
Fast Deterministic Consensus in a Noisy Environment

James Aspnes�
ABSTRACTIt is well known that the 
onsensus problem 
annot be solveddeterministi
ally in an asyn
hronous environment, but thatrandomized solutions are possible. We propose a new model,
alled noisy s
heduling, in whi
h an adversarial s
hedule isperturbed randomly, and show that in this model random-ness in the environment 
an substitute for randomness inthe algorithm. In parti
ular, we show that a simpli�ed, de-terministi
 version of Chandra's wait-free shared-memory
onsensus algorithm [16℄ solves 
onsensus in time at mostlogarithmi
 in the number of a
tive pro
esses. The proofof termination is based on showing that a ra
e betweenindependent delayed renewal pro
esses produ
es a winnerqui
kly. In addition, we show that the proto
ol �nishes in
onstant time using quantum and priority-based s
hedulingon a unipro
essor, suggesting that it is robust against the
hoi
e of model over a wide range.
1. INTRODUCTIONPerhaps the single most dramati
 result in the theory ofdistributed 
omputing is Fis
her, Lyn
h, and Paterson'sproof of the impossibility of deterministi
 
onsensus in anasyn
hronous environment with failures [22℄. This resultand its extensions [20, 26℄ show that the 
onsensus prob-lem, in whi
h a group of pro
esses must 
olle
tively agreeon a bit, 
annot be solved deterministi
ally in an asyn-
hronous message-passing or shared-memory model if an un-restri
ted adversary 
ontrols s
heduling. Solutions to theshared-memory version of this fundamental problem havethus taken the approa
h of restri
ting the adversary, eitherby allowing randomization that limits the adversary's knowl-edge [1, 6, 8, 10, 12, 13, 15{17,29℄ or by imposing timing 
on-straints that limit the adversary's 
ontrol [3, 20, 21℄. As a
orollary to granting less power to the adversary, these so-lutions often involve granting more power to the algorithm,�Yale University, Department of Computer S
ien
e, 51Prospe
t Street/P.O. Box 208285, New Haven CT 06520-8285. E-mail: aspnes�
s.yale.edu. This work was sup-ported in part by NSF grant CCR-9820888.

in the form of the ability to obtain random bits or expli
itlydelay steps. By using these additional powers an algorithm
an es
ape the FLP bound and rea
h agreement.These additional powers 
ome at a 
ost. Randomizationalone is not powerful enough to allow sublinear 
onsensusproto
ols [7℄, so eÆ
ient randomized solutions have requiredadditional 
onstraints on the ability of the adversary to ob-serve the arguments to operations and the 
ontents of un-read memory lo
ations [12, 13, 16℄. These algorithms 
are-fully manage 
ommon pools of unread random bits for fu-ture use, a 
lever but odd-looking pra
ti
e that is justi�edprimarily by the spe
i�
 details of the model. The delay-based algorithm of [3℄ is less 
onvoluted, but still dependson using expli
it delays that at the minimum require that apro
ess has the power to invoke them and at worst may addunne
essary delay when few pro
esses parti
ipate.As an alternative to designing an algorithm spe
i�
ally toexploit the weaknesses of a parti
ular adversary model, we
onsider the approa
h of using a simple algorithm that guar-antees agreement but relies on good lu
k to terminate. OurLEAN-CONSENSUS algorithm is des
ribed below in Se
-tion 4; it is obtained by removing all of the randomizedparts of a similar algorithm due to Chandra [16℄. The es-sential idea (whi
h is the 
ore of many 
onsensus proto
olsin the literature) is to stage a ra
e between those pro
essesthat prefer 0 and those that prefer 1, with the rule that if aslow pro
ess sees that faster pro
esses are all in agreement itadopts their 
ommon preferen
e. The ra
e is implementedusing two arrays of atomi
 read/write bits. The algorithmterminates when the fastest pro
esses are all in agreementand 
an de
ide on their preferred value safely, knowing thatother pro
esses will adopt the same preferen
e before they
at
h up.Unlike other 
onsensus algorithms, LEAN-CONSENSUSmakes no attempt to 
ajole the pro
esses into agreementby other means| it relies entirely on the hope that somepro
ess eventually pulls ahead of the others. In order todash this hope, the adversary must exer
ise enough 
ontrolto ensure that the fastest pro
esses run in lo
kstep. We be-lieve that in many natural system models it will be diÆ
ultfor the adversary to exer
ise this mu
h 
ontrol.One su
h model is what we 
all the noisy s
heduling model,des
ribed in Se
tion 3.1. In this model, the adversary pro-poses a s
hedule that spe
i�es the order in whi
h read and



write operations o

ur, but this s
hedule is perturbed byrandom noise drawn from some arbitrary non-
onstant dis-tribution. This noise 
orresponds to random fa
tors in asystem that might not be strongly 
orrelated with the algo-rithm's behavior, su
h as network delays, 
lo
k skew, or busor memory 
ontention.We show in Se
tion 6 that, in the noisy s
heduling model,LEAN-CONSENSUS terminates with expe
ted �(log n)work per pro
ess, where n is the number of a
tive pro
esses.This result is distribution-independent, in the sense that thealgorithm's asymptoti
 performan
e does not depend on thenoise distribution in the model (though the 
onstant fa
tordoes), and it holds even if pro
esses are subje
t to randomhalting failures. Be
ause the algorithm's performan
e de-pends only on the number of pro
esses a
tually exe
utingthe proto
ol and not on the total number of pro
esses in thesystem, it is adaptive in the sense of [11℄, whi
h implies itis fast in the sense of [2, 25℄. Thus it is well-suited to situa-tions where only one or a few pro
esses attempt to run thealgorithm at the same time.Our noisy s
heduling model is similar to the model used byGafni and Mitzenma
her [23℄ in their analysis of mutual ex-
lusion proto
ols with random timing, but is extended to in-
lude 
onstant delays inserted by the adversary in additionto random delays. Another sour
e of inspiration is Kout-soupias and Papadimitriou's di�use adversary [24℄, whi
h
hooses a distribution over exe
utions in whi
h no bran
hat any de
ision point 
an o

ur with probability more thansome �xed �. Our model is not the �rst in whi
h an ad-versary 
hooses parameters for a sto
hasti
 pro
ess thatthen 
ontrols s
heduling; a sophisti
ated model of this type,based on asyn
hronous PRAMs, has been proposed by Coleand Zaji
ek [19℄.To give support to our intuition that many possible restri
-tions on the adversary make LEAN-CONSENSUS work, wealso 
onsider what happens with a hybrid quantum andpriority-based s
heduler on a unipro
essor, following theapproa
h of [5℄. (The details of this model, whi
h sub-sumes both quantum s
heduling and priority-based s
hedul-ing, are sket
hed in Se
tion 3.2.) We show in Se
tion 7 thatLEAN-CONSENSUS terminates in O(1) steps in the hybrid-s
heduling model, as long as the quantum is at least 8. Therestri
tion to a unipro
essor is ne
essary be
ause [5℄ showsthat no deterministi
 algorithm 
an solve 
onsensus withmultiple pro
essors, even with hybrid s
heduling, withoutusing stronger primitives that atomi
 read/write registers.Se
tion 8 des
ribes some simulation results that show thatthe 
onstant fa
tors in the noisy s
heduling analysis arein fa
t quite small for plausible noise distributions, sug-gesting that the good theoreti
al performan
e of LEAN-CONSENSUS might a
tually translate into fast exe
utionin a real system.In Se
tion 9, we suggest a number of dire
tions in whi
hthe 
urrent work 
ould be extended, in
luding extensionsto the noisy s
heduling model. One interesting possibil-ity is the in
lusion of adaptive 
rash failures. We arguebrie
y that be
ause LEAN-CONSENSUS re
overs qui
klyfrom su
h failures, it terminates in at most O(f log n) work

per pro
ess even if up to f pro
esses 
an fail. However, thereremains an interesting open question whether noisy s
hedul-ing is enough to get O(log n) performan
e even with �(n)
rash failures.
2. THE CONSENSUS PROBLEMIn the binary 
onsensus problem, a group of n pro
esses,possibly subje
t to halting failures, must agree on a bit.1 A
onsensus proto
ol is a distributed algorithm in whi
h ea
hnon-faulty pro
ess starts with an input bit and eventuallyterminates by de
iding on an output bit. It must satisfy thefollowing three 
onditions with probability 1:� Agreement. All non-faulty pro
esses de
ide on thesame bit.� Termination. All non-faulty pro
esses �nish the pro-to
ol in a �nite number of steps.� Validity. If all pro
esses start with the same input bit,all non-faulty pro
esses de
ide on that bit.2
3. MODELWe assume a shared-memory system 
onsisting of anunbounded number of pro
esses that 
ommuni
ate onlythrough shared atomi
 read/write registers. We use theusual interleaving model, in whi
h operations are assumed too

ur in a sequen
e �1; �2; : : : , and in whi
h ea
h read oper-ation returns the value of the last previous write to the samelo
ation. The order in whi
h operations o

ur is determinedby a sto
hasti
 pro
ess that is partially under the 
ontrol ofan adversary (Se
tion 3.1), or dire
tly by the adversary sub-je
t to 
ertain regularity 
onstraints (Se
tion 3.2).
3.1 Noisy SchedulingIn the noisy s
heduling model, we assume that the adversaryspe
i�es when operations o

ur (subje
t to an upper boundon the time between su

essive operations by the same pro-
ess), but that this spe
i�
ation is perturbed by randomnoise.Formally, the adversary 
hooses:1. An arbitrary starting time �i0 for ea
h pro
ess pi,2. A non-negative delay �ij before pro
ess pi's j-th op-eration, bounded by some �xed 
onstant M , and3. A �xed 
ommon distribution F� of the random delayadded to ea
h type of operation � (e.g., read or write).If pro
ess pi's j-th operation is of type �, it su�ers anadditional delay Xij whose distribution is F� . Thereis no restri
tion on the 
hoi
e of the F�, ex
ept that1Some authors 
onsider the stronger problem of id 
onsen-sus, in whi
h the de
ision value is the id of some a
tive pro-
ess. In many 
ases, id 
onsensus 
an be solved in a naturalway using a (lg n)-depth tree of binary 
onsensus proto
ols;examples of this approa
h 
an be found in [12, 16℄.2Some de�nitions of 
onsensus repla
e the validity 
onditionwith a weaker non-triviality 
ondition that says that theremust exist exe
utions in whi
h di�erent de
ision values o
-
ur.



the resulting Xij must be non-negative and 
annot be
onstant.3The time of pro
ess pi's j-th operation is given bySij = �i0 + jXk=1 (�ik +Xik) :Sin
e we are using interleaving semanti
s, the e�e
t of exe-
uting two operations at exa
tly the same time is not well-de�ned. To avoid ill-de�ned exe
utions, we impose the ad-ditional te
hni
al 
onstraint on the adversary's 
hoi
es thatthe probability that any two operations o

ur simultane-ously must be zero. This is automati
 if, for example, thenoise distributions F� are 
ontinuous. Alternatively, it 
anbe arranged by dithering the starting times of ea
h pro
essby some small epsilon. This te
hni
al 
onstraint does notqualitatively 
hange our results.Below we dis
uss the unfairness of noisy s
heduling and ex-tensions to allow random failures.
3.1.1 UnfairnessThe upper bound on the �ij and the 
ommon distributionon the Xij might suggest that the noisy s
heduling modelprodu
es fair s
hedules. This is not entirely true for suÆ-
iently pathologi
al distributions:Theorem 1. There exists a 
hoi
e of F� and �ij su
hthat for any distin
t pro
esses pi and pi0 , and any operationj, the expe
ted number of operations pi0 
ompletes betweenpi's j-th and (j + 1)-th operations is in�nite.Proof. Set ea
h F� so that Xij takes on the value 2k2with probability 2�k for k = 1; 2; : : : . For simpli
ity, let ussuppose that �ij = 0 for j > 0. We will also assume that Aand B exe
ute no operations before time 0.LetX be the number of operations 
ompleted by pi0 betweenSij and Si;j+1. We will show that the expe
tation of X isin�nite 
onditioned on the value of t = dSije (the 
eiling isso that we have 
ountably many 
ases).The idea is this: for ea
h k we have probability 2�k thatSi;j+1 � Xi;j+1 = 2k2 . Condition on this event o

urringfor some parti
ular k and 
onsider how many operations pi0must exe
ute to rea
h time 2k2 . Either (a) one of theseoperations takes time 2k2 or more (with probability 2�k+1per operation), or (b) a total of at least 22k+1 operations,ea
h of whi
h takes at most 2(k�1)2 time, must o

ur. If wewait only for event (a), we expe
t to see 2k�1 operations;to get the a
tual expe
ted number, we must subtra
t o�the expe
ted number of operations until (a) o

urs after (b)o

urs (2k�1 again) multiplied by the probability that (b)o

urs. This latter probability is at most (1 � 12k�1 )2k+1,whi
h goes to e�2 in the limit as k grows; it follows that pi03In fa
t, the F� distributions 
an be quite bizarre; it is notrequired, for example, that the Xij have �nite expe
tation.

exe
utes 
(2k) operations on average before time 2k2 . Ofthese, at most t=2 
an o

ur before time Sij , so if k � lg t,we have 
(2k) operations on average between t and 2k2 ,and thus also between Sij and Si;j+1, sin
e Sij � t < 2k2 �Si;j+1.To get the full result, we must remove two layers of 
ondi-tioning. First 
ompute the expe
tation 
onditioned only ont by summing 2�k
(2k) for ea
h of the in�nitely many suÆ-
iently large k. It is not diÆ
ult to see that this sum divergesand the expe
tation is in�nite. Summing over all values oft doesn't make it any less in�nite, and we are done.
3.1.2 FailuresWe 
an extend the noisy s
heduling model to allow haltingfailures. For ea
h i and ea
h j > 0 let Hij = 1 if pro
esspi halts before its j-th operation and 0 otherwise. De�neS0ij = �i0 + jXk=1 (�ik +Xik +Hik) ;with the usual 
onvention that x+1 = 1 for any real x.If S0ij =1, pi's j-th operation does not o

ur.We do not in
lude failures in the noise distributions F� be-
ause these distribution do not depend on n, and a 
onstantprobability of failure would mean that all pro
esses die af-ter O(log n) steps. Instead, we assume that failures o

urindependently with probability h(n) per operation, whereh is some fun
tion 
hosen by the adversary. The e�e
t ofstronger failure models is dis
ussed in Se
tion 9.
3.2 Quantum and Priority-Based SchedulingOur intuition is that LEAN-CONSENSUS should performwell in any setting that prevents lo
kstep exe
utions. Onesu
h setting is the hybrid-s
heduled unipro
essor model of[5℄, whi
h 
ombines the priority-based s
heduling model of[28℄ with the quantum-based s
heduling model of [4℄. In thismodel, pro
esses are assumed to be time-sharing a unipro-
essor under the 
ontrol of a pre-emptive s
heduler. Ea
hpro
ess has a priority, and a pro
ess may be pre-empted atany time by a pro
ess of higher priority. A pro
ess may onlybe pre-empted by a pro
ess of the same priority if it has ex-hausted its quantum, a minimum number of operations itmust 
omplete between the time it wakes up and the timeat whi
h it be
omes vulnerable to pre-emption. There isno requirement that a pro
ess start the proto
ol at the be-ginning of a quantum; it may have used up some or all ofits quantum performing other work before starting the pro-to
ol. We do not 
onsider failures in the hybrid-s
hedulingmodel; instead, a pro
ess may be arbitrarily delayed subje
tto the 
onstraints on the s
heduler.
4. THE LEAN-CONSENSUS ALGORITHMIn this se
tion, we des
ribe the LEAN-CONSENSUS algo-rithm. The algorithm is very simple, be
ause we are relyingon randomness in the environment to guarantee terminationand thus the algorithm itself must only guarantee 
orre
t-ness and provide the opportunity for the underlying systemto qui
kly jostle it into a de
ision state. Stru
turally, itis essentially identi
al to the multi-writer register 
onsen-sus proto
ol of Chandra [16℄ with the shared 
oins removed,



leaving only the implementation from multi-writer bits ofthe \ra
ing 
ounters" te
hnique that has been used in manyshared-memory 
onsensus proto
ols. It also bears some sim-ilarities to the Time-Adaptive Consensus algorithm of Aluret al. [3℄ with the delays removed.At ea
h step of the algorithm, ea
h pro
ess prefers either0 or 1 as its de
ision value. The 
on
i
t between the 0-preferring pro
esses and the 1-preferring pro
esses is settledby a ra
e implemented using two arrays a0 and a1 of atomi
read/write bits, ea
h initialized to zero. Ea
h pro
ess 
arriesout a sequen
e of rounds, ea
h 
onsisting of a �xed sequen
eof operations. During round r, a pro
ess that prefers bmarkslo
ation ab[r℄ with a one and looks to see if either (a) it hasfallen behind its rivals who prefer (1 � b), in whi
h 
ase itabandons its former preferen
e and joins the winning team,or (b) it and its fellows have sped far enough ahead of anyrival pro
esses that they 
an safely de
ide b knowing thatthose rivals will give up and join the b team before they
at
h up. The algorithm �nishes fastest when the pa
k ofpro
esses disperses qui
kly, so that a 
lear winner emergesas early as possible.Let us look more 
losely at the details of the algorithm. Apro
ess with input b sets its preferen
e p to b and its roundnumber r to 1. (We say that a pro
ess is at round r if itsround number is set to r; pro
esses thus start at round 1.)It then repeatedly exe
utes the following sequen
e of steps.To simplify the des
ription of the algorithm, we assume thatwhile a0 and a1 are initialized to zeroes, they are pre�xedwith (e�e
tively read-only) lo
ations a0[0℄ and a1[0℄, bothset to 1.1. Read a0[r℄ and a1[r℄. If for some b, ab[r℄ is 1 anda1�b[r℄ is 0, set p to b.2. Write 1 to ap[r℄.3. Read a1�p[r � 1℄. If this value is 0, de
ide p and exit.4. Otherwise, set r to r + 1 and repeat.Note that in ea
h round the pro
ess 
arries out exa
tly fouroperations in the same sequen
e: two reads, a write, andanother read. It is tempting to optimize the algorithm byeliminating the write when it is already evident from the pre-vious step that ap[r℄ is set or eliminating the last read whenit 
an be dedu
ed from the value of a1�p[r℄ that a1�p[r� 1℄is set. However, this optimization redu
es the work doneby slow pro
esses (whom we'd like to have fall still furtherbehind) while maintaining the same per-round 
ost for fastpro
esses (whom we'd like to have pull ahead). So we mustparadoxi
ally 
arry out operations that might appear to besuper
uous in order to minimize the a
tual total 
ost.In the des
ription of the algorithm given above, it is assumedthat the arrays a0 and a1 are in�nite. Obviously this is un-desirable in a real system. In order to bound the size of a0and a1, we 
an adopt a te
hnique from [16℄ and 
ut o� thealgorithm arbitrarily at some round rmax, using the prefer-en
es ea
h pro
ess has at that round as input to a robustbounded-memory 
onsensus proto
ol satisfying the validityproperty, su
h as [6℄. If rmax is large enough, most of the

time we will expe
t that LEAN-CONSENSUS terminatesbefore rea
hing rmax and the ba
kup algorithm will not beused. But in the 
ase where rmax is rea
hed (say, be
ausethe s
heduler is nastier than we have assumed), the ba
kupalgorithm 
an guarantee termination using bounded spa
eand bounded expe
ted time.Using preferen
es as input to the ba
kup algorithm guaran-tees agreement, even if some pro
esses de
ide using LEAN-CONSENSUS and others de
ide using the ba
kup algo-rithm. As shown in Lemma 3, if some pro
ess de
ides on avalue b at round r, every pro
ess prefers b starting at roundr. So the inputs to the ba
kup algorithm will all be b andany pro
ess exe
uting the ba
kup algorithm will de
ide b ina

ordan
e with the validity property.
5. AGREEMENT AND VALIDITYIf we ignore the termination requirement, the 
orre
tnessof the algorithm does not depend on the behavior of thes
heduler. The following two lemmas show that the validityand agreement properties hold whenever the algorithm ter-minates. The proofs, similar in spirit to those of Lemmas1-4 in [16℄, are given in the full paper.Lemma 2. If every pro
ess starts with the same input bitb, every pro
ess de
ides b after exe
uting 8 operations.Lemma 3. If some pro
ess P de
ides b at round r, everypro
ess prefers b at rounds r and greater, and every pro
essde
ides b at or before round r + 1.
6. TERMINATION WITH NOISY

SCHEDULINGIn this se
tion, we show that LEAN-CONSENSUS termi-nates in �(log n) rounds with noisy s
heduling and randomfailures. (This analysis in
ludes the 
ore model without ran-dom failures as well, sin
e the adversary 
an always 
hooseh(n) = 0.) We show that either all pro
esses die (in whi
h
ase we treat the algorithm as terminating in the last roundin whi
h some pro
ess takes a step), or some group of pro-
esses with a 
ommon preferen
e eventually gets two roundsahead of the other pro
esses. To avoid analyzing the detailsof how pro
esses shift preferen
es, we will show the evenstronger result that unless all pro
esses die, a single pro
esseventually gets two rounds ahead of the other pro
esses.To simplify the argument, we abstra
t away from the indi-vidual sequen
e of operations in ea
h round and look onlyat the times at whi
h rounds are 
ompleted. We 
an thusassume that the adversary provides a single noise distribu-tion F (
orresponding to the distribution of the sum of thedelays on three reads and one write) and that the values�ij , Xij , and Hij provide the delay not on the j-th oper-ation but on the j-th round. Sin
e this abstra
tion merelyinvolves summing together the underlying variables on op-erations, it does not redu
e the adversary's 
ontrol over theproto
ol. We will s
ale M appropriately so that it is stillthe 
ase that 0 � �ij �M when j > 0.Using this approa
h, the in
rement �ij + Xij + Hij isthe time taken for pro
ess i to move from the end of



round j � 1 to the end round j. The 
onstant �i0 rep-resents the pro
ess's starting time, and S0ir = �i0 +Prj=1 (�ij +Xij +Hij) gives the time at whi
h the pro-
ess �nishes round r. A pro
ess wins the ra
e with a leadof 
 rounds at round r + 
 if it �nishes round r + 
 beforeany other pro
ess �nishes round r, i.e., if Si;r+
 � Si0;r forall i0 6= i.We would like to show a bound on how the expe
ted roundat whi
h some pro
ess wins by 
 s
ales as a fun
tion of thenumber of pro
esses n, keeping 
, M , and F �xed. Thisbound is given in Corollary 10 below. We will assume thath(n) = o(1), as otherwise all pro
esses die after O(log n)rounds on average. The proof pro
eeds in two steps: �rstwe show that for any r whi
h some pro
ess �nishes with atleast 
onstant probability, there exists a 
riti
al time t thatgives at least a 
onstant probability that S0ir � t for exa
tlyone i. We then show that if r is large enough, Pr[Si;r+
 �tjSir � t℄ is also at least a 
onstant. It then follows that theprobability that S0i;r+
 � t while S0i0r > t for any i0 6= i isat least the produ
t of these two 
onstants and the 
onstantprobability that pi is not killed between rounds r and r+ 
.Thus after a 
onstant number of phases ea
h 
onsisting ofr + 
 rounds we expe
t some pro
ess to win.
6.1 Existence of a winnerIn this se
tion, we build up the tools needed to show thatfor ea
h round there exists a �xed time at whi
h there islikely to be a unique winner.Lemma 4. Let A1; : : : ; An be independent events. If theprobability that no Ai o

urs is x, where x is not zero, thenthe probability that exa
tly one Ai o

urs is at least �x lnx.Proof. Let qi be the probability that Ai does not o

ur.The probability x that no Ai o

urs is the produ
t of theqi. Sin
e x is nonzero, ea
h qi must also be nonzero. Theprobability that exa
tly one Ai o

urs is given by nYi=1 qi! nXi=1 1� qiqi = x nXi=1 � 1qi � 1�= x �n+ nXi=1 1qi! : (1)Let G be the geometri
 mean of the qi and let H be theirharmoni
 mean. By the theorem of the means, G > H.Observe that G = x1=n andnXi=1 1qi = n=H > n=G = nx�1=n = n exp�� lnxn �� n�1� lnxn � = n� lnx:Plugging this inequality into (1) gives the result.Suppose X1; : : : ; Xn are random times. The followinglemma shows that under 
ertain 
onditions there exists a
onstant time t0, su
h that, with 
onstant probability, atmost one of the Xi is less than t0:

Lemma 5. Let X1; : : : ; Xn be independent random vari-ables su
h that for all �nite values t and all distin
t i; j,the probability that Xi = Xj = t is zero. Then eitherPr[8iXi = 1℄ is greater than e�1 or there exists t0 su
hthat the probability that exa
tly one of the Xi is less than orequal to t0 is at least 1=5.Proof. For ea
h t, let qi(t) be the probability that Xiis not less than or equal to t. Let q(t) = Qni=1 qi(t) be theprobability that none of the Xi are less than or equal tot. Note that ea
h qi(t) is a de
reasing right-
ontinuous left-limited fun
tion with limt!�1 qi(t) = 1 and limt!1 qi(t) =Pr[Xi = 1℄. Similarly, q(t) = Qi qi(t) is right-
ontinuous,left-limited, and has limt!�1 q(t) = 1 and limt!1 q(t) =Pr[8iXi =1℄.Suppose that this latter quantity is less than or equal to e�1.(If not, the �rst 
ase of the lemma holds.) Then for some�nite t, q(t) � e�1. Let t0 be the least su
h t.Now suppose q(t0) � e�2. Then, by Lemma 4, the probabil-ity that exa
tly one Xi is less than or equal to t0 is at least2e�2 � 0:27 : : : .Otherwise, we have q(t0) < e�2 but q(t0�) =limt!t0� q(t) > e�1. (We are using the usual 
onventionthat f(x�) denotes the left limit of f at x.) This dis
on-tinuity must 
orrespond to a dis
ontinuity in qi for some i.At most one qi has a dis
ontinuity at t0, by the assumptionthat the probability that distin
t Xi, Xj both equal t0 iszero. Hen
e, for all j 6= i we have qj(t0�) = qj(t0) and thusqi(t0�)=qi(t0) = q(t0�)=q(t0) � e�1.Sin
e qi(t0�) � 1, it follows immediately that qi(t0) � e�1and thus the probability that Xi is less than or equal to t0 isat least 1�e�1. Now the probability that no other Xj is lessthan or equal to t0 is at least q(t0)=qi(t0) � q(t0�) > e�1.Sin
e the variables are independent, the probability thatonly Xi is less than or equal to t0 is thus at least (1 �e�1)e�1 � 0:23 : : : .
6.2 Size of the leadIn this se
tion, we show that if enough rounds have passed,a pro
ess that is likely to be ahead of the others is in fa
tlikely to be several rounds ahead. The proof is somewhat
ompli
ated by the la
k of restri
tions on the noise distribu-tion, but the following lemma shows how the Strong Law ofLarge Numbers 
an be used to smooth the noise terms outa bit.Lemma 6. Let X1; X2; : : : be �nite non-negative indepen-dent identi
ally distributed random variables whose 
ommondistribution is not 
on
entrated on a point. De�ne Sn =Pni=1Xi. For any 
, there exist n; t su
h that Pr[Sn < t℄ < 12but Pr[Sn < t� 
℄ > 0.Proof. Let us �rst 
onsider the 
ase whereXi has a �niteexpe
tationm. Then the Strong Law of Large Numbers saysthat Sn=n 
onverges to m in the limit with probability 1.So for any � > 0, the probability that Sn is less than m� �goes to zero and thus drops below 1=2 for all n greater thansome n0.



Let tn = n(m � �). As long as n > n0, we have Pr[Sn <t℄ < 12 . Now suppose that Pr[Sn < tn � 
℄ = 0 whenevern > n0. Sin
e the Xi are independent, this event 
an onlyo

ur if for ea
h Xi, Xi < tn�
n = m��� 
n with probability0. Taking the union of 
ountably many su
h bad eventsfor ea
h rational � and ea
h n > n0 shows that the eventXi < m, also has probability 0. It follows that Xi � E[Xi℄almost surely and thus the distribution of Xi is 
on
entratedon E[Xi℄, a 
ontradi
tion.If Xi does not have a �nite expe
tation, then Sn=n growswithout bound with probability 1 (see the 
orollary to The-orem 22.1 in [14℄). So for any x, there exists n0, su
h thatPr[Sn=n < x℄ < 12 for n > n0. We repeat the above anal-ysis for t = nx; if Pr[Sn < t � 
℄ = 0 for all su
h t, we getXi � x � 
n almost surely, implying Xi ex
eeds any �nitebound x. Again, a 
ontradi
tion.On
e the noise terms have been smoothed, it is not hardto show that they eventually a

umulate enough to push awinner ahead:Lemma 7. Fix 
 > 0. Let X1; X2; : : : be �nite inde-pendent identi
ally distributed random variables su
h thatthere exists a threshold t0 for whi
h Pr[X < t0℄ < 12 butPr[X < t0 � 
℄ = Æ0 > 0. De�ne Sn =Pni=1Xi.Then for any � > 0, there exists an n = O(log(1=�)), su
hthat for any t, Pr[Sn < t℄ > � implies Pr[Sn < t � 
jSn <t℄ > 17Æ0.Proof. Set n = 8(ln(1=�) + 1). Ea
h Xi has probabilityat most 1=2 of being less than t0, so a simple appli
ationof Cherno� bounds shows that the probability that 3/4 ormore of the Xi are less than t0 is at most e�n=8 = �=e.We will use this fa
t to argue that even when 
onditioningon Sn < t, there is nearly one 
han
e in four that Xn inparti
ular is greater than t0. In this 
ase, Sn�1 is less thant � t0 and we 
an use independen
e to repla
e Xn with anew value less than t0 � 
, giving a sum Sn less than t� 
,all without redu
ing the probability by mu
h.Formally, we have the following sequen
e of inequalities,ea
h of whi
h is implied by the previous one. Let Pr[Sn <t℄ = p and suppose p > �. Then we have:Pr[Sn < t℄ = pPr[Sn < t ^ at least 14 of Xi are > t0℄ > p� �=ePr[Sn < t ^Xn > t0℄ > 14 (p� �=e)Pr[Sn�1 < t� t0℄ > 14 (p� �=e)Pr[Sn�1 < t� t0 ^Xn < t0 � 
℄ > 14 (p� �=e)Æ0Pr[Sn < t� 
℄ > 14 (p� �=e)Æ0Pr[Sn < t� 
jSn < t℄ > 14 (p� �=e)Æ0=p

Sin
e p > �, this last quantity is at least 14 (1�1=e)Æ0, whi
his in turn greater than 17Æ0.We 
an now 
ombine Lemmas 6 and 7 into the following:Lemma 8. Let X1; X2; : : : be �nite non-negative indepen-dent identi
ally distributed random variables whose 
om-mon distribution is not 
on
entrated on a point. De�neSn = Pni=1Xi. Fix 
 > 0. Then there is a 
onstant Æ,su
h that for any � > 0, there exists n = O(log(1=�)), su
hthat Pr[Sn < t� 
jSn < t℄ > Æ whenever Pr[Sn < t℄ > �.Proof. Use Lemma 6 to group the Xi together into par-tial sums Yi =Pin0+n0j=in0+1Xj with the property that for somet Pr[Yi < t℄ < 12 but Pr[Yi < t � 
℄ = Æ0 > 0. (Note thatn0 does not depend on �, so it disappears into the 
onstantfa
tor.) Then apply Lemma 7 to sums of these Yi variablesto get the full result.
6.3 When the Race EndsIn this se
tion, we show that a ra
e between n independentdelayed renewal pro
esses with bounded added delays endsin O(log n) rounds with at least 
onstant probability. In thefollowing se
tion, we translate this result, whi
h appears asCorollary 10, ba
k into terms of the LEAN-CONSENSUSalgorithm to get Theorem 11.Theorem 9. Let fXijg, where i; j � 1, be a two-dimensional array of �nite non-negative independent iden-ti
ally distributed random variables with a 
ommon distri-bution fun
tion F that is not 
on
entrated on a point. Letf�ijg, where i � 1; j � 0, be a two-dimensional array of
onstants with 0 � �ij � M when j � 1. Let fHijg, wherei; j � 1, be a two-dimensional array of independent randomvariables, ea
h of whi
h is equal to 1 with probability h(n)and 0 otherwise. De�neS0ir = �i0 + rXj=1 (�ij +Xij +Hij) :Assume that for any �nite t, integer r, and i 6= j, Pr[S0ir =S0jr = t℄ = 0. Let 
 be any integer 
onstant greater than 0.Then there exists a 
onstant Æ > 0, su
h that for any n,there exists r = O(log n) and t, su
h thatPr � 8i S0ir =1_ �9i � n : S0i;r+
 < t ^ 8i0 6= i; i0 � n : S0i0r > t� � > Æ:The 
onstant fa
tor in r = O(log n) and the 
onstant Æ maydepend on 
, F , M , and h, but do not depend on n.Proof. Sin
e ea
h Xij is �nite with probability 1, thereexists some 
onstant 
1 su
h that Pr[Pr+
j=r+1Xij < 
1℄ > 12 .Let Tir = Prj=1Xij and let Sir = Tir +Prj=0�ir. ApplyLemma 8 to the sequen
e Xij with 
 = 
M+
1 and � = n�2to obtain r = O(log n) and a 
onstant Æ0 for whi
h Pr[Tir <t � 
M � 
1jTir < t℄ > Æ0 whenever Pr[Tir < t℄ > n�2.Adding the missing 
onstant terms Prj=0�ij to Tir to get



Sir is equivalent to subtra
ting these same terms from ea
ho

urren
e of t, so we in fa
t have Pr[Sir < t�
M�
1jSir <t℄ > Æ0 whenever Pr[Sir < t℄ > n�2. This gives us our targetround r.Now apply Lemma 5 to S0ir, for all i � n, to show that withprobability at least 1=5 either 8iS0ir = 1 or there existsa time t0, su
h that there is a unique winner i � n forwhi
h S0ir is less than t0. Let us assume without loss ofgenerality that n is at least 6. Throw out all 
ases where ihas Pr[S0ir < t0℄ � n�2; this leaves a probability of at least1=5 � 1=n � 1=30 that (a) there is a unique winner i, and(b) i satis�es the 
ondition Pr[S0ir < t0℄ > n�2, implyingPr[Sir = S0ir < t0℄ > n�2 and thus Pr[Sir < t0 � 
M �
1jSir < t0℄ > Æ0. So with probability at least 130 Æ0, we haveSir < t0 � 
M � 
1, and thus with probability at least 160 Æ0we have Si;r+
 < Sir + 
M + 
1 = S0ir + 
M + 
1 < t0.Suppose that this event holds. It is still possible for S0i;r+
to be in�nite if Pr+
j=r+1Hij = 1. Call this event I; ifPr[I℄ = 1 � (1 � h(n))
 > 1120 Æ0, then h(n) is boundedbelow by a 
onstant and there exists r0 = O(log n) su
hthat Pr[8iS0ir0 =1℄ is at least a 
onstant. Alternatively, wehave Pr[S0i;r+
 = Si;r+
 < S0ir + 
M + 
1℄ > Æ = 1120 Æ0: Ineither 
ase, the theorem holds.Corollary 10. Under the 
onditions of the pre
edingtheorem, R has expe
tation O(log n), where R is the �rstround for whi
h either� There exists i, su
h that S0i;R+
 < S0i0R for all i0 6= i,or� For all i, S0i;R+
 =1.Proof. Theorem 9 says that the desired event o

urswith 
onstant probability Æ after a phase 
onsisting of r =O(log n) rounds. If it does not o

ur, we 
an apply thetheorem again to the subset of the i's for whi
h S0i;r+
 is�nite, starting with round r + 
 + 1 and setting the initialdelay �i0 to the value of S0i;r+
 from the previous phase. Onaverage, at most 1=Æ = O(1) su
h phases are needed.
6.4 When LEAN-CONSENSUS EndsTranslating Corollary 10 ba
k into terms of the LEAN-CONSENSUS algorithm gives:Theorem 11. Under the noisy s
heduling model withrandom failures, starting from any rea
hable state in theLEAN-CONSENSUS algorithm in whi
h the largest roundnumber of any pro
ess is r, the algorithm running with na
tive pro
esses terminates by round r + r0, where r0 hasexpe
ted value O(log n).Proof. Apply Corollary 10 with 
 = 2 and the initialdelays �i0 set to the times at whi
h ea
h pro
ess 
ompletesround r. This shows that after expe
ted O(log n) roundseither some pro
ess P �nishes some round s before any otherpro
ess �nishes round s� 2, or all pro
esses fail. In the �rst
ase, if P prefers b, it is the only pro
ess to have written to

ab[s � 1℄ or a1�b[s � 1℄ by the time it reads a1�b[s � 1℄ aspart of round s. Thus it reads a zero from a1�b[s � 1℄ andde
ides. All other pro
esses de
ide at most one round laterby Lemma 3.It is not hard to see that this bound is the best possible, upto 
onstant fa
tors.Theorem 12. There exists a noise distribution F and aset of delays � su
h that the LEAN-CONSENSUS algorithmrequires expe
ted 
(log n) rounds in the noisy s
hedulingmodel, even without failures.Proof. Let all �ij = 0 for j > 0, and let F have ea
h op-eration take either 1 or 2 time units with equal probability.Then any single pro
essor 
ompletes its �rst log n operationsin 1 time unit ea
h with probability 1=n. To avoid simul-taneous operations, let �i0 be some small distin
t epsilonvalue for ea
h i.Start n=2 pro
esses with input 0 and n=2 with input 1. Theprobability that there exists at least one 0-input pro
ess andat least one 1-input pro
ess that both 
omplete their �rstlog n operations in 1 time unit ea
h is given by 1��1� 1n�n=2!2whi
h goes to (1�e�1=2)2 = �(1) in the limit as n grows. Sothere is a 
onstant probability that at least one pro
ess withea
h input runs for log n operations without ever 
hangingits preferen
e to that of a faster pro
ess with the oppositepreferen
e, and we get expe
ted 
(log n) rounds of disagree-ment.
7. TERMINATION WITH QUANTUM AND

PRIORITY-BASED SCHEDULINGIn this se
tion, we 
onsider the question of termination sub-je
t to hybrid quantum and priority-based s
heduling on aunipro
essor. The required quantum size is 8 operations;
uriously, this is the same size required for the spe
ializedalgorithm given in [5℄. We see this 
oin
iden
e as furthereviden
e that all 
onsensus algorithms ultimately 
onvergeto a 
ommon ideal algorithm (whi
h, alas, is probably notidenti
al to LEAN-CONSENSUS).Theorem 13. When running LEAN-CONSENSUS in ahybrid-s
heduled system with a quantum of at least 8 op-erations, every pro
ess de
ides after exe
uting at most 12operations.Proof. We will show that at most one of a0[1℄ and a1[1℄is set before some pro
ess �nishes round 2 and de
ides. Con-sider an exe
ution in whi
h a0[1℄ and a1[1℄ are ea
h set atsome point. Let P0 and P1 be the �rst pro
esses to set a0[1℄and a1[1℄, respe
tively. Neither P0 nor P1 
an have observedthe round-1 write of the other, or it would have 
hanged itspreferen
e. Thus both pro
esses' round-1 reads of a0[1℄ anda1[1℄ must have o

urred before either performed its round-1 write. Sin
e we are on a unipro
essor, this 
an only o

ur



if one of the pro
esses was pre-empted before its write o
-
urred.Assume without loss of generality that P0 is this unlu
kypro
ess. Sin
e P0 is the �rst pro
ess to write to a0[1℄, ifwe 
an show that P0 is not res
heduled before some pro-
ess 
ompletes round 2, then that pro
ess de
ides 1 (and byLemma 3, all pro
esses eventually de
ide 1) as soon as asit observes a zero in a0[1℄. So we need only show that P0is not res
heduled until some other pro
ess 
ompletes eightoperations.Let Q1 be the pro
ess that pre-empts P0. At the time of pre-emption, Q1 is at the start of a quantum; it either �nisheseight operations without being pre-empted or is pre-emptedby a higher-priority pro
ess Q2. But Q2 in turn 
an only bepre-empted before 
ompleting its quantum by some higher-priority pro
ess Q3. After at most n su
h pre-emptions, werun out of higher-priority pro
esses, and the last pro
essruns to the end of its quantum and de
ides. Note that allof the pro
esses in this 
hain (ex
ept possibly Q1) have ahigher priority than P0 and thus 
annot be equal to P0.It follows that some pro
ess �nishes round 2 before P0 isres
heduled, and thus every pro
ess de
ides 1 by the end ofround 3.
8. SIMULATION RESULTSFigure 1 gives the results of simulating LEAN-CONSENSUSwith various interarrival distributions. These simulationsare of the model as des
ribed in Se
tion 3.1; in parti
ular itis assumed that all operations take zero time and that thereare no 
ontention e�e
ts or syn
hronization issues.The X axis is plotted on a logarithmi
 s
ale and representsthe number of pro
esses. The Y axis is plotted on a lin-ear s
ale and represents the round at whi
h the �rst pro
essterminates (whi
h may be one less than the round at whi
hthe last pro
ess terminates). Ea
h point in the graph rep-resents an average termination round in 10,000 trials withthe given distribution and number of pro
esses. The start-ing times for all pro
esses are the same ex
ept for a smallrandom epsilon, generated uniformly in the range (0; 10�8).In ea
h 
ase, half the pro
esses are started with input 0 andhalf with input 1. There are no failures.The random number generator used was drand48. The dis-tributions used were:1. Normal distribution with mean 1 and standard devia-tion 0.2 (varian
e 0.04), reje
ting points outside (0; 2).2. 2=3 or 4=3 with equal probability.3. 0:5 plus an exponential random variable with mean0:5. This 
orresponds to a delayed Poisson pro
ess.4. Geometri
 with p = 0:5.5. Uniform in (0; 2).6. Exponential with mean 1. This 
orresponds to a Pois-son pro
ess with no initial delay; it is also equivalentto generating a s
hedule by 
hoosing one pro
ess uni-formly at random for ea
h time unit.

It is worth noting that while the expe
ted number of roundsgrows logarithmi
ally for most distributions, both the rate ofgrowth and the initial value are small. These small 
onstantfa
tors may be the result of most pro
esses adopting thevalues of early leaders, so that termination 
an be rea
hedby agreement among leaders rather than the emergen
e of asingle leader.The inverted behavior with a normal distribution is intrigu-ing; it suggests that with large numbers of pro
esses thereare more 
han
es for one parti
ularly speedy pro
ess to leapahead of its 
ompetitors, and that for some distributionsthis e�e
t overshadows the e�e
t of having more 
ompeti-tors to leap ahead of. It is not 
lear from the data whetherthis 
urve eventually turns around and starts rising again,or whether it 
onverges to some 
onstant asymptote.
9. CONCLUSIONS, EXTENSIONS, AND

FUTURE WORKWe see this paper as making two main 
ontributions. The�rst is the extra
tion of the adaptive �(log n) time LEAN-CONSENSUS proto
ol from its more sophisti
ated prede-
essors and the demonstration that this simpli�ed algorithm
an solve 
onsensus in models that are less extreme thanthose prede
essors were designed to survive but that areperhaps 
loser to 
apturing the s
heduling behavior an al-gorithm is likely to experien
e in pra
ti
e. Although LEAN-CONSENSUS does not really 
ontain any new ideas, we be-lieve that ripping out features that pra
titioners might balkat implementing is a valuable task in its own right.The se
ond is the noisy s
heduling model. This model limitsthe adversary not by 
overing its eyes but by making itshands shake. It allows us to express the understanding thatin the real world failures and timing are usually not fullyunder the 
ontrol of intelligent demons, while still retaininga healthy respe
t for the subtlety and unpredi
tability of theworld. We believe that this \perturbed worst-
ase analysis"approa
h is likely to have appli
ations in many areas bothin and outside of distributed 
omputing.There are still many questions left unanswered and manyways in whi
h the noisy s
heduling model 
ould be extended.We dis
uss some of these issues below.
Non-random failures.It would be ni
e to understand how LEAN-CONSENSUSfares with failures that are not random. We 
an get anupper bound in this situation by restarting Theorem 11whenever a pro
ess dies. Sin
e the adversary must kill atleast one pro
ess every expe
ted O(log n) rounds, the al-gorithm terminates in expe
ted O(f log n) rounds where fis the number of failures. This bound 
ompares favorablywith the O(n log2 n) work per pro
essor needed by the bestknown randomized algorithm that solves 
onsensus with afully-adaptive adversary and up to n � 1 failures [9℄, butthe fully-adaptive adversary is mu
h stronger than one lim-ited to noisy s
heduling. It seems likely that a better upperbound than O(f log n) 
ould be obtained by a more 
arefulanalysis that in
ludes how pro
esses 
hange preferen
es; we
onje
ture that the real bound is in fa
t O(log n).



exponential(1)uniform [0,2℄geometri
(0.5)0.5 + exponential(0.5)2/3,4/3normal(1,0.04)

Mean round of �rst termination

100000100001000100101
1412108642

Figure 1: Results of simulating LEAN-CONSENSUS with various interarrival distributions.
Statistical adversaries.We would also like to do away with the �xed boundM on thedelay between operations under the 
ontrol of the adversary.The te
hni
al reason for in
luding this bound in the modelis that it provides a s
ale for the noise introdu
ed by the Xijvariables; if the adversary 
an in
rease �ij without limit, it
an 
onstru
t a steadily slower and slower exe
ution in whi
hthe noise, relative to the gap between rounds, never a

umu-lates enough to a�e
t the s
hedule. But a weaker statisti
al
onstraint, su
h as requiring Prj=1�ij � rM , might avoidsu
h Zeno-like pathologies while allowing more variation inthe gaps between operations.4 The present proof does notwork with just this statisti
al 
onstraint (the parti
ular stepthat breaks down is the use of Lemma 8 to show that beingahead at round r often means being ahead by 
 at round r),but we 
onje
ture that the statisti
al 
onstraint is in fa
tenough to get termination in O(log n) rounds.
Synchronization and contention.Though the present work was motivated by a desire to moveaway from powerful theoreti
al adversaries toward a modelmore 
losely re
e
ting the non-mali
iousness of misbehaviorin real systems, we 
annot 
laim that the model a

uratelydes
ribes the behavior of any real shared-memory system.One diÆ
ulty is that real shared-memory systems gener-ally do not guarantee full serializability of memory oper-ations in the absen
e of additional syn
hronization opera-tions (see [27, Se
tion 8.6℄). We 
an over
ome this diÆ
ultyby adding syn
hronization barriers to ea
h round of LEAN-CONSENSUS; in prin
iple this does not a�e
t the analysissin
e the stru
ture of ea
h round is still the same as all otherrounds. A se
ond problem is memory 
ontention, whi
h wehave not analyzed. The diÆ
ulty with both expli
it syn-
hronization and memory 
ontention is that their e�e
ts areunlikely to be 
onsistent with the assumption that the tim-ing of di�erent pro
esses' operations are independent. To4This is a bit like using the statisti
al adversary of [18℄.

the extent that this la
k of independen
e disperses pro
esses(say, by slowing down laggards �ghting over 
ongested early-round registers while allowing the speedy to sail throughrelatively 
lear late-round registers), it helps the algorithm.Whether su
h an e�e
t would o

ur in pra
ti
e 
annot easilybe predi
ted without experimentation.
Lower bounds.The noisy s
heduling model is friendly enough that anO(log n) running time for 
onsensus might not be the bestpossible. A 
ounterexample like the one given in the proofof Theorem 12 might be able to show that no deterministi
algorithm with 
ertain strong symmetry properties (su
h asno dependen
e on pro
ess identity and a mirror-image han-dling of the di�erent inputs) 
an do better, but it not obviouswhere to look for a more general lower bound. It is not outof the question that a 
lever algorithm 
ould solve 
onsensuswith noisy s
heduling in as little as O(1) time.
Other problems.Finally, though we have 
on
entrated on a parti
ularly sim-pli�ed proto
ol for solving a single fundamental problem, itwould be interesting to see how other algorithms fare in thenoisy s
heduling model. It seems likely, for example, thatalgorithms designed for unknown-delay models su
h as Aluret al.'s [3℄ should 
ontinue to work in the noisy s
hedulingmodel, perhaps with some 
onstraint on the noise distribu-tion to ex
lude random delays with unbounded expe
tations.Similarly the line of inquiry started by Gafni and Mitzen-ma
her [23℄, on analyzing the behavior of timing-based al-gorithms for mutual ex
lusion and related problems withrandom s
heduling, 
ould naturally extend to the more gen-eral model of noisy s
heduling.
10. ACKNOWLEDGMENTSI would like to thank Faith Fi
h and Mauri
e Herlihy forinsightful 
omments on the plausibility of an early version



of the noisy s
heduling model; the remaining implausibilityis my fault and not theirs. I am also indebted to Robbertvan Renesse for pointing out the \narrowness" of the badexe
ution paths needed to prevent 
onsensus as a reason forthe relative la
k of 
on
ern for asyn
hronous impossibilityresults among pra
titioners.
11. REFERENCES[1℄ Karl R. Abrahamson. On a
hieving 
onsensus using ashared memory. In Pro
eedings of the Seventh Annual ACMSymposium on Prin
iples of Distributed Computing, pages291{302, Toronto, Ontario, Canada, 15{17 August 1988.[2℄ Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-freemade fast (extended abstra
t). In Pro
eedings of theTwenty-Seventh Annual ACM Symposium on the Theoryof Computing, pages 538{547, Las Vegas, Nevada, 29May{1 June 1995.[3℄ Rajeev Alur, Hagit Attiya, and Gadi Taubenfeld.Time-adaptive algorithms for syn
ronization. SIAMJournal on Computing, 26(2):539{556, April 1997.[4℄ J. H. Anderson, R. Jain, and D. Ott. Wait-freesyn
hronization in quantum-based multiprogrammedsystems. In Distributed Computing; 12th InternationalSymposium; Pro
eedings, volume 1499 of Le
ture Notes inComputer S
ien
e, pages 34{45, Andros, Gree
e,September 1998. Springer-Verlag.[5℄ James H. Anderson and Mark Moir. Wait-freesyn
ronization in multiprogrammed systems: Integratingpriority-based and quantum-based s
heduling. InPro
eedings of the Eighteenth Annual ACM Symposium onPrin
iples of Distributed Computing, pages 123{132,Atlanta, Georgia, USA, 3{6 May 1999.[6℄ James Aspnes. Time- and spa
e-eÆ
ient randomized
onsensus. Journal of Algorithms, 14(3):414{431, May 1993.[7℄ James Aspnes. Lower bounds for distributed 
oin-
ippingand randomized 
onsensus. Journal of the ACM,45(3):415{450, May 1998.[8℄ James Aspnes and Mauri
e Herlihy. Fast randomized
onsensus using shared memory. Journal of Algorithms,11(3):441{461, September 1990.[9℄ James Aspnes and Orli Waarts. Randomized 
onsensus inexpe
ted O(N log2 N) operations per pro
essor. SIAMJournal on Computing, 25(5):1024{1044, O
tober 1996.[10℄ Hagit Attiya, Danny Dolev, and Nir Shavit. Boundedpolynomial randomized 
onsensus. In Pro
eedings of theEighth Annual ACM Symposium on Prin
iples ofDistributed Computing, pages 281{293, Edmonton, Alberta,Canada, 14{16 August 1989.[11℄ Hagit Attiya and Arie Fouren. Adaptive wait-freealgorithms for latti
e agreement and renaming (extendedabstra
t). In Pro
eedings of the Seventeenth Annual ACMSymposium on Prin
iples of Distributed Computing, pages277{286, Puerto Vallarta, Mexi
o, 28 June{2 July 1998.[12℄ Yonatan Aumann. EÆ
ient asyn
hronous 
onsensus withthe weak adversary s
heduler. In Pro
eedings of theSixteenth Annual ACM Symposium on Prin
iples ofDistributed Computing, pages 209{218, Santa Barbara,California, 21{24 August 1997.[13℄ Yonatan Aumann and Mi
hael A. Bender. EÆ
ientasyn
hronous 
onsensus with the value-oblivious adversarys
heduler. In Friedhelm Meyer auf der Heide and BurkhardMonien, editors, Automata, Languages and Programming,23rd International Colloquium, volume 1099 of Le
tureNotes in Computer S
ien
e, pages 622{633, Paderborn,Germany, 8{12 July 1996. Springer-Verlag.[14℄ Patri
k Billingsley. Probability and Measure. John Wileyand Sons, se
ond edition, 1986.

[15℄ Gabriel Bra
ha and Ophir Ra
hman. Randomized
onsensus in expe
ted O(n2 log n) operations. In SamToueg, Paul G. Spirakis, and Lefteris M. Kirousis, editors,Distributed Algorithms, 5th International Workshop,volume 579 of Le
ture Notes in Computer S
ien
e, pages143{150, Delphi, Gree
e, 7{9 O
tober 1991. Springer, 1992.[16℄ Tushar Deepak Chandra. Polylog randomized wait-free
onsensus. In Pro
eedings of the Fifteenth Annual ACMSymposium on Prin
iples of Distributed Computing, pages166{175, Philadelphia, Pennsylvania, USA, 23{26 May1996.[17℄ Benny Chor, Amos Israeli, and Ming Li. Wait-free
onsensus using asyn
hronous hardware. SIAM Journal onComputing, 23(4):701{712, August 1994.[18℄ Andrew Chou, Jeremy Coopersto
k, Ran El-Yaniv, Mi
haelKlugerman, and Tom Leighton. The statisti
al adversaryallows optimal money-making trading strategies. InPro
eedings of the Sixth Annual ACM-SIAM Symposiumon Dis
rete Algorithms, pages 467{476, San Fran
is
o,California, 22{24 January 1995.[19℄ Ri
hard Cole and Ofer Zaji
ek. The expe
ted advantage ofasyn
hrony. Journal of Computer and System S
ien
es,51(2):286{300, O
tober 1995.[20℄ Danny Dolev, Cynthia Dwork, and Larry Sto
kmeyer. Onthe minimal syn
hronism needed for distributed 
onsensus.Journal of the ACM, 34(1):77{97, January 1987.[21℄ Cynthia Dwork, Nan
y Lyn
h, and Larry Sto
kmeyer.Consensus in the presen
e of partial syn
hrony. Journal ofthe ACM, 35(2):288{323, April 1988.[22℄ Mi
hael J. Fis
her, Nan
y A. Lyn
h, and Mi
hael S.Paterson. Impossibility of distributed 
onsensus with onefaulty pro
ess. Journal of the ACM, 32(2):374{382, April1985.[23℄ Eli Gafni and Mi
hael Mitzenma
her. Analysis oftiming-based mutual ex
lusion with random times. InPro
eedings of the Eighteenth Annual ACM Symposium onPrin
iples of Distributed Computing, pages 13{21, Atlanta,Georgia, USA, 3{6 May 1999.[24℄ Elias Koutsoupias and Christos H. Papadimitriou. Beyond
ompetitive analysis. In 35th Annual Symposium onFoundations of Computer S
ien
e, pages 394{400, SantaFe, New Mexi
o, 20{22 November 1994. IEEE.[25℄ Leslie Lamport. A fast mutual ex
lusion algorithm. ACMTransa
tions on Computer Systems, 5(1):1{11, February1987.[26℄ Mi
hael C. Loui and Hosame H. Abu-Amara. Memoryrequirements for agreement among unreliable asyn
hronouspro
esses. In Fran
o P. Preparata, editor, Advan
es inComputing Resear
h, volume 4. JAI Press, 1987.[27℄ David A. Patterson, John L. Hennessy, and DavidGoldberg. Computer Ar
hite
ture: A QuantitativeApproa
h. Morgan Kaufmann Publishers, 2nd edition, 1996.[28℄ Srikanth Ramamurthy, Mark Moir, and James H.Anderson. Real-time obje
t sharing with minimal systemsupport (extended abstra
t). In Pro
eedings of theFifteenth Annual ACM Symposium on Prin
iples ofDistributed Computing, pages 233{242, Philadelphia,Pennsylvania, USA, 23{26 May 1996.[29℄ Mi
hael Saks, Nir Shavit, and Heather Woll. Optimal timerandomized 
onsensus|making resilient algorithms fast inpra
ti
e. In Pro
eedings of the Se
ond Annual ACM-SIAMSymposium on Dis
rete Algorithms, pages 351{362, SanFran
is
o, California, 28{30 January 1991.


