:

Theorem 22 Let ψ be a Presburger definable predicate.
Then there is a conjugating automaton (randomized popu-
lation protocol) that computesψ with probability 1, where
the population converges to the correct answer in expected

5 Note that such protocols do not terminate with a final answer; they
remain capable of resuming indefinitely.

14 Dana Angluin et al.

total number of interactions O(kψn2 logn), where kψ is a
constant depending onψ.

Proof Observe that the construction used in Theorem 12 in-
volves (a) electing a unique leader, followed by (b) com-
puting in parallel zero or more base predicates of the form
∑aixi < c or ∑aixi ≡ c (modm); and (c) combining the re-
sults of these base computations according to the formula
and distributing the results to all agents.

We have already observed that step (a) takesO(n2) time.
We will now show that step (b) takesO(n2 logn) time. We
have already shown that computing a single sum (modm)
takesO(n2 logn) time, as the leader just needs to encounter
each other agent once.

For the threshold predicate, the situation is slightly more
complicated; it is possible that some encounters between the
leader and another agent will not make progress, because the
leader is already “maxed out” and cannot collect any values
from the other agent. Definen− as the number of agents car-
rying negative values andn+ as the number of agents carry-
ing positive values. Then in any configuration with a unique
leader,

1. If the leader’s count is non-positive and the other agent’s
count is positive, thenn+ drops by one.

2. If the leader’s count is non-negative and the other agent’s
count is negative, thenn− drops by one.

Now consider the length of the interval starting from
some configuration until eithern− or n+ drops. If the
leader’s count is positive, thenn− drops after an expected
O(n2/n−) interactions. If the leader’s count is negative, then
n+ drops after an expectedO(n2/n+) interactions. In either
case, there is at most one interval in which the leader’s count
has the appropriate sign for each distinct value ofn− or n+,
and its expected length is at mostO(n2/n−) or O(n2/n+),
depending again on the sign of the leader’s count. Summing
all such intervals for bothn− andn+ gives a total expected
time bounded by

n−1

∑
n−=1

O(n2/n−)+
n−1

∑
n+=1

O(n2/n+)

= O(n2Hn) = O(n2 logn).

This establishes that a single instance of the threshold pred-
icate can also be computed inO(n2 logn) time.

To show that all the base predicates running in paral-
lel take O(n2 logn) time, let Ti , i = 1. . .k be the time for
the i-th such predicate, wherek is the (finite) number of
such predicates. ThenE[maxi Ti]≤E[∑i Ti] = O(kn2 logn) =
O(n2 logn).

Finally, step (c) requires that the leader encounter every
other agent at least once, which we have already shown takes
O(n2 logn) time. Thus the total time for the Theorem 12 con-
struction isO(n2 logn). That the same asymptotic expected
time bound applies to Corollary 13 follows from the fact that
the proof of the corollary just constructs a new constant-size
Presburger formula and applies Theorem 12 to it. ut

6.1 The benefits of a leader

Given a leader agent, it is possible to simulate a counter
machine with a finite-state controller (whose state is stored
in the leader) and increment, decrement, and zero-test op-
erations, where the zero-test operation succeeds with high
probability (Theorem 24). Using an initial leader election
protocol and a standard reduction from Turing machines to
counter machines due to Minsky [18], we can show that a
conjugating automata can thus simulate logspace Turing ma-
chines on inputs given in unary (Theorem 25).

Simulating countersIf we are allowed to designate a leader
in the input configuration, that is, one agent that starts in
a distinguished state, then the leader can organize the rest
of the population to simulate a counter machine withO(1)
counters of capacityO(n), with high probability. We assume
throughout this section that the interaction graph is com-
plete.

We use the representation described in Section 3.4 for
integers in arithmetic computations. For a simulation ofk
counters in which counteri can take on a maximum value of
cin, each state is mapped to ak-tuple of nonnegative integers
in [0. . .c1]× ·· · × [0. . .ck]. The sum of componenti over
the population gives the current contents of counteri. We
assume that the inputs to the counter machine are supplied in
designated counters and the leader simulates the finite-state
control of the counter machine.

To decrement counteri, the leader waits to encounter an
agent with componenti of its state greater than zero, and
decrements it. Incrementing counteri is similar; component
i must be less than its maximum valueci . These operations
will happen with probability 1, assuming that they are pos-
sible. However, testing counteri for zero is different; the
leader must attempt to decide whether there are any agents
with componenti greater than zero. We give a method that is
correct with high probability. It is the ability to make (pos-
sibly incorrect) decisions that enables effective sequencing
and iteration of computations in this model.

The leader initially labels one other agent (the timer)
with a special mark. The leader waits for one of two events:
(1) an interaction with an agent with a nonzero componenti,
or (2)k consecutive interactions with the timer. If an event of
type (1) occurs first, then the simulated counter is certainly
not zero. Event (2) has low probability, so if it occurs first,
the probability is high that the leader has encountered ev-
ery other agent in the meantime, so the leader may conclude
(with a small probability of error) that the value of simulated
counteri is zero. The parameterk controls the probability of
error, at the expense of increasing the expected number of
interactions.

The probability that the leader prematurely concludes
that there are no tokens of a particular type depends on the
number of such tokens. We can model this game as an urn
process, where at each step (corresponding to some interac-
tion between the leader and one of then−1 other tokens), a
token is drawn from the urn, examined, and replaced. If the

Computation in Networks of Passively Mobile Finite-State Sensors 15

token is one ofmcounter tokens, the leaderwins: it correctly
determines that there is at least one counter token in the urn.
If the token is an unmarked token or a timer token, the leader
replaces it and continues to draw. The leaderlosesif it draws
k timer tokens in a row without drawing any other token.

For simplicity, we writeN = n− 1 for the size of the
urn in this process. We also assume that the timer token is
distinct from all the counter tokens, although later we will
allow the agent carrying the timer token to also carry part
of the counter value. If the timer token is also a counter to-
ken, then the probability of seeing the timer token before
a counter token drops to zero, and the expected number of
steps until the first counter token is drawn when there arem
counter tokens is exactlyN/m.

However, in the case where the timer token and counter
tokens are distinct, we have:

Lemma 23 With an urn containing N tokens, of which m
are counter tokens and1 a timer token:

1. The probability of drawing the timer token k times in a
row before drawing a counter token is exactly

N−1
mNk +(N−1−m)

≤ 1
mNk−1 .

2. Conditioned on not drawing the timer token k times in a
row before drawing a counter token, and provided m> 0,
the expected number of draws up to and including the
first draw of a counter token is less than or equal to N/m.

3. When m= 0, the expected number of draws until the
timer token is drawn k times in a row is O(Nk).

Proof We consider first the probability of losing, i.e., the
probability that we drawk timer tokens in a row before draw-
ing a counter token. At the start of the process, there is a
probability of N−k that we draw the timer token on every
one of the firstk draws. Call this eventL. If L does not oc-
cur, then we draw the timer token between 0 andk−1 times,
followed by some non-timer tokenx. Since all non-timer to-
kens are equally likely to bex, the probability thatx is a
counter token conditioned onL not occurring is m

N−1; in this
case the process ends. Ifx is not a counter token, then the
process starts over from the beginning.

Letting p be the probability of losing, we have

p = Pr[L]+ (1−Pr[L])
(

1− m
N−1

)
p.

Solving this equation forp gives

p =
Pr[L]

1− (1−Pr[L])
(
1− m

N−1

)
=

N−k

1− (1−N−k)
(

N−1−m
N−1

)
=

N−k(N−1)
(N−1)− (1−N−k)(N−1−m)

=
N−k(N−1)

(N−1)− (N−1−m)+N−k(N−1−m)

=
N−k(N−1)

m+N−k(N−1−m)

=
N−1

mNk +(N−1−m)
.

For the upper bound, observe that

N−1
mNk +(N−1−m)

≤ N
mNk =

1
mNk−1 .

For the second part, consider again the initial state. From
this state we first draw the timer token zero or more times,
followed by a non-timer token. The expected number of such
draws until we get the first non-timer (without any condi-
tioning) is N

N−1, and conditioning on not drawing the timer
k times in a row can only reduce this value. Having drawn a
non-timer, the probability that it is a counter token is again

m
N−1; if it is not, we start over from the beginning.

LettingT be the expected number of draws, we have:

T ≤
(

N
N−1

)
+
(

N−1−m
N−1

)
T.

Solving forT gives

T ≤ N/(N−1)
1− (N−1−m)/(N−1)

=
N

(N−1)− (N−1−m)
=

N
m

.

For the third part, we again consider sampling from the
urn without stopping, and start with 0 or more timer token
draws, followed by a non-timer token draw. Each such phase
includes an expectedN

N−1 draws, and has probabilityN−k of
includingk timer tokens. Stopping afterk timer tokens can
only reduce the time, so we have

T ≤
(

N
N−1

)
+(1−N−k)T,

from whichT ≤ Nk
(

N
N−1

)
= O(Nk). ut

We now use Lemma 23 to bound the time and error of
performing azero testoperation in a population protocol,
where a unique leader wishes to determine if there are no
nonzero counter tokens in the rest of the population. As in
the urn process, the leader gives up if it sees the timer token
(held by one of the other agents) ink consecutive interac-
tions, without first seeing a nonzero counter value.

We again assume that the timer token sits on an agent
with a zero counter value, and that there arem agents with
nonzero counter values. To translate the time bounds of
Lemma 23 into expected steps of the population process,
we must not only substituten−1 for N, but must also take
into account the fact that when testing for zero, only a frac-
tion 2/n of all interactions involve the leader. This gives
an expected number of population protocol steps per draw
of Θ(n), so that the time bounds for a zero test become
O(n2/m) whenm> 0 andO(nk+1) whenm= 0. We sum-
marize these bounds as:

16 Dana Angluin et al.

Theorem 24 Given a standard population with n agents, of
which one is a leader agent, one carries a timer token, and
m carry counter tokens, and a zero test operation that waits
for either (a) an encounter between the leader and a counter
token, or (b) k encounters between the leader and timer to-
kens with no intervening encounter between the leader and
any other token:

1. The probability that the zero test incorrectly reports zero
when m> 0 is zero if the timer token is on the same agent
as a counter token andΘ(n−k/m) otherwise.

2. Conditioned on a correct outcome, the expected time to
complete a zero test is O(n2/m) when m> 0and O(nk+1)
when m= 0.

How to elect a leaderIf we do not have a unique leader in
the input configuration, it is possible to establish one using
the ideas of the leader bit, as in the proof of Lemma 11, and
the timer mark, as in the counter simulation above.

At the global start signal, every agent receives its input
symbol (which it remembers for the duration of the compu-
tation), sets its leader bit equal to 1, and clears its timer mark
(indicating that it is not a timer). Any agent whose leader
bit equals 1 begins an initialization phase: it marks the first
non-timer agent that it encounters as a timer and attempts
to initialize every other agent. It uses the event of encoun-
tering a timerk times in a row to determine the end of the
initialization phase.

Of course, at first every agent is attempting to run the ini-
tialization phase, so there will be general chaos. Whenever
two agents with leader bit equal to 1 encounter each other,
one (the loser) sets its leader bit to 0, and the other (the win-
ner) keeps its leader bit 1. If the loser has already marked a
timer, the winner waits until it encounters a timer and turns
it back into a non-timer before proceeding. The winner then
restarts the initialization phase (not creating another timer if
it has already released one). When initialized, agents with
leader bit equal to 0 revert to a state representing only their
input and their leader bit, but they retain their timer status.

If an agent with leader bit equal to 1 completes the ini-
tialization phase, it begins the computation (e.g., simulating
a counter machine, as in the preceding section). If during
the computation it encounters another agent with leader bit
equal to 1, the two proceed as indicated above, one setting
its leader bit to 0, and the other restarting the initialization
phase, with appropriate housekeeping to ensure retrieval of
the extra timer, if any.

After a period of unrest lasting an expectedΘ(n2) inter-
actions, there will be just one agent with leader bit equal to
1. After the interaction eliminating the last rival, this lucky
winner will succeed in initializing all other agents with high
probability (because there is only one timer in the popula-
tion) and proceed with the computation as the unique leader.
If and when the counter machine halts, the unique leader
can propagate that fact (along with the output, if a function
of one output is being computed) to all the other agents. If
there have been no errors during the (final) simulation, the

output of every configuration in the rest of the computation
is correct.

Simulating a Turing machineWe have just shown how to
carry out zero tests and to elect a leader with high probabil-
ity. We now show how to simulate a logspace Turing ma-
chine with high probability, using a standard reduction due
to Minsky [18] from Turing machines to counter machines.

The central idea of Minsky’s construction is to represent
a Turing machine tape as two stacks, and then represent each
stack as a counter value using a Gödel-numbering scheme
where the sequence of symbolsx0,x1, . . .xm is stored as

m

∑
i=0

xib
i ,

where each symbol is assigned a positive numerical value
and b is a constant base that exceeds the value of all the
symbols. Pushing a new symbolx corresponds to setting
c← cb+ x; a pop operation consists of settingc← bc/bc
and returning the remainder. The product and quotient oper-
ations can each be implemented using a second counter that
accumulates the new value while the first counter is decre-
mented to zero; the remainder is accumulated in the finite-
state controller (or in our simulation, the leader agent) dur-
ing the quotient operation. A total of three counters—one for
each side of the tape plus an extra accumulator—are used for
the simulation.

We represent these counters using the integer-based in-
put convention. Each agent other than the leader and the
timer stores a vector of values in the range 0. . .M for some
M; the value of counteri is the sum of thei-th positions in
these vectors, and may be as large as(n− 2)M. A counter
is zero if and only if every agent holds a zero share of the
counter.

To multiply the value of counteri by b, storing the result
in counter j (which is assumed to start at zero), the leader
executes the following simple loop:

1. Test counteri for zero; if zero, exit the loop.
2. Decrement counteri.
3. Increment counterj b times.
4. Repeat from step 1.

The first step uses the zero-test protocol with waiting pa-
rameterk. When counteri has a nonzero valuè, the num-
ber of interactions to complete the zero test isΘ(n2/m) and
the probability of error isO(n−k/m), wherem≥ d`/Me is
the number of agents with nonzero shares in the counter
(Theorem 24). The second step can be combined with the
zero test, since the first encounter between the leader and
an agent with non-zero counter valuei can also decrement
the counter. The third step requires waiting forb encoun-
ters between the leader and agents with counter shares less
thanM; assuming there is always at least one such agent,
this requires an expectedO(bn2) interactions. Note that the
second step does not add any probability of error: the timer
token is not used to bound the time for this step, as the leader

Computation in Networks of Passively Mobile Finite-State Sensors 17

is guaranteed to eventually encounter a counter agent that is
not full.

The last zero test has̀= 0, and takesO(nk+1) interac-
tions, again by Theorem 24.

For an initial counter value bounded bynM, the total
probability of error is

O

(
nM

∑̀
=1

n−k

d`/Me

)
= O

(
M2n−k

n

∑
h=1

1
h

)
= O(n−k logn),

and the total time is

O

(
nM

∑̀
=1

(
n2

d`/Me

)
+bn2

)
+O(nk+1)

= O(n2 logn+nk+1).

For a push operation, the additionalO(xn2) expected in-
teractions needed to add inx is dominated by the time for
the product even whenk is small.

For the quotient operation, the analysis is essentially the
same, the only difference being that counterj is only incre-
mented once for everyb passes through the loop instead ofb
times per pass. So again the probability of error for a single
quotient operation isO(n−k logn) and the expected number
of interactionsO(n2 logn+nk+1).

Finally, the same bounds apply for the same reasons to
the initialization step where the unique surviving leader ini-
tializes all the other agents; again, we are simply waiting for
the leader to encounter all the non-timer agents before see-
ing the timerk times in a row.

We now have all the pieces we need to show the simula-
tion result.

Theorem 25 Let f(x) be a function in logspace, where the
input x is represented in unary. Let T(n) = O(nd), where d is
an integer, be the worst-case running time of some logspace
Turing machine that computes f . Then for any fixed integer
c > 0, there is a conjugating automaton that, when run in
the standard population with n members, computes f(x) for
any x≤ n with probability of error O(n−c logn) in expected
time O(nd+2 logn+n2d+c+1).

Proof Let k = c+d, wherek is the waiting parameter of the
zero test operation.

Simulating one step of the Turing machine involvesO(1)
product and quotient operations, each of which contributes
O(n−k logn) to the error probability. The total probability of
error is then

T(n)O(n−k logn) = O(ndn−(c+d) logn) = O(n−c logn).

The expected running time for the simulation, including
the initial leader election phase, is

O(n2)+T(n)O(n2 logn+nk+1)

= O(nd+2 logn+n2d+c+1).
ut

6.2 Simulating conjugating automata

In this section, we show that either deterministic polyno-
mial time or randomized logarithmic space (with exponen-
tial time) is sufficient to recognize predicates computable
with probability at least 1/2+ ε by conjugating automata.

Suppose that a conjugating automatonA computes a
predicateF with probability at least 1/2+ ε. ThenF can
be computed by a polynomial-time Turing machine. As be-
fore, we assume that a stringx of symbols fromX represents
an input assignmentx to A , so thatn represents both the
input length and the population size.

On inputx, a polynomial-time Turing machine can con-
struct the matrix representing the Markov chain whose states
are the multiset representations of the population configu-
rations reachable fromI(x), since there are at mostn|Q| of
them. Solving for the stationary distribution of the states,
the Turing machine can determine a set of configurations of
probability greater than 1/2. that all have the same output
(which must be correct, as an incorrect output can only ap-
pear with probability less than 1/2−ε). The Turing machine
then writes this common output to its output tape and halts.

Under the same conditions,F can be computed by a
randomized Turing machine with probability 1/2+ ε ′ using
spaceO(logn). A randomized Turing machine simulates the
automaton by using a finite number ofO(logn)-bit counters
to keep track of the number of members of the population in
each state. Using coin flips, it simulates drawing a random
pair of population members and updating the counters ac-
cording to the transition function ofA . By running the sim-
ulation for long enough, the randomized Turing machine can
be almost certain of being in a terminal strongly connected
component of the states of the Markov chain, at which point
the Turing machine halts and writes the output of the current
configuration on its output tape.

How long is this? The number of distinct simulated con-
figurations is less than(n+1)|Q|, so the diameter of the state
space of the Markov chain is less thand = (n+1)|Q|. Given
any state that is not in a terminal component, there is some
path of length at mostd that leads to a state that is. It fol-
lows that in each interval ofd simulated transitions, there
is a probability of at least(n(n−1))−d > n−2d of reaching a
terminal component. So the probability ofnot reaching a ter-
minal component afterKd simulated transitions is less than(

1−n−2d
)K
≤ exp

(
K/n2d

)
.

It follows that we can achieve any constant probability 1−δ

of convergence after

O(dn2d) = O((n+1)|Q|n2(n+1)|Q|)

= O(2(|Q|+2(n+1)|Q|) lgn) = O(2n2|Q|
)

simulated transitions.
To wait this long, the randomized Turing machine allo-

cates a counter ofcdlogne bits and flips a coin before each
simulated interaction, adding 1 to the counter on heads, and

18 Dana Angluin et al.

clearing the counter on tails. The simulation is stopped when
the counter overflows, that is, when there have been at least
nc consecutive heads. The probability that this event occurs
starting at any particular time is 2−nc

; it follows that dur-
ing the firstt trials the expected number of times that it oc-
curs (and thus the probability that it occurs at least once)
is at mostt2−nc

. Thus we expect to finish in timet with
probability o(1) providedt = o(2nc

). Settingt = 2n2|Q|
and

c= 3|Q| thus gives ano(1) probability of failing to converge
before the simulation stops. It follows that the randomized
logspace simulation produces a correct answer with proba-
bility at least 1/2+ ε− δ −o(1) = 1/2+ ε ′ for sufficiently
largen.

We have just shown:

Theorem 26 The set of predicates accepted by a conjugat-
ing automaton with probability1/2+ ε is contained in P.
Further, they can be computed by a randomized logspace
machine in exponential time.

7 Other related work

In a Petri net, a finite collection of tokens may occupy one
of a finite set of places, and transition rules specify how the
tokens may move from place to place.6 Viewing the states of
a population protocol as places and the population members
as tokens, our models can also be interpreted as particular
kinds of Petri nets. Randomized Petri nets were introduced
by Volzer [23] using a transition rule that does not depend
on the number of tokens in each input place, in contrast to
conjugating automata where the probability of an interaction
between a particular state pair increases with the number of
agents possessing those two states.

The Chemical Abstract Machine of Berry and Boudol [3]
is an abstract machine designed to model a situation in
which components move about a system and communi-
cate when they come into contact, based on a metaphor of
molecules in a solution governed by reaction rules. A con-
cept of enforced locality using membranes to confine subso-
lutions allows the machines to implement classical process
calculi or concurrent generalizations of the lambda calculus.

Ibarra, Dang, and Egecioglu [12] consider a related
model of catalytic P systems. They show that purely cat-
alytic systems with one catalyst define precisely the semilin-
ear sets, and also explore other models equivalent in power
to vector addition systems. The relationships between these
models and ours is an intriguing topic.

Brand and Zafiropulo [4] define a model of communi-
cating processes consisting of a collection of finite state ma-
chines that can communicate via pre-defined FIFO message
queues. They focus on general properties of protocols de-
fined in the model, such as the possibility of deadlock or
loss of synchronization.

Milner’s bigraphical reactive systems [17] address the is-
sues of modeling locality and connectivity of agents by two

6 See [6,7] for surveys of Petri nets.

distinct graph structures. In this work the primary focus is
upon the expressiveness of the models, whereas we consider
issues of computational power and resource usage.

8 Discussion and open problems

In addition to the open problem of characterizing the power
of stable computation, many other intriguing questions and
directions are suggested by this work. One direction we have
explored [2] is to define a novel storage device, theurn ,
which contains a multiset of tokens from a finite alphabet.
It functions as auxiliary storage for a finite control with in-
put and output tapes, analogous to the pushdown or work
tape of traditional models. Access to the tokens in the urn is
by uniform random sampling, making it similar to the model
of conjugating automata.

We have primarily considered the case of a complete in-
teraction graph, which we have shown in Theorem 16 pro-
vides the least computational power of all weakly-connected
interaction graphs in the stable computation model. The
question of characterizing the power of stable computations
on particular restricted interaction graphs remains open. We
can also consider the interaction graph itself as part of the
input and ask what interesting properties of its underlying
graph can be stably computed by a population protocol. This
problem may have applications in analyzing the structure of
deployed sensor networks. Some initial work in this direc-
tion has been carried out in [1].

An interesting restriction of our model is to consider
only one-way communicationbetween the two agents in an
interaction, that is, the transition functionδ can be restricted
to change only the state of the responder in the interaction,
keeping the state of the initiator the same. Although there
are still protocols to decide whether the number of 1’s in the
input is at leastk, this condition appears to restrict the class
of stably computable predicates severely.

The models in this paper assume a “snapshot” of the
inputs is taken when the global start signal is received. A
model accommodating streaming inputs, as is typically as-
sumed in sensor networks, would be very interesting.

We have assumed uniform sampling of pairs to inter-
act, but for some applications it may make sense to con-
sider other sampling rules. One idea is weighted sampling,
in which population members are sampled according to
their weights, possibly depending on their current states. We
conjecture that with reasonable restrictions on the weights,
weighted sampling yields the same power as uniform sam-
pling. Other sampling rules might be based on more accurate
models of patterns of interaction in populations of interest.

The interaction rules we consider are deterministic and
specify pairwise interactions. What happens if the rules are
nondeterministic, or specify interactions of larger groups, or
allow the interaction to increase or decrease the population?

Our bound on the number of interactions in Theorem 22
applies only to stable computations of Presburger-definable
predicates. The bounds on the simulation results in the

Computation in Networks of Passively Mobile Finite-State Sensors 19

Turing-machine simulation in Theorem 25 are higher, but
still polynomial (for polynomial error bounds). It is not clear
whether there areanyuseful computations of a conjugating
automaton that require more than polynomial time; just as
logspace machines do not have enough states to exploit su-
perpolynomial time bounds, it may be that the lack of struc-
ture in a conjugating automaton’s memory means that in-
creasing its time bound adds no actual power.

Furthermore, we give bounds on the expected total num-
ber of interactions, but other resource measures may be more
appropriate in some applications. For many applications, in-
teractions happen in parallel, so that the total number of in-
teractions may not be well correlated with wall-clock time;
defining a useful notion of time is a challenge. Alternatively,
if we consider only the number of interactions in which at
least one state changes (which might be correlated with the
energy required by the computation), then the bounds can
be finite even in the stable computation model, and the ex-
pected bounds can be smaller in the conjugating automata
model.

Finally, we have not addressed the issue of fault toler-
ance, which is of course of immense practical importance in
real sensor networks. In one sense, our underlying model
should be very robust in the face of faults since we are
making such weak assumptions about when interactions oc-
cur. If an agent dies, say from an exhausted battery, the in-
teractions between the remaining agents are unaffected. Of
course, many of the algorithms we describe here would not
survive the failure of a single agent, especially those based
on leader election. It is a challenging open problem to design
fault-tolerant algorithms for some of the problems addressed
here, or show that fault-tolerant solutions do not exist.

9 Acknowledgments

The authors wish to thank Richard Yang for valuable ad-
vice regarding these ideas, David Eisenstat for the original
parity protocol and other discussions, and the anonymous re-
viewers of an earlier version of this paper for their thought-
ful comments and suggestions. We thank Jinqiang Han for a
careful reading of the final draft of this paper.

References

1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Per-
alta, R.: Stably computable properties of network graphs. In:
IEEE/ACM International Conference on Distributed Computing
in Sensor Systems (2005). To appear

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Urn automata. Tech. Rep. YALEU/DCS/TR–1280, Yale Univer-
sity Department of Computer Science (2003)

3. Berry, G., Boudol, G.: The Chemical Abstract Machine. Theoret-
ical Computer Science96, 217–248 (1992)

4. Brand, D., Zafiropulo, P.: On communicating finite-state ma-
chines. J. ACM30(2), 323–342 (1983)

5. Diamadi, Z., Fischer, M.J.: A simple game for the study of
trust in distributed systems. Wuhan University Journal of Nat-
ural Sciences6(1–2), 72–82 (2001). Also appears as Yale

Technical Report TR–1207, January 2001, available at URL
ftp://ftp.cs.yale.edu/pub/TR/tr1207.ps

6. Esparza, J.: Decidability and complexity of Petri net problems-
an introduction. In: G. Rozenberg, W. Reisig (eds.) Lectures on
Petri Nets I: Basic models., pp. 374–428. Springer Verlag (1998).
Published as LNCS 1491.

7. Esparza, J., Nielsen, M.: Decibility issues for Petri nets - a survey.
Journal of Informatik Processing and Cybernetics30(3), 143–160
(1994)

8. Fang, Q., Zhao, F., Guibas, L.: Lightweight sensing and communi-
cation protocols for target enumeration and aggregation. In: Pro-
ceedings of the 4th ACM International Symposium on Mobile ad
hoc networking & computing, pp. 165–176. ACM Press (2003)

9. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Pres-
burger arithmetic. In: Complexity of Computation,SIAM-AMS
Proceedings, vol. VII, pp. 27–41. American Mathematical Soci-
ety (1974)

10. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas,
and languages. Pacific Journal of Mathematics16, 285–296
(1966)

11. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of
ad hoc wireless networks. IEEE/ACM Transactions on Network-
ing 10(4), 477–486 (2002)

12. Ibarra, O.H., Dang, Z., Egecioglu, O.: Catalytic p systems, semi-
linear sets, and vector addition systems. Theor. Comput. Sci.
312(2-3), 379–399 (2004)

13. Immerman, N.: Nondeterministic space is closed under comple-
mentation. SIAM J. Comput.17(5), 935–938 (1988)

14. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion:
a scalable and robust communication paradigm for sensor net-
works. In: Proceedings of the 6th Annual International Con-
ference on Mobile computing and networking, pp. 56–67. ACM
Press (2000)

15. Kracht, M.: The Mathematics of Language,Studies in Genera-
tive Grammar, vol. 63. Mouton de Gruyter (2003). ISBN 3-11-
017620-3

16. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a
Tiny AGgregation service for ad-hoc sensor networks (December,
2002). In OSDI 2002: Fifth Symposium on Operating Systems
Design and Implementation

17. Milner, R.: Bigraphical reactive systems: basic theory. Tech. rep.,
University of Cambridge (2001). UCAM-CL-TR-523

18. Minsky, M.L.: Computation: Finite and Infinite Machines.
Prentice-Hall Series in Automatic Computation. Prentice-Hall,
Inc., Englewood Cliffs, N.J. (1967)

19. Monk, J.D.: Mathematical Logic. Springer, Berlin, Heidelberg
(1976)

20. von Neumann, J.: Theory and organization of complicated au-
tomata. In: A.W. Burks (ed.) Theory of Self-Reproducing Au-
tomata [by] John von Neumann, pp. 29–87 (Part One). University
of Illinois Press, Urbana (1949). Based on transcripts of lectures
delivered at the University of Illinois, in December 1949. Edited
for publication by A.W. Burks.

21. Parikh, R.J.: On context-free languages. J. ACM13(4), 570–581
(1966). DOI http://doi.acm.org/10.1145/321356.321364

22. Presburger, M.:̈Uber die Vollsẗandigkeit eines gewissen Sys-
tems der Arithmetik ganzer Zahlen, in welchem die Addition als
einzige Operation hervortritt. In: Comptes-Rendus du I Congrès
de Math́ematiciens des Pays Slaves, pp. 92–101. Warszawa (1929)

23. Volzer, H.: Randomized non-sequential processes. In: Proceedings
of CONCUR 2001-Concurrency Theory, pp. 184–201 (2001)

24. Zhao, F., Liu, J., Liu, J., Guibas, L., Reich, J.: Collaborative signal
and information processing: An information directed approach.
Proceedings of the IEEE91(8), 1199–1209 (2003)

