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Abstract. We describe a new data structure, the Skip B-Tree, that
combines the advantages of skip graphs with features of traditional B-
trees. A skip B-Tree provides efficient search, insertion and deletion op-
erations. The data structure is highly fault tolerant even to adversarial
failures, and allows for particularly simple repair mechanisms. Related
resource keys are kept in blocks near each other enabling efficient range
queries.

Using this data structure, we describe a new distributed peer-to-peer
network, the Distributed Skip B-Tree. Given m data items stored in
a system with n nodes, the network allows to perform a range search
operation for r consecutive keys that costs only O(log, m + r/b) where
b = ©(m/n). In addition, our distributed Skip B-tree search network
has provable polylogarithmic costs for all its other basic operations like
insert, delete, and node join. To the best of our knowledge, all previ-
ous distributed search networks either provide a range search operation
whose cost is worse than ours or may require a linear cost for some basic
operation like insert, delete, and node join.

1 Introduction

Peer-to-peer systems provide a decentralized way to share resources among ma-
chines. An ideal peer-to-peer network should have such properties as decentral-
ization, scalability, fault-tolerance, self-stabilization, load-balancing, dynamic
addition and deletion of nodes, efficient query searching and exploiting spatial
as well as temporal locality in searches.

Much of academic work on peer-to-peer systems has concentrated on building
distributed hash tables or DHTs. In a DHT, the hash value of the key of
resource is used to determine which node it will be stored at (typically the node
whose own hashed identity is closest), and the use of random-looking hash values
roughly balances out the load on the nodes in the system. An overlay graph is
then constructed on top of the nodes in order to allow efficient searches for the
nearest node to a target hash using some sort of routing algorithm. The major
form of variation between these DHTSs is the routing algorithm used to locate
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resources; however, in each case the underlying structure is built on pointers
between nodes, so the resulting mechanism typically looks like some sort of tree
search.

Even though traditional DHT systems effectively construct balanced search
trees in order to find nodes, they generally do not support range queries since
hashing destroys the ordering on keys. They also typically lack load balancing
mechanisms other than the limited randomized balancing provided by hashing.
For example, in Chord it is likely that some machine will own 2(log N/ N loglog N)
fraction of the key space. There are some recent extensions of DHT systems which
try to mitigate this problem. An extension of Chord called a p-tree [CLGS04]
supports O(log, N) search as well as providing efficient range query. However,
there is no analysis on deletion and insertion, and the addition and removal
of nodes are based on a complicated self-stabilization mechanism whose perfor-
mance is based on empirical data only. Karger and Ruhl [KR04] propose algo-
rithms to do address space balancing and item balancing in Chord, which ensures
with high probability no node will be responsible for more than O(1/N) of the
key space. The item balancing algorithm is dependent on nodes being able to
move freely in the key space and is incompatible with the address space balanc-
ing algorithm though. Ratnasamy etc. [RRHS04] proposes a new data structure
called Prefix Hash Tree (PHT) that could be put on top of existing DHT. PHT
is essentially a binary trie built over data sets being indexed. The system sup-
ports range queries and is load balanced, but it suffers from hot spots since the
top-level trie nodes tend to be accessed more frequently than bottom-level trie
nodes.

Though continued research on DHT's is likely to lead to further improvements,
some of the difficulties with reconciling range queries and DHT structures is in-
herent in the use of hashing to perform load balancing. Another line of research
has focused on providing searchable concurrent data structures by applying the
tree structure in order to support efficient range queries using mechanisms similar
to those in traditional balanced binary trees. For example, Skipnet, developed
by Harvey etc. [HJST03], is a trie of circular, singly-linked skip lists that link the
machines in the system. It provides path locality and content locality, and its
hashing provides some form of load balancing. However, transparent remapping
of resources to other domains is not possible. Aspnes and Shah [AS02] concur-
rently devised a data structure called a skip graph which applies skip lists in a
similar way to support O(log N) search, insertion and deletion operations, while
maintaining the inherent tree structure in the network so that range queries are
also supported. Skip graphs are also tolerant to node failures, including both
adversarial failures and random failures.

The original skip graph construction in [AS02] was marred by the lack of any
policy for assigning resources to nodes, excessive internode pointers, and a cum-
bersome self-repair mechanism. Recently Aspnes et al.[AKKO04] have proposed a
mechanism to do global load balancing by pairing heavily loaded machines with
lightly loaded ones, while using sampling to reduce the number of pointers in the
data structure from O(log N) per resource to O(log N) per machine. However,



search times in such binned skip graphs still suffer from large constants, and
exploiting the large memory capacity of typical machines may allow much faster
searching.

1.1  Owur contribution

We describe a new data structure, the Skip B-Tree, which has the following
features:

1. By combining skip graphs with features of traditional B-trees, the skip B-
Tree avoids the drawbacks of traditional skip graphs while providing O(log, N)
search, insertion and deletion operations, where b is the block size. When
b = NY* for some constant k, then for any set of N items, all operations
take constant time, O(k).

2. The high connectivity of our data structure makes it highly fault tolerant
even to adversarial failures, and allows for particularly simple repair mech-
anisms.

3. Related resource keys are kept in blocks near each other, which may enhance
the performance of applications such as web page prefetching which utilize
the locality of resources.

Using this data structure, we describe a new distributed network, the Dis-
tributed Skip B-Tree. We show that our distributed Skip B-tree is the first
distributed search network with provable polylogarithmic costs for all its basic
operations®. It employs balancing techniques from [AAAT03] to locally update
system parameters and hence avoids costly global re-balancing. Moreover, given
m data items stored in a system with n nodes, a range search for r consecutive
keys costs only O(log, m+r/b) where b = ©(m/n). To the best of our knowledge,
all previous distributed search networks may require a linear cost for some op-
eration or do not provide cost efficient range queries. Aspnes et al.[AKK04] has
a load balancing scheme that may cause an insert operation to trigger a global
re-balancing that costs £2(n). Awerbuch and Scheideler [AS03] have a scheme for
which a range search for r consecutive keys costs O(rlogn). Hence their solution
obtains no locality of resources and incurs a high cost relative to our solution.

1.2 Distributed Search Trees vs Distributed Hash Tables

Skip B-trees are instances of the general concept of Distributed Search Trees
(DSTs), which we now define. Essentially, DSTs are to search trees what DHT's
are to hash tables. We begin by defining the interface to a Distributed Hash
Table (DHT). A DHT is a distributed network on n nodes storing m (key,value)
pairs with the following operations.

1. Add: Add a node to the system.

4 See Section 1.2 for a formal definition of the operations and their cost measures



2. Remove: Gracefully remove a node from the system.
3. Insert: add a (key,value) pair.

4. Delete: remove a (key, value) pair.

5. Search: Given a key, find the corresponding value(s).

The typical cost measures of a DHT are to achieve worst case guarantees for
the following:

1. Network change cost: Message complexity of Add or Remove operations. For
example O(log® n) in Chord [SMLN*03] and O(logn/v/Ioglogn) in [KMO5].

2. Data change cost: Message complexity of Insert, Delete, and Search oper-
ations. For example, O(logn) in [SMLNT03] and O(logn/loglogn) in Ko-
orde [KKO03].

3. Data load: The maximal fraction of data items stored in one machine. For
example O(logn/n) in [SMLNT03] and O(1/n) in [KR04].

4. Network load: The maximal fraction of traffic a node receives given that ran-
dom nodes search for random data. For example O(logn/n) in [SMLNT03].

The interface of a DST contains all the operations of a DHT and includes one
new operation, the Range search. This search operation gets two parameters
(k,r) and must return the  minimal keys whose value is larger than the search
key k (one can also require a search for the r keys that are smaller than k). The
cost metrics for DSTs are the same as for DHTs with the only difference being
that the complexity of a range search operation is measured as a function of the
required range r. Ideally, an efficient distributed search tree that stores m data
items over a network with n nodes should store the index sorted with each node
storing a consecutive block of size b = @(m/n) of the index. In such a case a
range search operation for r keys should ideally require only O(log, m + r/b)
messages. Indeed we will show that our solution obtains this asymptotic bound
while keeping all other operations at a polylogarithmic cost.

Finally we mention that handling faulty nodes (non-graceful node removals)
is also an important issue both for DHTs and for DSTs. This usually requires
data replication and techniques that are out of the scope of this short paper.

2 Skip B-trees

The B-tree was originally introduced by Bayer [Bay72]. The B-tree algorithms
utilized the locality of data and were designed to minimize the cost of sequential
search/insert/delete operations. There has been a lot of research on building
a distributed B-tree that supports concurrency and parallelism. Gilon and Pe-
leg [GP91] proposed several structures for implementing a distributed dictionary,
with the focus on reducing complexity of message passing as well as data bal-
ancing. Colbrook etc. [CBDW91] have proposed a pipelined distributed B-tree.
Johnson etc. [JC94] describe a data structure called a dB-tree which permits
concurrent updates on a replicated tree node, and rarely blocks operations.



A skip graph, introduced by Aspnes and Shah [AS02], is organized as a tower
of increasing sparse linked lists, much like a skip list [Pug90]. Level 0 of a skip
graph is just a doubly linked list of all nodes in increasing order by key. For each
i greater than 0, each node appears randomly in one of the many link lists in
level 4 (unlike a skip list where there is only one linked list per level), with two
constraints. First, if node x is a singleton at level ¢ — 1, it doesn’t appear in any
of the linked list at levels higher than ¢ — 1. Second, for every linked list L at
level 7, there must be another linked list L’ at level ¢ — 1 where the elements in
L are a subset of the elements in L'.

Our skip B-tree can be viewed as a non-trivial extension of the skip graph,
combined with the idea of a distributed B-tree. We specify a block size b, and
for every linked list on any level we divide it into blocks where the expected size
of each block is O(b) (we will explain how to do this later). The division into
blocks is independent of the skip graph structure.

As in a skip graph, each element z is assigned a membership vector m(z),
where the characters in m(x) are taken from a finite alphabet set Y. The cardi-
nality of the alphabet, |X|, is typically taken to be the same as the block size b.
Every doubly-linked list in the skip B-tree is labeled by some finite word w. An
element x is in the list labeled by w if and only if w is a prefix of m(z). Each
element in the block keeps two pointers, one to the corresponding element in the
upper level (called “parent”) and one to the corresponding element in the lower
level (called “child”). The block itself keeps two pointers to its two neighbors at
the same level. It also keeps a count of how many elements there are in the block.
According to Lemma 1, the expected height of the skip B-tree is O(log, N). By
making b large enough (say b = 107), in practice the height of a skip B-tree can
be a very small constant (say, 2 or 3 for any data set).

We adopt much of the notation of [AS02]. In particular, for any element w,
write w [ ¢ for the prefix of w of length i. Write € for the empty word. For each
block b at level ¢, write m.ll(b) to denote the ¢-th character of the membership
vector of any element in b. In the implementation of the algorithm we actually
store a number in each block indicating the ¢-th element in the membership
vector of all elements belonging to it instead of storing a membership vector in
each element.

As in a skip graph, the bottom level of a skip B-tree is always a doubly-linked
list S consisting of all the nodes in order, divided into blocks with size of O(b).
In general, for each w in X*, the doubly-linked list .S,, contains all x for which
w is a prefix of m(x), in increasing order, divided into blocks with size of O(b).
We say that a particular list S,, is part of level ¢ if |w| = 4. This gives an infinite
family of doubly-linked lists; in an actual implementation, only those S, with
at least two nodes are represented.

Lemma 1. With high probability, the height of a skip B-tree is O(log, N).
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Fig. 1. A skip B-tree with n = 10 nodes and [log, n] = 3 levels. The block size

b=3.

3 Algorithms for a skip B-tree

Here we describe the search, insert and delete operation for a skip B-tree. We
summarize the variables stored at each node in Table 1. For simplicity, our
description assumes a supply of blocks that can hold many data items. The
question of how these blocks are mapped to actual physical machines is deferred
to Section 6.

Variable Meaning
MaxKey the maximum resource key in a block
MinKey the minimum resource key in a block
currentBlock the block receiving the message
Right the right neighbor of the current block
Left the left neighbor of the current block
Level the level of the block
m Membership vector
[key] the element in the block indexed by key
Parent pointer to the block one level higher which contains the same resource key as the element
Child pointer to the block one level lower which contains the same resource key as the element
Group indicates the grouping of the block

Table 1. List of all the variables stored at each node.

In this section, we will give the algorithms and analyze their performance.

3.1 The

search operation

The search operation (Algorithm 1) is basically the same as that of a skip list,
except that our unit of search is now a block. The search is initiated by a top level




block seeking a key and it proceeds down the same level without overshooting,
continuing at a lower level if required, until it reaches level 0. Either the block
at level 0 which contains the key, if it exists, or the block at level 0 storing the
key closest to the search key is returned. The algorithm is described below:

Algorithm 1! search for the file indexed by searchKey

upon receiving (searchOp, startBlock, searchKey, level):
if (searchKey exists in unmarked elements of currentBlock) then
if (level = 0) then
| send (foundOp, currentBlock) to startBlock
else
| send (searchOp, startBlock, searchKey, level — 1) to currentBlock[searchKey].Child

f (searchKey > currentBlock.MazKey) then
while (level > 0) do
if (currentBlock. Right. MinKey < searchKey) then
send (searchOp, startBlock, searchKey, level) to currentBlock.Right
break
else if (level > 0) then
| send (searchOp, startBlock, searchKey, level — 1) to currentBlock[currentBlock.MaxKey].Child

else
while (level > 0) do
if (currentBlock.Left. MaxKey > searchKey) then
send (searchOp, startBlock, searchKey, level) to currentBlock.Left
break
else if (level > 0) then
| send (searchOp, startBlock, searchKey, level — 1) to currentBlock[currentBlock.MinKey].Child

if (level = 0) then
| send (notFoundOp, currentBlock) to startBlock

Lemma 2. The search operation in a skip B-tree S with N nodes and block size
b takes O(log, N) time and O(log, N) messages with high probability.

Skip graphs can support range queries in which one is asked to find a key
within a specified range. For most of these queries, the procedure is an obvious
modification of Algorithm 1 and runs in O(log, N) time with O(log, N) mes-
sages. For finding all nodes in an interval, we can use a modified Algorithm 1
to find the closest element to the upper (or lower) bound. We then walk from
this element in level 0 list until we hit the lower (or upper) bound, and return
all the elements we have encountered. If there are r elements in the interval, the
running time is O(logy N + 7).

3.2 The insert operation

A new element n knows some introducing block introducer which helps it to
join the network. n inserts itself in one list at each level until it finds itself a
singleton list at top level. At level 0, n will be added to the block which contains
a key closest to n.Key. At each level i, i >= 1, n will try to find the closest
element x in level + — 1 with [ ¢ = n [ ¢ and add to the block x belongs to at
level . To ensure load balancing, we adopt the approach described in [AKKO04].
Specifically, we call a block “closed” if it has more than b/2 elements, and we call



it “open” if it has no more than b/2 elements. We group the blocks into groups
of 2 or 3, with each group having the following property: it must either contain
one closed block followed by one open block, or it may contain 2 closed blocks
and 1 open block while the open block is in the middle. This is the invariant
we try to keep for our insertion and deletion algorithm. When we insert a new
element, if we insert it into a closed block we always move the largest element to
the adjacent open block in the same group. If the open block is still open after
insertion, nothing happens. If it is in a group of 2 and it becomes closed, we add
a new empty block in the middle of these two blocks and mark it “open”. We
move the element to this new block instead. If the open block is in a group of
3, we create a new block, link it to the right of the rightmost closed block, and
move the largest element in the open block in the middle to its neighbor to the
right, which in turn causes the movement of the largest element in the rightest
closed block to the new block. We also split it into two groups of size 2 since we
have 4 blocks now. Notice that in this way we guarantee that the average block
size of any group is no smaller than b/4. To simplify analysis, we do not allow
duplicates here, but it is quite easy to extend the algorithm so that duplicates
are allowed. Also when we create a new block, we assume that there exists a
routine which allocates the space for the block and distribute it to a random
machine in the network.

Algorithm 2. insert a new element n

if (introducer = 1) then

create a new block and add n to the block
block.Left «— L

block.Right « L

block.Group « 2

send (searchOp, currentBlock, n.Key, introducer.Level) to introducer
wait until foundOp or notFoundOp is received
upon receiving (foundOp, clone):
terminate insert
upon receiving (notFoundOp, block):
childblock «— L
while true do
level « block.Level
send (buddyOp, currentBlock, n, n.level, L) to block
wait until receipt of (setLinklp, newblock):
send (linkOp, n, childblock, newblock) to block
if (newblock # 1) then
childblock «— block
block «— newblock
else
newBlock «+ create a new block
m(newBlock) «— uniformly chosen random element of ¥
add n to newBlock
n.Child < block
n.Parent « L
break

3.3 The delete operation

Deletion works as follows: we recursively delete the element from each level
it belongs to in a bottom-up fashion. When we delete an element, we check



Algorithm 3. block’s message handler for physically inserting new element n.

upon receiving (1linkOp, n, childBlock, parentBlock):
add n to currentBlock
n.Child «— childBlock
n.Parent <« parentBlock
currentBlock.Count++
//the block is open
if (currentBlock.Count <= b/2) then
| return
//this is the first block on this level and it is closed
if (currentBlock.Left = currentBlock.Right = 1) then
lock « create a new bloc
block.Group «— 2
insert block to the right of currentBlock
m «— largest element in currentBlock
send (linkOp, m, m.Child, m.Parent) to block
remove m from currentBlock
return
//if the block was closed before, swap element with the open block in the group
if (currentBlock.Count > b/2 + 1) then
if (currentBlock.Left.Count <= b/2 and currentBlock.Group = 3) then
block « create a new block
block.Group «— 2
insert block to the right of currentBlock
currentBlock.Left.Left.Group « 2
currentBlock.Left.Group «— 2
currentBlock.Group «— 2
m « largest element in currentBlock
send (linkOp, m, m.Child, m.Parent) to currentBlock.Right
remove m from currentBlock

m «— largest element in currentBlock
send (1inkOp, m, m.Child, m.Parent) to currentBlock.Right
remove m from currentBlock
return
//currentBlock must have b/2 + 1 elements now
if (currentBlock.Group = 2) then
currentBlock.Left.Group «— 3
currentBlock.Group «— 3
block « create a new block
block.Group « 3
insert block to the left of currentBlock
m «— smallest element in currentBlock
send (linkOp, m, m.Child, m.Parent) to currentBlock.Right
remove m from currentBlock
return
else
m «— largest element in currentBlock
send (1ink0p, m, m.Child, m.Parent) to currentBlock.Right
remove m from currentBlock
return

Algorithm 4! block’s message handler for finding the closest block one level higher to insert new element n, whose
b.Level-th component of membership vector is val.

upon receiving (buddyOp, startBlock, n, val, side):
foreach (element z in currentBlock)
if (m(xz.Parent) = val) then
send (setLinkOp, =.Parent) to startBlock
return
if (side = L) then
if (currentBlock.Left # 1) then
| send (buddyOp, startBlock, n, val, Left) to currentBlock.Left
if (currentBlock.Right # 1) then
| send (buddyOp, startBlock, n, val, Right) to currentBlock.Right
if (currentBlock.Left = L and currentBlock. Right = 1) then
send (setLinklp, L) to startBlock

else
if (currentBlock.side # 1) then
send (buddyOp, startBlock, val, side)
to currentBlock.side
else
| send (setLinkOp, L) to startBlock




the block’s size. If it remains closed/open after deletion, we simply remove the
element from it. Notice that we allow an empty block to be in the group here.
If it changes from closed to open and the open block in the group is not empty,
we move the largest/smallest in the open block to the current block. If the open
block in the group is empty, we then check the group size. If it is a group of size
3, we simply remove the empty block in the middle and form a group of size 2
since the block is open now. If it is a group of size 2, we check the size of the
group to the left. If it is also a group of size 2, we move the largest key in the
open block of the left neighbor to the current block, delete the empty open block
and form a group of 3. If it is a group of size 3, we delete the empty block, and
form 2 groups of size 2 with the left neighbor. Notice that the invariant of group
structure is still preserved by our deletion algorithm.

The proof of the correctness of this mechanism is essentially the same as the
proof of Theorem 4 in [AKKO04].

Lemma 3. The insertion and deletion operations in a skip B-tree S with N
nodes and block size b take O(log, N) messages and O(log, N) time with high
probability.

3.4 Concurrency issues

In order to ensure the correctness of the algorithm under concurrent updates,
we need a lock-free doubly linked list in a distributed setting. Shasha and Good-
man [SG88] provide a framework for proving the correctness of non-replicated
concurrent data structures. For example, we could use the underlying doubly
linked list of dB-tree [JC94] as our doubly linked list. Since our insertion and
deletion operations all work in a bottom-up fashion, as long as each level is con-
sistent the whole data structure must be intact, and a lock-free doubly-linked list
ensures the consistency of each level. The only thing that could be missing dur-
ing updates is the pointers between different levels, but this will only slow down
the search operation and has no effect on the consistency of the data structure.

4 Fault tolerance

In this section, we describe some of the fault tolerance properties of a skip
B-tree. Fault tolerance of related data structures, such as augmented versions
of linked lists and binary trees, has been well-studied and some results can
be seen in [MP84,AB96]. Section 5 gives a repair mechanism that detects node
failures and initiates actions to repair these failures. Before we explain the repair
mechanism, we are interested in the number of blocks that can be separated from
the primary component by the failure of other blocks, as this determines the size
of the surviving skip B-tree after the repair mechanism finishes.

Notice that if multiple blocks are stored on a single machine, if that machine
crashes all of its blocks are lost. Our results are stated in terms of the fraction



of blocks that are lost; if the blocks are roughly balanced across machines, this
will be proportional to the fraction of machine failures. Nonetheless, it would
be useful to have a better understanding of fault tolerance when the mapping
of resources to machines is taken into account; this may in fact dramatically
improve fault tolerance, as blocks stored on surviving machines can always find
other blocks stored on the same machine, and so need not be lost even if all of
their neighbors in the skip B-tree are lost.

We give analysis of adversarial failures here, as this will be the worst case fail-
ure pattern. In this section we look at the expansion ratio of a skip B-tree, which
gives the number of nodes that can be separated from the primary component
even with adversarial failures.

Let G be a graph. Recall that the expansion ratio of a set of nodes A in G is
|0A|/|A|, where |0A] is the number of nodes that are not in A but are adjacent to
some node in A. The expansion ratio of the graph G is the minimum expansion
ratio for any set A, for which 1 < |A| < n/2. The expansion ratio determines the
resilience of a graph in the presence of adversarial failures, because separating a
set A from the primary component requires all nodes in § A to fail. We will show
that skip B-trees have Q(%) expansion ratio with high probability, implying that
only O(f-b) nodes can be separated by f failures, even if the failures are carefully
targeted.

Since all the real data is stored on level 0 blocks, we only need to consider
the case when A consists entirely of level 0 blocks. The probability for a level 1
block to have no neighbor in A is (mom;()lAl)b since none of its pointers to level 0
blocks can point to any block in A, where mg is the total number of blocks on

level 0. Thus the expected number of neighbors at level 1 is mq(1 — (1 — ﬂ)b),

mo
which is greater than rat Since m1 = O(my), the expansion ratio is Q(%),
which is pretty good since there are only O(]A|b) links from A to level 1 blocks.
It is comparable to the guarantee provided by data structures based on explicit
use of expanders such as censor-resistant networks [FS02,SFG02,Dat02].

blAlml
m

5 Repair mechanism

In this section we describe a self-stabilization mechanism that repairs our skip
B-tree in case of block failure. We assume that a block either works or fails in
its entirety. The repair mechanism is quite simple: each block sends message to
its neighbors periodically to see if they are alive. If one of the neighbors is dead,
we try to fix the link to the next live neighbor. Without loss of generality, we
assume that the right neighbor fails, and the block resides on level 0.

Lemma 4. For any two adjacent blocks by and by on level 0, the probability that
there is an element x1 from by and an element x5 from bs such that x1 [ 1 =
xo | 1 is at least 1 — e~b/4



Algorithm 5. Algorithm for repairing right neighbor for block block at level 0.

send (repairOp, block.maxKey, block) to block

upon receiving (repairOp, key, block):

minKey — oo

foreach element z in block

send message to z.Parent and z.Parent.Right asking for the smallest key greater than key

if (the reply is not L and the key returned is < minKey) then

minKey «— the key returned

newBlock «— the block containing the key

//make sure that newBlock’s left neighbor is indeed missing if (newBlock.Left = L) then
newBlock.Left < block
block.Right « newBlock

else

| send (repairOp, key, block) to the left neighbor of current block

Thus we can see that the repair mechanism would finish in expected O(1)
time if we assume the node can process O(b) messages simultaneously, and sends
expected O(b) messages with high probability.

6 Distributed Skip B-Trees

In this section, we detail how to map skip B-trees to machines and build an
efficient DST. Consider a network with n machines that stores m data items,
we would like to have a skip B-tree with block size b = m/n. We use the load
balancing strategy of [AAAT03] in order to label nodes with ©(log n) identifiers.
This can be done so that all nodes have unique binary identifiers that form a
prefix code whose size is between logn — C' and logn + C for a predetermined
constant C. The add node and remove node operations maintain this invariant
with cost O(log®n) [AAAT03].

In order to map a skip B-Tree to nodes we must map nodes to blocks in a
manner that balances load between nodes and maintains low degree (an edge is
formed between any two nodes that store two consecutive blocks of any of the
linked lists of the skip B-Tree structure). The idea is that each node estimates b
to be about m/n, the estimation of b will always be always a power of two.

We now explain how to maintain the base linked list S, that is maintained
by all the network nodes. However, the same techniques are used to store all the
linked lists. Specifically, for any binary word w, the nodes whose identifiers are
a prefix of w maintain the linked list S,, in the same fashion.

Insertion of a block into a linked list is performed in the following manner.
A sample of ©(logn) random nodes are queried, and the least loaded node gets
to store the block. The nodes that store the previous and next blocks now store
a network link to this new location and the chosen node adds links to them.
If the adversary is oblivious to the random choices then with high probability
[MRS01,ABKUO00] all machines will have the same load (number of blocks) up to
a constant factor. If b = ©(m/n) and n nodes maintain the list then the number
of blocks per node is O(1) and hence the number of links of each node is also
O(1).

We now analyze the number of network links each node needs to maintain
for all the lists it belongs to. Fix a node w with id id(u), it participates in



maintaining all the linked lists S,, such that w is a prefix of id(u) or id(u) is a
prefix of w. Hence there are O(logm) such lists. Each such list S, with |w| =1
contains ©(27%m) elements and since node identifiers are balanced there are
O(27'n) nodes whose prefix is a prefix of w. Since b = ©(m/n) then each such
list requires O(1) links for each node maintaining it. Therefore, for maintaining
all lists of the skip B-Tree the degree of each node is O(logm). So the cost of
adding a node and setting up its connections is O(lognlogm).

Finally, we need a mechanism to update b as the size of n and m dynamically
change over time. We want to avoid global pitfalls that would require the whole
system to do a global update as such operations are not scalable. Each node
maintains b at a power of two, for a node v let b = 28(*) be its local estimate.
Several events described below may case B(v) to change. Whenever B(v) changes
this effects the open or closed status of the nodes blocks. We use the bucket
compression technique of [AKKO04] (section 3.3) and a similar bucket expansion
algorithm to locally adjust the nodes blocks to the new value of b = 25("), The
details will appear in the full paper.

When a node joins the system, we use the node split mechanism of [AAAT03].
When node v splits, it decreases its B(v) by one and the new node also takes the
updated value of B(v). Similarly, when a node leaves, we use the merge mecha-
nism of [AAAT03]. The two merged nodes decrease their B(v) by one. Changes
in B(v) also occur due to change in the number of blocks stored. Once a node
stores more that a given constant number of blocks, it locally increase its value
of B(v) by one. Similarly, when a node has less than a given constant number of
blocks, it locally decreases B(v) by one. The estimation of b is adequate since the
load balancing algorithms give each node an estimate of n and m up to constant
factors with high probability. In the full paper, we prove that using this strategy
the nodes’ estimates of b are all within a constant factor of each other. Moreover,
locally updating b has low cost as only O(lognlogm) messages are sent.

One remaining obstacle is that the skip B-tree now has different members
having slightly different estimates of b. As long as estimates are bounded by a
constant factor it is easy to see that insert, delete, and search operations can
still be carried out using O(log, m) messages. The resulting distributed data
structure is a DST with the following costs.

Lemma 5. Given an n node network storing m items, both the network change
cost and the data change cost is O(lognlog, m). A range search for r consecu-
tive keys costs only O(log, m + 1/b). Both the data load and network load are
O(logn/n).

7 Conclusion

In this paper we defined a new data structure called skip B-tree which has
several desirable properties. Insertion, deletion and search in skip B-tree all take
O(log, N) time for any set of elements that be arbitrarily unbalanced. In practice



just as in B-trees, our cost is a very small constant (2-3) for reasonably large
b (say, 107). Also under the condition of no additional node failures, the skip
B-tree can repair itself in a very efficient way. Finally, skip B-tree also supports
range queries, and it exploits the geographical proximity in location of resources.
We use skip B-trees to build a distributed peer-to-peer network that provides
the first polylogarithmic cost DST that allows to perform efficient range search

operations.
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