
O(log n)-time Overlay Network Construction
from Graphs with Out-degree 1

James Aspnes1 and Yinghua Wu1 ?

Yale University Department of Computer Science,
51 Prospect St, New Haven CT 06511, USA.

aspnes@cs.yale.edu, y.wu@yale.edu

Abstract. A fast self-stabilizing algorithm is described to rapidly con-
struct a balanced overlay network from a directed graph initially with
out-degree 1, a natural starting case that arises in peer-to-peer systems
where each node attempts to join by contacting some single other node.
This algorithm constructs a balanced search tree in time O(W + log n),
where W is the key length and n is the number of nodes, improving by a
factor of log n on the previous bound starting from a general graph,
while retaining the properties of low contention and short messages.
Our construction includes an improved version of the distributed Pa-
tricia tree structure of Angluin et al. [1], which we call a double-headed
radix tree. This data structure responds gracefully to node failures and
supports search, predecessor, and successor operations in O(W ) time
with smoothly distributed load for predecessor and successor operations.
Though the resulting tree data structure is highly vulnerable to discon-
nection due to failures, the fast predecessor and successor operations (as
shown in previous work) can be used to quickly construct standard over-
lay networks with more redundancy.

Key words: Overlay network, balanced search tree, pipeline, random-
ization, self-stabilizing, fault tolerance.

1 Introduction

Much work has been done recently on rapidly building a peer-to-peer system
with a ring or line structure such as Chord [2] or skip graphs [3]. The naive
approach of sequential insertion performs quite poorly for large networks: the
time complexity is Θ(n log2 n) for Chord and Θ(n log n) for skip graphs. So
there is an incentive to find ways to exploit the parallelism of the system to
build a network more quickly. Such a fast construction algorithm could allow
rapid deployment of overlay networks or serve as a substitute for more complex
self-repair mechanisms.

? Contact author. Email: y.wu@yale.edu. Telephone: +1 203 432-1239. Fax: +1 203
432-0593.



Several heuristic algorithms have been proposed that appear to converge in
time O(log n) [4–7]. But it is difficult to prove that this bound in fact holds, and
the question of obtaining theoretical results justifying the observed practical
performance remains open.

In previous work [1], we showed how to quickly sort nodes in a weakly-
connected graph of bounded degree d with a provable time bound O(W log n),
where n is the number of nodes and W is the length of node identifiers. This
running time, which is O(log2 n) under the reasonable assumption that W =
O(log n), is much higher than both the lower bound of Ω(d + log n) shown in
the same paper and the observed behavior of practical methods. The algorithm
contains three components: a randomized pairing algorithm that constructs a
distributed matching from a degree-d weakly-connected graph; a distributed
merging algorithm for combining balanced trees of nodes, i.e., distributed Pa-
tricia trees; and a supernode simulation that allows a tree to simulate a single
supernode in the pairing algorithm. In each iteration, the output of the pairing
algorithm is used to join nodes/supernodes into larger supernodes that then par-
ticipate in subsequent iterations of the pairing algorithm, until a single supernode
remains. The ultimate supernode is actually a distributed Patricia tree consisting
of all the nodes, which supports efficient search, predecessor and successor oper-
ations. As observed in [1], having fast predecessor and successor operations can
then be used to quickly construct other more robust distributed data structures,
such as Chord rings or skip graphs.

In this paper, we present an even faster algorithm with expected time com-
plexity of only O(W +log n) (which is O(log n) if node identifiers are small) and
expected message complexity of O(n log n), which preserves the properties of low
contention and short messages in our previous work [1]. The algorithm assumes
that it starts with a directed graph initially with out-degree 1, an important
special case that arises in practice. For example, a node joining an overlay net-
work will typically connect to a single existing node, yielding a directed tree. If
we relax the restriction that nodes attempt to connect to nodes already in the
network, then in full generality we get a graph with out-degree 1, which may
contain a cycle. Producing a sorted list quickly in this model then allows the
construction of more complex data structures as in [1].

Despite the possibility of having a cycle, we use tree terminology: each node
points to a parent, and we assume that each node also knows its children, which
can be achieved by children’s initial probes. There is no restriction on the di-
ameter of the input structure, and unlike the output tree, children in the input
graph are unordered. Our algorithm first restructures the input graph into a
child-sibling graph, which can be viewed as consisting of a network of horizontal
links (the sibling pointers) and vertical links (the parent and child pointers).
By using a randomized pairing algorithm alternately along the horizontal and
vertical links, we quickly pair off nodes and merge them to form distributed tree
structures called double-headed radix trees (DHR trees), ultimately obtain-
ing a single DHR tree.



What is important and different from our previous work [1] is that tree
merges are pipelined, so when the roots of any pair of DHR trees start to merge,
the lower layers of these trees may not be fully formed yet. This eliminates the
overhead of internal communication within supernodes as in [1] and explains the
reduction in cost from the previous algorithm by a factor of O(W ). The degree
limitation on the input graph is carefully maintained to ensure that no supernode
is given more than a constant number of outgoing edges so that merges will not
create high contention.

Double-headed radix trees can be thought of as radix trees in which the leaves
have been removed (with their keys propagated up to some ancestor) and the
root has been split into a left and right root (the “double head”); these changes
eliminate the need to allocate new internal nodes during merges and allow DHR
trees to respond more gracefully to node failures than the distributed Patricia
trees of [1] from which they are ultimately derived. From the point of view of
network construction, the key property is that despite these optimizations they
continue to support the fast predecessor and successor operations needed to
extract (for example) a sorted ring.

The paper is organized as the following: we first introduce our model in
Section 2 and then double-headed radix trees in Section 3. Section 4 gives the
synchronous contraction algorithm. We show how our algorithm can be adapted
to an asynchronous environment in Section 5. Finally, we conclude our work in
Section 6.

1.1 Other Related Work

In addition to work specifically aimed at building overlay networks, there are
several strains of work in the literature on problems that are similar to the
fast construction problem. These include resource discovery [8–12], leader
election [13], and parallel sorting [14], which will be described briefly below;
for a detailed discussion of the relation between these problems and the fast
construction problem see the discussion in [1].

The Resource Discovery Problem was introduced by Harchol-Balter et al. [8],
in which all the processes in an initial weakly connected knowledge graph learn
the identities of all the other processes. The problem was then relaxed to require
that one process becomes the leader with the knowledge of all the other process
identities, and the leader’s identity is known to the whole system. In the related
papers [8–12] addressing this problem, the final knowledge graph usually contains
a star on all the vertices and messages may contain the whole list of all the
processes. Cidon et al. [13] gave a deterministic algorithm for leader election in
an initially connected knowledge graph with O(n) messages and time O(n), in
which each non-leader must finally have an identified path to its leader, rather
than a direct edge.

Goodrich et al. [14] introduced a parallel sorting algorithm for a parallel
pointer machine that may be the closest work to ours. It builds a binary tree over
nodes and then merges components according to the tree. Consecutive merging
phases are pipelined to give an O(log n) total time. However, our algorithm



achieves this time complexity in a far more difficult and dynamic distributed
environment.

2 Model

We assume that in the initial state, n processes form a directed graph G with
maximum out-degree 1, with each process running as a node in G. Such a graph
naturally forms a tree, and each node u in G knows the identifier of its unique
parent u.parent, which can be null if u is a root, and also the identifiers of its
(set of) children u.children learned from children’s initial probes, which will be
the empty set if u is a leaf. Using tree terminology, we will describe edges as
parent and child pointers instead of incoming and outgoing edges. Furthermore,
we assume the initial graph G has a maximum in-degree d = O(log n).

Following [1], we assume throughout that a process u can only send a message
to another process v if u knows v’s identifier, i.e., if v is in u.parent∪u.children.
Formally, we assume that messages are of the form (s, t, σ) or (s, t, σ, u), where s
is the sender, t is the receiver, σ is a message type, and u (if present) is a single
process identifier.

We first assume that our algorithms run in a synchronous model. The com-
putation proceeds in rounds, and all messages sent to a process s in round i are
delivered simultaneously in round i+1. In other words, we assume the standard
synchronous message-passing model with the added restrictions that processes
can only communicate with known processes and can only send O(1) messages
per round. This follows the synchronous model used in [1]. Though this assump-
tion might seem to limit the applicability of our results, we show (in Section 5)
that a suitably adapted synchronizer will allow our algorithm to run in an asyn-
chronous environment without introducing too much additional cost.

3 Double-Headed Radix Trees

We first introduce an improved version of the distributed Patricia tree structure
of Angluin et al. [1], which we call a double-headed radix tree or DHR tree.
A DHR tree with at least two nodes has two roots: a left root and a right root.
(For a singleton, there is only one root, which we think of as being both the
left and right root.) Its height is bounded by the length of a node identifier, W ,
and any node has at most two children. Each internal node stores the longest
common prefix of the subtree of which it is the root and pointers to its parent
and children. The two roots also store pointers to each other.

An example is shown in Figure 1(a). The node identifiers are listed in the
table, and their prefixes within parentheses. To support searching, the tree must
have the following property:

Property 1. The left and right roots have incomparable prefixes, as do the two
children of any node.



This property guarantees the correctness of searching. While searching for a
particular node identifier, we start from the roots and follow the path that leads
to longer prefix match. If the node with such an identifier exists somewhere in
the DHR tree, its prefix has been stored in all its ancestors. Since Property 1
holds, the searching path is uniquely determined.

We also define a single-headed radix tree (SHR tree) to facilitate merging
procedures. A DHR tree can be transformed into a SHR tree by promoting its
left root to a new super-root with only one child and the children of the two roots
are assigned to the former right root. The corresponding SHR tree of Fig. 1(a)
is shown in Fig. 1(b). We can also think of the left and right trees of a DHR tree
as SHR trees.

The procedure to merge two DHR trees to form a larger DHR tree is quite
straightforward. Any merge of two DHR trees can be reduced to merging two
corresponding SHR trees, since any DHR tree can be transformed into a SHR
tree. The prefixes of the two merging roots are compared and the new root can
be determined immediately, i.e. in time O(1), which means that the new root
can represent the combined DHR tree without waiting for the whole merge to
be finished. Details of the merging procedures are given in Appendix A.2.

Fig. 1. An example of a DHR tree and its corresponding SHR tree

Given multiple DHR trees, pipelined merges to combine all these trees into
a single tree can be viewed as multiple merging waves that propagate down the
tree, with each consecutive wave following a few steps later. A partially complete
tree can participate in another merge as soon as its root is determined, so that
the extra time cost for an additional merge is constant. The result is that a tree
of merges of maximum depth k can be completed in O(W + k) time.

For the pairing algorithm given in Section 4, the depth k is given by the
number of rounds of pairing, which is O(log n) with high probability. It follows
that the running time of the full construction algorithm is O(W + log n).

4 Algorithms

This section contains a family of algorithms for quickly constructing an overlay
network starting with a directed graph with maximum out-degree 1 and bounded
in-degree d. The structure of our algorithm is as follows:



1. In the pre-stage, described in Section 4.1, the initial graph is converted
into a child-sibling graph we call the contraction graph. Each node in the
contraction graph is always the left root of some DHR (initially all singleton
trees).

2. In the merging stage, described in Section 4.2, we alternate between con-
tracting the child-sibling graph vertically (along the parent-child axis) and
horizontally (along the sibling axis). Each contraction involves merging two
DHR trees and replacing their left roots in the contraction tree with the
single left root of the combined tree. An additional fix-up procedure is used
to prevent each merged node from ending up with more than one child (or
right sibling), by “kicking” such extra neighbors into the list of siblings (or
descendants) one level down on the child-parent axis (or on the sibling axis)
of the graph.

The pre-stage takes O(d) time to construct the child-sibling graph, where we
assume d = O(log n). It uses a total of O(n) messages of length O(W ).

The merging stage, described in Section 4.2, takes advantage of pipelined
merges of DHR trees to allow each merging operation to appear to complete
in O(1) time from the point of view of the contraction graph. This is the time
needed to merge the top layers of two DHR trees and obtain the identifier of the
new roots. Though the first merge operation continues to propagate downwards
and will not finish for an additional O(W ) time, it is nonetheless possible to
start a new merge operation immediately (which will then propagate through
the merged trees behind the first merge operation). This pipelining means that
each additional layer of merging adds only O(1) time to the O(W ) cost of the first
merge. The total cost of the merging stage is O(W +log n) with high probability,
with a total of O(n log n) messages of size O(W ) each. This dominates the cost
of the pre-stage and gives the overall asymptotic complexity of the algorithm.

4.1 Pre-stage

In the pre-stage, the original graph G is transformed into a child-sibling graph
C. For each node u in G, it sequences the nodes in u.children in arbitrary order
and notifies each of its children v ∈ u.children of v’s left sibling and right sibling,
denoted as v.leftsibling and v.rightsibling respectively. At the end, u only keeps a
child pointer to its leftmost child, denoted as u.child. Figure 2 gives an example
of how an ordinary graph (in this case a tree) can be transformed into a child-
sibling graph. The pre-stage takes O(d) rounds, as each node can notify only
one of its children per round. At round (d + 1), all the nodes will proceed to the
merging stage as described in Section 4.2. Note that this description assumes
that the in-degree bound d is a fixed parameter of the algorithm known to all
nodes.

The child-sibling graph C can be thought as a graph of many crossing di-
rectional links embedded in two dimensions. In Figure 2(b), rightward arrows
indicate horizontal links generated by sibling pointers and downward arrows in-
dicate vertical links generated by child pointers. The child-sibling graph will have



Fig. 2. Pre-stage: Transform a tree into a child-sibling tree

a root if and only if there is some node with out-degree 0. Conversely, if there is
a cycle in this graph, it can only appear as a vertical cycle along the (rootless)
child-parent axis.

4.2 Merging Stage

The merging stage consists of a sequence of contraction operations that alternate
between contracting horizontal and vertical links generated by the pre-stage. We
start with a horizontal contraction operation (in Section 4.2) along all horizontal
links and then a vertical contraction operation (in Section 4.2) along all vertical
links, and then repeat the procedure until only a single DHR tree is left. Some
care must be taken during the contractions to ensure that all nodes maintain
bounded degree; this is done by having the nodes push extra edges down towards
their children (or rightward towards their right siblings). If the graph is a tree,
this pushes extra edges toward the leaves. If instead the graph contains a cycle,
it instead shuffles the extra edges between levels. The main purpose of pushing
downwards is not so much to grab extra space (since there is none in the cycle
case) as it is to prevent extra edges from piling up as the root contracts downward
in the tree case.

Horizontal Contraction A horizontal contraction operation proceeds in two
parts.

First, we do a pairing, which consists of (a) using a randomized algorithm
to pair off nodes along horizontal links; (b) merging each pair of paired nodes
(both being the left roots of two DHR trees) to form a new DHR tree; and (c)
replacing each such pair in the contraction graph with the new left root of the
resulting DHR tree.

Second, we move edges within the contraction graph. After merging some
node may contain two child pointers with each coming from the previously paired
nodes, so we must readjust the contraction graph C to retain the child-sibling
property.

In detail, the horizontal contraction operation proceeds as follows:

For each node u, so long as u is still within the contraction tree, it performs:
Pairing :



round i: Let chosen be picked uniformly from {u.leftsibling, u.rightsibling};
if chosen is null, choose another value; if still null, wait for Vertical
Contraction.

round i + 1: Send (u, chosen, pair) to chosen.
round i + 2: Upon receiving (v, u, pair) from v do:

If v = chosen, send (u, v, accept) to v;
otherwise, send (u, v, reject) to v.

round i + 3: Upon receiving (v, u, accept) from v do:
u merges with v and w.l.o.g, assume u becomes the new left root
and v disconnects from the contraction graph.
Upon receiving (v, u, reject) from v do:

Do nothing.
Readjusting :
round i + 4: If either u.rightsibling 6= null, denoted as u1, or u has a

second child from previous round, denoted as c1, u pushes both u1

and c1 to a lower level:
1. If u.child is null, let u.child = u1 (as in Figure 3 (a));
2. otherwise, if u has only one child, let u.child.rightsibling = u1

(as in Figure 3 (b));
3. otherwise, u has two children c and c1. Assume u keeps c as

u.child.
(a) If u.rightsibling 6= null, let c.rightsibling = u1 and u1.rightsibling =

c1 (as in Figure 3 (c));
(b) otherwise, let c.rightsibling = c1 (as in Figure 3 (d)).

Fig. 3. Possible adjustments after a horizontal contraction

In round i+3, u takes over v’s outgoing edges, and v is disconnected from the
contraction graph and no longer participates in subsequent pairing procedures.
Since all of these operations can be finished in one round, we can take advantage
of pipelining to force every newly generated root to enter the next round of the
pairing procedure at once, which is depicted in Section 3 as pipelined merges.



After a horizontal contraction operation, the graph C may not be a child-
sibling graph any more. But notice that (as long as the previous graph is a
child-sibling graph) the worst case is that some nodes have two children. We
only need to do a local adjustment to retain the child-sibling structure as in
round i + 4. Here all the nodes simultaneously push their right siblings to a
lower level (to be their children or to be their children’s right siblings) so that
each node still keeps a constant number of outgoing edges.

Figure 4 shows a possible merging result from the contraction graph C in Fig-
ure 2(b). Here, a double-circled node indicates that a pair of nodes have merged
with each other. The subsequent edge readjustment is shown in Figure 4(b).

Fig. 4. Merging stage: Horizontal contraction operation and its postadjustment

Vertical Contraction A vertical contraction operation is executed in exactly
the same way as a horizontal contraction operation, except that it uses vertical
rather than horizontal links. The main effects of this are (a) it is possible that
we may have to contract a cycle rather than a path, and (b) so the pairing and
pushing directions are switched.

Horizontal contractions do not contract cycles, but just “kick” edges along
the cycles. Vertical contractions shrink cycles by merging adjacent nodes; when
the cycle is reduced to two nodes, they can detect this and merge into a single
node. Aside from this last optimization, there is no need to distinguish cycles
from paths during the merging stage.

In pairing steps, for each node u, chosen is picked uniformly from {u.parent,
u.child}, and merging is carried out along vertical links. In readjusting steps,
u first pushes its child rightward to be either u.rightsibling’s child or just its
right sibling, and then u pushes its second right sibling (if any) to be either
u.rightsibling’s child or the child of u.rightsibling.child. These adjustments are
shown in Figure 5.

It is not hard to see that the algorithm does not partition the graph, so as
long as it continues to merge nodes, there will be only one DHR tree left. The
time complexity of the contraction algorithm is given in the theorem below. The
proof appears in Appendix A.1.

Theorem 2. The contraction algorithm finishes in O(W + log n) rounds on
average and with high probability.



Fig. 5. Possible adjustments after a vertical contraction

4.3 Fault Tolerance Issues

In this section, we assume the underlying network is reliable and there is no
message loss, but that nodes are subject to crash failures that can be detected
by the node’s neighbors. We give a very brief sketch of how DHR trees respond
to node failures and how the contraction algorithm can be used to reconnect
fragmented DHR trees.

When a node u in a DHR tree fails, the tree will separate into at most
three well-formed DHR or SHR trees. The tree containing u’s parent is a valid
DHR tree itself even if u’s ancestors may not store the longest prefixes of their
subtrees any more. But this tree can still correctly perform searching and merging
operations. Each of u’s subtrees can become a valid DHR tree by promoting one
of its root’s own children to be the other root, an operation that takes O(1)
time. If these two trees need to connect back to the contraction tree after being
separated, only their roots will try to repair these connections.

Since network partitions are irreversible in the absence of extra edges, we
make a reasonable assumption that every node will keep information about sev-
eral other nodes, although it chooses only one as its initial outgoing edge in the
contraction graph. Thus, whenever some node fails, the root of a separated tree
will try to contact nodes still in the contraction graph through its unused links.
These contacts are propagated up through the DHR trees (possibly merging
with other incoming contacts as they propagate up). Since two trees T1 and T2

may simultaneously attempt to join each other, this may lead to a cycle in the
contraction graph. But since our algorithm can gracefully handle cycles, after
node failures stop and the contraction graph correctly reforms, our algorithm
will ultimately stabilize.

5 Extension to an Asynchronous Model

So far we have assumed a synchronous model, which (a) simplifies the analysis of
the contraction algorithm, (b) allows extra edges to be pushed down through the



contraction tree without piling up, and (c) eliminates the need for explicit coor-
dination of changes between nodes. The price of this assumption may, however,
be too high in a practical setting, and it makes it difficult to compare our algo-
rithm with previous algorithms (such as that of [1]) that work in asynchronous
environments.

To address this issue, we show how the α synchronizer of [15] can be adapted
to our setting. Details are given in the full paper. The result is:

Theorem 3. Starting from an initial tree with consistent parent and child point-
ers, the tree contraction algorithm running under an α synchronizer produces a
single DHR containing all nodes in O(W + log n) time using O(n(W + log n))
messages with high probability in an asynchronous system.

6 Conclusion

We have described a fast self-stabilizing algorithm to rapidly construct a bal-
anced overlay network from a directed graph initially with out-degree 1. This
algorithm organizes all the nodes in the network into a novel balanced search
tree data structure that responds gracefully to node failures and supports quick
search, predecessor and successor operations. And by applying predecessor and
successor operations, the nodes can quickly form into a sorted link, which turns
out to be a fundamental structure for many linear overlay networks. Our analysis
shows that the expected running time of the algorithm is O(W + log n), which
improves by a factor log n on our previous work [1], while still preserving low
contention and using messages with length proportional to the length W of node
identifiers.

Our algorithm is designed for in a synchronous model, but applying a syn-
chronizer can extend the algorithm to work in an asynchronous environment.
The key difficulty here is how to incorporate late arriving nodes into the ongo-
ing procedure; more work needs to be done in this area.

In building our data structure, we developed methods for pushing extra edges
downward to maintain small degree and for pipelining sequential merges effi-
ciently. It is an interesting open problem whether these tools may be applied to
algorithms for more general classes of initial graphs.

References

1. Angluin, D., Aspnes, J., Chen, J., Wu, Y., Yin, Y.: Fast construction of overlay net-
works. In: Proceedings of the 17th ACM Symposium on Parallelism in Algorithms
and Architectures(SPAA05), Las Vegas, NV, USA (July 2005)

2. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. IEEE/ACM Transactions on Networking 11(1) (February 2003) 17–
32



3. Aspnes, J., Shah, G.: Skip Graphs. In: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), Baltimore, MD, USA
(January 2003) 384–393 Submitted to a special issue of Journal of Algorithms
dedicated to select papers of SODA 2003.

4. Onus, M., Richa, A., Scheideler, C.: Linearization: Locally self-stabilizing sorting
in graphs. To appear, Proceedings of the Workshop on Algorithm Engineering and
Experiments (ALENEX) (2007)

5. Jelasity, M., Babaoglu, O.: T-Man: Gossip-based overlay topology management. In:
Engineering Self-Organising Systems: Third International Workshop (ESOA 2005),
Revised Selected Papers. Volume 3910 of Lecture Notes in Computer Science.,
Springer-Verlag (2006) 1–15

6. Jelasity, M., Montresor, A., Babaoglu, O.: The bootstrapping service. In: Pro-
ceedings of the 26th International Conference on Distributed Computing Systems
Workshops (ICDCS WORKSHOPS): International Workshop on Dynamic Dis-
tributed Systems (IWDDS), Lisboa, Portugal, IEEE Computer Society (2006)

7. Montresor, A., Jelasity, M., Babaoglu, O.: Chord on demand. In: Proceedings of
the Fifth IEEE International Conference on Peer-to-Peer Computing (P2P 2005),
Konstanz, Germany, IEEE Computer Society (August 2005) 87–94

8. Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery in distributed
networks. In: Proceedings of the eighteenth annual ACM symposium on Principles
of distributed computing, ACM Press (1999) 229–237

9. Kutten, S., Peleg, D., Vishkin, U.: Deterministic resource discovery in distributed
networks. In: Proceedings of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, ACM Press (2001) 77–83

10. Law, C., Siu, K.Y.: An O(log n) randomized resource discovery algorithm. In: Brief
Announcements of the 14th International Symposium on Distributed Computing,
Technical University of Madrid, Technical Report FIM/110.1/DLSIIS/2000. (Oc-
tober 2000) 5–8

11. Kutten, S., Peleg, D.: Asynchronous resource discovery in peer to peer networks.
In: 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02). (October
13–16, 2002) 224–231

12. Abraham, I., Dolev, D.: Asynchronous resource discovery. In: Proceedings of the
twenty-second annual symposium on Principles of distributed computing, ACM
Press (2003) 143–150

13. Cidon, I., Gopal, I., Kutten, S.: New models and algorithms for future networks.
IEEE Transactions on Information Theory 41(3) (May 1995) 769–780

14. Goodrich, M.T., Kosaraju, S.R.: Sorting on a parallel pointer machine with appli-
cations to set expression evaluation. J. ACM 43(2) (1996) 331–361

15. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4) (1985)
804–823

16. Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks (prelim-
inary version). In: 29th Annual Symposium on Foundations of Computer Science,
24-26 October 1988, White Plains, New York, USA. (1988) 206–220

17. Karp, R.M.: Probabilistic recurrence relations. In: STOC ’91: Proceedings of the
twenty-third annual ACM symposium on Theory of computing, New York, NY,
USA, ACM Press (1991) 190–197



A Appendix

A.1 Analysis of Time Complexity

Since the contraction graph C has at most n edges, there is a one-to-one mapping
between each edge and some merge, except for the last merge that collapses the
possible vertical cycle, which may consume two antiparallel edges. Thus after
every successful merge, the total number of edges is reduced by one. In the
following analysis, we will show that after one horizontal and vertical contraction
operations, a constant fraction of edges will be eliminated on average.

Assume before the ith contraction operations there are Ai−1 horizontal edges
and Bi−1 vertical edges(e.g. A0 + B0 = n− 1 or n).

Lemma 4. After the ith horizontal and vertical contraction operations, E[Ai +
Bi] ≤ 7

8 (Ai−1 + Bi−1).

Proof. Let H be the number of horizontal edges and V the number of vertical
edges removed by the ith horizontal and vertical contraction operations. Since
the probability of choosing any edge is at least 1/4, we have E[H] ≥ 1

4Ai−1.
After the horizontal contraction operation, we readjust the contraction graph

to retain the child-sibling property. This adjustment may change some vertical
edges to horizontal edges. But the number of such edges is no more than Bi−1/2,
because such an adjustment happens only if a (consolidated) node has two chil-
dren. Removing these edges leaves Bi−1/2 vertical edges to participate in the
i-th vertical contraction, and so E[V ] ≥ 1

4 (Bi−1/2) = 1
8Bi−1. So we have

E[Ai + Bi] = (Ai−1 + Bi−1)− E[H]− E[V ] ≤ 7
8
(Ai−1 + Bi−1) . (1)

ut
We use a classic theorem regarding probabilistic recurrence relations, due to

Karp [17]. If a process can be described as T (x) = a(x) + T (h(x)), where x is
a nonnegative real variable, a(x) is a nonnegative real-valued function of x and
h(x) is a random variable ranging over [0, x] and having expectation less than or
equal to m(x), where m is a nonnegative real-valued function, then the following
theorem holds

Theorem 5 ([17]). Suppose there is a constant d such that a(x) = 0, x < d
and a(x) = 1, x ≥ d. Let ct = min{x|u(x) ≥ t}. Then, for every positive real x

and every positive integer w, Pr[T (x) ≥ u(x) + w] ≤
(

m(x)
x

)w−1
m(x)
cu(x)

,

in which u(x) denotes the least nonnegative solution of τ(x) = a(x) + τ(m(x)),
a deterministic counterpart of the above process. u(x) is uniquely given by the
formula u(x) =

∑∞
i=0 a(m[i](x)), where m[0](x) = x and m[i](x) = m(m[i−1](x))

for i = 1, 2, . . ..
Our contraction algorithm can be illustrated in the form of Theorem 5 as

in [17]: m(x) = 7
8x, a(x) = 0, x < 1, a(x) = 1, x ≥ 1 for the time cost of



each horizontal and vertical contraction operation is O(1). Then u(x) = 0 for
x < 1, u(x) = blog8/7(x)c + 1 for x ≥ 1 and ct =

(
8
7

)t−1. Then Theorem 5
gives the following result when we substitute x with n − 1, n ≥ 3 and let w =
dc log8/7(n− 1)e for any fixed constant c:

Pr[T (n−1) ≥ blog8/7(n−1)c+w+1] ≤
(

7
8

)w−1
n− 1

(
8
7

)blog8/7(n−1)c+1
≤ 1

(n− 1)c−1
.

(2)
Therefore, with high probability we will only need O(log n) rounds to reduce

all the edges. If this bound fails, we are left with a contraction graph which again
collapses to a single node in an additional O(log n) rounds w.h.p. It follows that
the expected number of rounds to contract all the edges is also O(log n).

To this must be added the (deterministic) time cost O(W ) for the final DHR
tree to finish all the pipelined merges. We thus obtain the total time cost for our
algorithms O(W + log n), and thus prove Theorem 2.

A.2 Merging Two DHR Trees

Here we describe the merging procedure for a pair of DHR trees. Denote a DHR
tree as TD, and similarly a SHR tree as TS . When the distinction is not necessary,
both a DHR tree and a SHR tree can be denoted as T and called a radix tree.
We adopt the following definitions:

– For u and v, TD(u, v) indicates a DHR tree with left root u and right root
v; TS(u) indicates a SHR tree rooted at u. When there is no possibility of
confusion, T (u) means a radix subtree rooted at u.

– For a node u, its identifier is denoted as u.id and its prefix as u.prefix. For
a radix tree T , its prefix means the longest common prefix of all the node
identifiers in T , denoted as T.prefix.

– For two prefixes x and y, we use x = y to indicate that x is equal to y,
x 6= y that x is incomparable to y, and x ⊂ y that y is a short prefix of x
respectively.

Any merge of two DHR trees can be reduced to merging two corresponding
SHR trees, since any DHR tree can be transformed into a SHR tree. Assume T1

is merging with T2 as in Fig. 6(a) and let b be the first bit position at which
T1.prefix differs from T2.prefix. There are only three cases categorized by the
relationship of T1 and T2’s prefixes.

1. If T1.prefix 6= T2.prefix, we combine these two SHR trees into one DHR
tree. The tree with the b-th bit equal to 0 will become the left tree of the
merged DHR tree while the other becomes the right tree, as in Fig. 6(b).

2. If T1.prefix = T2.prefix, we can break the tie by choosing the tree with a
head of a smaller node identifer, e.g. T1, and another tree T2 is decomposed
into two smaller SHR trees, i.e. its left and right trees, which slide down
along T1 and carry on further merges with subtrees of T1, as in Fig. 6.



3. If T1.prefix ⊂ T2.prefix or T2.prefix ⊂ T1.prefix, e.g. as in Fig. 6 (d), the
tree with shorter prefix keeps its root while the other slides down for further
merges.

Fig. 6. Merging two DHR trees T1 and T2

When a SHR tree is sliding down another tree, it either further decomposes
into smaller SHR trees or settles down somewhere deep in the tree. For example,
as in Fig. 7, T ′ is sliding down along another tree. If it encounters a subtree with
the same prefix, it just decomposes into two smaller SHR trees, each of which
slides down along the proper branch. If a subtree with incomparable prefix,
assuming T (u) as in Fig. 7(a), is encountered, T ′ will take u as one of its child
and substitute T (u) in the original tree. If T ′ ⊂ T (u).prefix, then T ′ can just
keep sliding down along the proper branch. But if T (u).prefix ⊂ T ′, T ′ needs
to first decompose into two smaller SHR trees, one of which replaces u’s position
and takes u as its child while the other slides down, as in Fig. 7(b).

Fig. 7. T ′ is sliding down along another tree


