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ABSTRACTIt is well known that the onsensus problem annot be solveddeterministially in an asynhronous environment, but thatrandomized solutions are possible. We propose a new model,alled noisy sheduling, in whih an adversarial shedule isperturbed randomly, and show that in this model random-ness in the environment an substitute for randomness inthe algorithm. In partiular, we show that a simpli�ed, de-terministi version of Chandra's wait-free shared-memoryonsensus algorithm [16℄ solves onsensus in time at mostlogarithmi in the number of ative proesses. The proofof termination is based on showing that a rae betweenindependent delayed renewal proesses produes a winnerquikly. In addition, we show that the protool �nishes inonstant time using quantum and priority-based shedulingon a uniproessor, suggesting that it is robust against thehoie of model over a wide range.
1. INTRODUCTIONPerhaps the single most dramati result in the theory ofdistributed omputing is Fisher, Lynh, and Paterson'sproof of the impossibility of deterministi onsensus in anasynhronous environment with failures [22℄. This resultand its extensions [20, 26℄ show that the onsensus prob-lem, in whih a group of proesses must olletively agreeon a bit, annot be solved deterministially in an asyn-hronous message-passing or shared-memory model if an un-restrited adversary ontrols sheduling. Solutions to theshared-memory version of this fundamental problem havethus taken the approah of restriting the adversary, eitherby allowing randomization that limits the adversary's knowl-edge [1, 6, 8, 10, 12, 13, 15{17,29℄ or by imposing timing on-straints that limit the adversary's ontrol [3, 20, 21℄. As aorollary to granting less power to the adversary, these so-lutions often involve granting more power to the algorithm,�Yale University, Department of Computer Siene, 51Prospet Street/P.O. Box 208285, New Haven CT 06520-8285. E-mail: aspnes�s.yale.edu. This work was sup-ported in part by NSF grant CCR-9820888.

in the form of the ability to obtain random bits or expliitlydelay steps. By using these additional powers an algorithman esape the FLP bound and reah agreement.These additional powers ome at a ost. Randomizationalone is not powerful enough to allow sublinear onsensusprotools [7℄, so eÆient randomized solutions have requiredadditional onstraints on the ability of the adversary to ob-serve the arguments to operations and the ontents of un-read memory loations [12, 13, 16℄. These algorithms are-fully manage ommon pools of unread random bits for fu-ture use, a lever but odd-looking pratie that is justi�edprimarily by the spei� details of the model. The delay-based algorithm of [3℄ is less onvoluted, but still dependson using expliit delays that at the minimum require that aproess has the power to invoke them and at worst may addunneessary delay when few proesses partiipate.As an alternative to designing an algorithm spei�ally toexploit the weaknesses of a partiular adversary model, weonsider the approah of using a simple algorithm that guar-antees agreement but relies on good luk to terminate. OurLEAN-CONSENSUS algorithm is desribed below in Se-tion 4; it is obtained by removing all of the randomizedparts of a similar algorithm due to Chandra [16℄. The es-sential idea (whih is the ore of many onsensus protoolsin the literature) is to stage a rae between those proessesthat prefer 0 and those that prefer 1, with the rule that if aslow proess sees that faster proesses are all in agreement itadopts their ommon preferene. The rae is implementedusing two arrays of atomi read/write bits. The algorithmterminates when the fastest proesses are all in agreementand an deide on their preferred value safely, knowing thatother proesses will adopt the same preferene before theyath up.Unlike other onsensus algorithms, LEAN-CONSENSUSmakes no attempt to ajole the proesses into agreementby other means| it relies entirely on the hope that someproess eventually pulls ahead of the others. In order todash this hope, the adversary must exerise enough ontrolto ensure that the fastest proesses run in lokstep. We be-lieve that in many natural system models it will be diÆultfor the adversary to exerise this muh ontrol.One suh model is what we all the noisy sheduling model,desribed in Setion 3.1. In this model, the adversary pro-poses a shedule that spei�es the order in whih read and



write operations our, but this shedule is perturbed byrandom noise drawn from some arbitrary non-onstant dis-tribution. This noise orresponds to random fators in asystem that might not be strongly orrelated with the algo-rithm's behavior, suh as network delays, lok skew, or busor memory ontention.We show in Setion 6 that, in the noisy sheduling model,LEAN-CONSENSUS terminates with expeted �(log n)work per proess, where n is the number of ative proesses.This result is distribution-independent, in the sense that thealgorithm's asymptoti performane does not depend on thenoise distribution in the model (though the onstant fatordoes), and it holds even if proesses are subjet to randomhalting failures. Beause the algorithm's performane de-pends only on the number of proesses atually exeutingthe protool and not on the total number of proesses in thesystem, it is adaptive in the sense of [11℄, whih implies itis fast in the sense of [2, 25℄. Thus it is well-suited to situa-tions where only one or a few proesses attempt to run thealgorithm at the same time.Our noisy sheduling model is similar to the model used byGafni and Mitzenmaher [23℄ in their analysis of mutual ex-lusion protools with random timing, but is extended to in-lude onstant delays inserted by the adversary in additionto random delays. Another soure of inspiration is Kout-soupias and Papadimitriou's di�use adversary [24℄, whihhooses a distribution over exeutions in whih no branhat any deision point an our with probability more thansome �xed �. Our model is not the �rst in whih an ad-versary hooses parameters for a stohasti proess thatthen ontrols sheduling; a sophistiated model of this type,based on asynhronous PRAMs, has been proposed by Coleand Zajiek [19℄.To give support to our intuition that many possible restri-tions on the adversary make LEAN-CONSENSUS work, wealso onsider what happens with a hybrid quantum andpriority-based sheduler on a uniproessor, following theapproah of [5℄. (The details of this model, whih sub-sumes both quantum sheduling and priority-based shedul-ing, are skethed in Setion 3.2.) We show in Setion 7 thatLEAN-CONSENSUS terminates in O(1) steps in the hybrid-sheduling model, as long as the quantum is at least 8. Therestrition to a uniproessor is neessary beause [5℄ showsthat no deterministi algorithm an solve onsensus withmultiple proessors, even with hybrid sheduling, withoutusing stronger primitives that atomi read/write registers.Setion 8 desribes some simulation results that show thatthe onstant fators in the noisy sheduling analysis arein fat quite small for plausible noise distributions, sug-gesting that the good theoretial performane of LEAN-CONSENSUS might atually translate into fast exeutionin a real system.In Setion 9, we suggest a number of diretions in whihthe urrent work ould be extended, inluding extensionsto the noisy sheduling model. One interesting possibil-ity is the inlusion of adaptive rash failures. We arguebriey that beause LEAN-CONSENSUS reovers quiklyfrom suh failures, it terminates in at most O(f log n) work

per proess even if up to f proesses an fail. However, thereremains an interesting open question whether noisy shedul-ing is enough to get O(log n) performane even with �(n)rash failures.
2. THE CONSENSUS PROBLEMIn the binary onsensus problem, a group of n proesses,possibly subjet to halting failures, must agree on a bit.1 Aonsensus protool is a distributed algorithm in whih eahnon-faulty proess starts with an input bit and eventuallyterminates by deiding on an output bit. It must satisfy thefollowing three onditions with probability 1:� Agreement. All non-faulty proesses deide on thesame bit.� Termination. All non-faulty proesses �nish the pro-tool in a �nite number of steps.� Validity. If all proesses start with the same input bit,all non-faulty proesses deide on that bit.2
3. MODELWe assume a shared-memory system onsisting of anunbounded number of proesses that ommuniate onlythrough shared atomi read/write registers. We use theusual interleaving model, in whih operations are assumed toour in a sequene �1; �2; : : : , and in whih eah read oper-ation returns the value of the last previous write to the sameloation. The order in whih operations our is determinedby a stohasti proess that is partially under the ontrol ofan adversary (Setion 3.1), or diretly by the adversary sub-jet to ertain regularity onstraints (Setion 3.2).
3.1 Noisy SchedulingIn the noisy sheduling model, we assume that the adversaryspei�es when operations our (subjet to an upper boundon the time between suessive operations by the same pro-ess), but that this spei�ation is perturbed by randomnoise.Formally, the adversary hooses:1. An arbitrary starting time �i0 for eah proess pi,2. A non-negative delay �ij before proess pi's j-th op-eration, bounded by some �xed onstant M , and3. A �xed ommon distribution F� of the random delayadded to eah type of operation � (e.g., read or write).If proess pi's j-th operation is of type �, it su�ers anadditional delay Xij whose distribution is F� . Thereis no restrition on the hoie of the F�, exept that1Some authors onsider the stronger problem of id onsen-sus, in whih the deision value is the id of some ative pro-ess. In many ases, id onsensus an be solved in a naturalway using a (lg n)-depth tree of binary onsensus protools;examples of this approah an be found in [12, 16℄.2Some de�nitions of onsensus replae the validity onditionwith a weaker non-triviality ondition that says that theremust exist exeutions in whih di�erent deision values o-ur.



the resulting Xij must be non-negative and annot beonstant.3The time of proess pi's j-th operation is given bySij = �i0 + jXk=1 (�ik +Xik) :Sine we are using interleaving semantis, the e�et of exe-uting two operations at exatly the same time is not well-de�ned. To avoid ill-de�ned exeutions, we impose the ad-ditional tehnial onstraint on the adversary's hoies thatthe probability that any two operations our simultane-ously must be zero. This is automati if, for example, thenoise distributions F� are ontinuous. Alternatively, it anbe arranged by dithering the starting times of eah proessby some small epsilon. This tehnial onstraint does notqualitatively hange our results.Below we disuss the unfairness of noisy sheduling and ex-tensions to allow random failures.
3.1.1 UnfairnessThe upper bound on the �ij and the ommon distributionon the Xij might suggest that the noisy sheduling modelprodues fair shedules. This is not entirely true for suÆ-iently pathologial distributions:Theorem 1. There exists a hoie of F� and �ij suhthat for any distint proesses pi and pi0 , and any operationj, the expeted number of operations pi0 ompletes betweenpi's j-th and (j + 1)-th operations is in�nite.Proof. Set eah F� so that Xij takes on the value 2k2with probability 2�k for k = 1; 2; : : : . For simpliity, let ussuppose that �ij = 0 for j > 0. We will also assume that Aand B exeute no operations before time 0.LetX be the number of operations ompleted by pi0 betweenSij and Si;j+1. We will show that the expetation of X isin�nite onditioned on the value of t = dSije (the eiling isso that we have ountably many ases).The idea is this: for eah k we have probability 2�k thatSi;j+1 � Xi;j+1 = 2k2 . Condition on this event ourringfor some partiular k and onsider how many operations pi0must exeute to reah time 2k2 . Either (a) one of theseoperations takes time 2k2 or more (with probability 2�k+1per operation), or (b) a total of at least 22k+1 operations,eah of whih takes at most 2(k�1)2 time, must our. If wewait only for event (a), we expet to see 2k�1 operations;to get the atual expeted number, we must subtrat o�the expeted number of operations until (a) ours after (b)ours (2k�1 again) multiplied by the probability that (b)ours. This latter probability is at most (1 � 12k�1 )2k+1,whih goes to e�2 in the limit as k grows; it follows that pi03In fat, the F� distributions an be quite bizarre; it is notrequired, for example, that the Xij have �nite expetation.

exeutes 
(2k) operations on average before time 2k2 . Ofthese, at most t=2 an our before time Sij , so if k � lg t,we have 
(2k) operations on average between t and 2k2 ,and thus also between Sij and Si;j+1, sine Sij � t < 2k2 �Si;j+1.To get the full result, we must remove two layers of ondi-tioning. First ompute the expetation onditioned only ont by summing 2�k
(2k) for eah of the in�nitely many suÆ-iently large k. It is not diÆult to see that this sum divergesand the expetation is in�nite. Summing over all values oft doesn't make it any less in�nite, and we are done.
3.1.2 FailuresWe an extend the noisy sheduling model to allow haltingfailures. For eah i and eah j > 0 let Hij = 1 if proesspi halts before its j-th operation and 0 otherwise. De�neS0ij = �i0 + jXk=1 (�ik +Xik +Hik) ;with the usual onvention that x+1 = 1 for any real x.If S0ij =1, pi's j-th operation does not our.We do not inlude failures in the noise distributions F� be-ause these distribution do not depend on n, and a onstantprobability of failure would mean that all proesses die af-ter O(log n) steps. Instead, we assume that failures ourindependently with probability h(n) per operation, whereh is some funtion hosen by the adversary. The e�et ofstronger failure models is disussed in Setion 9.
3.2 Quantum and Priority-Based SchedulingOur intuition is that LEAN-CONSENSUS should performwell in any setting that prevents lokstep exeutions. Onesuh setting is the hybrid-sheduled uniproessor model of[5℄, whih ombines the priority-based sheduling model of[28℄ with the quantum-based sheduling model of [4℄. In thismodel, proesses are assumed to be time-sharing a unipro-essor under the ontrol of a pre-emptive sheduler. Eahproess has a priority, and a proess may be pre-empted atany time by a proess of higher priority. A proess may onlybe pre-empted by a proess of the same priority if it has ex-hausted its quantum, a minimum number of operations itmust omplete between the time it wakes up and the timeat whih it beomes vulnerable to pre-emption. There isno requirement that a proess start the protool at the be-ginning of a quantum; it may have used up some or all ofits quantum performing other work before starting the pro-tool. We do not onsider failures in the hybrid-shedulingmodel; instead, a proess may be arbitrarily delayed subjetto the onstraints on the sheduler.
4. THE LEAN-CONSENSUS ALGORITHMIn this setion, we desribe the LEAN-CONSENSUS algo-rithm. The algorithm is very simple, beause we are relyingon randomness in the environment to guarantee terminationand thus the algorithm itself must only guarantee orret-ness and provide the opportunity for the underlying systemto quikly jostle it into a deision state. Struturally, itis essentially idential to the multi-writer register onsen-sus protool of Chandra [16℄ with the shared oins removed,



leaving only the implementation from multi-writer bits ofthe \raing ounters" tehnique that has been used in manyshared-memory onsensus protools. It also bears some sim-ilarities to the Time-Adaptive Consensus algorithm of Aluret al. [3℄ with the delays removed.At eah step of the algorithm, eah proess prefers either0 or 1 as its deision value. The onit between the 0-preferring proesses and the 1-preferring proesses is settledby a rae implemented using two arrays a0 and a1 of atomiread/write bits, eah initialized to zero. Eah proess arriesout a sequene of rounds, eah onsisting of a �xed sequeneof operations. During round r, a proess that prefers bmarksloation ab[r℄ with a one and looks to see if either (a) it hasfallen behind its rivals who prefer (1 � b), in whih ase itabandons its former preferene and joins the winning team,or (b) it and its fellows have sped far enough ahead of anyrival proesses that they an safely deide b knowing thatthose rivals will give up and join the b team before theyath up. The algorithm �nishes fastest when the pak ofproesses disperses quikly, so that a lear winner emergesas early as possible.Let us look more losely at the details of the algorithm. Aproess with input b sets its preferene p to b and its roundnumber r to 1. (We say that a proess is at round r if itsround number is set to r; proesses thus start at round 1.)It then repeatedly exeutes the following sequene of steps.To simplify the desription of the algorithm, we assume thatwhile a0 and a1 are initialized to zeroes, they are pre�xedwith (e�etively read-only) loations a0[0℄ and a1[0℄, bothset to 1.1. Read a0[r℄ and a1[r℄. If for some b, ab[r℄ is 1 anda1�b[r℄ is 0, set p to b.2. Write 1 to ap[r℄.3. Read a1�p[r � 1℄. If this value is 0, deide p and exit.4. Otherwise, set r to r + 1 and repeat.Note that in eah round the proess arries out exatly fouroperations in the same sequene: two reads, a write, andanother read. It is tempting to optimize the algorithm byeliminating the write when it is already evident from the pre-vious step that ap[r℄ is set or eliminating the last read whenit an be dedued from the value of a1�p[r℄ that a1�p[r� 1℄is set. However, this optimization redues the work doneby slow proesses (whom we'd like to have fall still furtherbehind) while maintaining the same per-round ost for fastproesses (whom we'd like to have pull ahead). So we mustparadoxially arry out operations that might appear to besuperuous in order to minimize the atual total ost.In the desription of the algorithm given above, it is assumedthat the arrays a0 and a1 are in�nite. Obviously this is un-desirable in a real system. In order to bound the size of a0and a1, we an adopt a tehnique from [16℄ and ut o� thealgorithm arbitrarily at some round rmax, using the prefer-enes eah proess has at that round as input to a robustbounded-memory onsensus protool satisfying the validityproperty, suh as [6℄. If rmax is large enough, most of the

time we will expet that LEAN-CONSENSUS terminatesbefore reahing rmax and the bakup algorithm will not beused. But in the ase where rmax is reahed (say, beausethe sheduler is nastier than we have assumed), the bakupalgorithm an guarantee termination using bounded spaeand bounded expeted time.Using preferenes as input to the bakup algorithm guaran-tees agreement, even if some proesses deide using LEAN-CONSENSUS and others deide using the bakup algo-rithm. As shown in Lemma 3, if some proess deides on avalue b at round r, every proess prefers b starting at roundr. So the inputs to the bakup algorithm will all be b andany proess exeuting the bakup algorithm will deide b inaordane with the validity property.
5. AGREEMENT AND VALIDITYIf we ignore the termination requirement, the orretnessof the algorithm does not depend on the behavior of thesheduler. The following two lemmas show that the validityand agreement properties hold whenever the algorithm ter-minates. The proofs, similar in spirit to those of Lemmas1-4 in [16℄, are given in the full paper.Lemma 2. If every proess starts with the same input bitb, every proess deides b after exeuting 8 operations.Lemma 3. If some proess P deides b at round r, everyproess prefers b at rounds r and greater, and every proessdeides b at or before round r + 1.
6. TERMINATION WITH NOISY

SCHEDULINGIn this setion, we show that LEAN-CONSENSUS termi-nates in �(log n) rounds with noisy sheduling and randomfailures. (This analysis inludes the ore model without ran-dom failures as well, sine the adversary an always hooseh(n) = 0.) We show that either all proesses die (in whihase we treat the algorithm as terminating in the last roundin whih some proess takes a step), or some group of pro-esses with a ommon preferene eventually gets two roundsahead of the other proesses. To avoid analyzing the detailsof how proesses shift preferenes, we will show the evenstronger result that unless all proesses die, a single proesseventually gets two rounds ahead of the other proesses.To simplify the argument, we abstrat away from the indi-vidual sequene of operations in eah round and look onlyat the times at whih rounds are ompleted. We an thusassume that the adversary provides a single noise distribu-tion F (orresponding to the distribution of the sum of thedelays on three reads and one write) and that the values�ij , Xij , and Hij provide the delay not on the j-th oper-ation but on the j-th round. Sine this abstration merelyinvolves summing together the underlying variables on op-erations, it does not redue the adversary's ontrol over theprotool. We will sale M appropriately so that it is stillthe ase that 0 � �ij �M when j > 0.Using this approah, the inrement �ij + Xij + Hij isthe time taken for proess i to move from the end of



round j � 1 to the end round j. The onstant �i0 rep-resents the proess's starting time, and S0ir = �i0 +Prj=1 (�ij +Xij +Hij) gives the time at whih the pro-ess �nishes round r. A proess wins the rae with a leadof  rounds at round r +  if it �nishes round r +  beforeany other proess �nishes round r, i.e., if Si;r+ � Si0;r forall i0 6= i.We would like to show a bound on how the expeted roundat whih some proess wins by  sales as a funtion of thenumber of proesses n, keeping , M , and F �xed. Thisbound is given in Corollary 10 below. We will assume thath(n) = o(1), as otherwise all proesses die after O(log n)rounds on average. The proof proeeds in two steps: �rstwe show that for any r whih some proess �nishes with atleast onstant probability, there exists a ritial time t thatgives at least a onstant probability that S0ir � t for exatlyone i. We then show that if r is large enough, Pr[Si;r+ �tjSir � t℄ is also at least a onstant. It then follows that theprobability that S0i;r+ � t while S0i0r > t for any i0 6= i isat least the produt of these two onstants and the onstantprobability that pi is not killed between rounds r and r+ .Thus after a onstant number of phases eah onsisting ofr +  rounds we expet some proess to win.
6.1 Existence of a winnerIn this setion, we build up the tools needed to show thatfor eah round there exists a �xed time at whih there islikely to be a unique winner.Lemma 4. Let A1; : : : ; An be independent events. If theprobability that no Ai ours is x, where x is not zero, thenthe probability that exatly one Ai ours is at least �x lnx.Proof. Let qi be the probability that Ai does not our.The probability x that no Ai ours is the produt of theqi. Sine x is nonzero, eah qi must also be nonzero. Theprobability that exatly one Ai ours is given by nYi=1 qi! nXi=1 1� qiqi = x nXi=1 � 1qi � 1�= x �n+ nXi=1 1qi! : (1)Let G be the geometri mean of the qi and let H be theirharmoni mean. By the theorem of the means, G > H.Observe that G = x1=n andnXi=1 1qi = n=H > n=G = nx�1=n = n exp�� lnxn �� n�1� lnxn � = n� lnx:Plugging this inequality into (1) gives the result.Suppose X1; : : : ; Xn are random times. The followinglemma shows that under ertain onditions there exists aonstant time t0, suh that, with onstant probability, atmost one of the Xi is less than t0:

Lemma 5. Let X1; : : : ; Xn be independent random vari-ables suh that for all �nite values t and all distint i; j,the probability that Xi = Xj = t is zero. Then eitherPr[8iXi = 1℄ is greater than e�1 or there exists t0 suhthat the probability that exatly one of the Xi is less than orequal to t0 is at least 1=5.Proof. For eah t, let qi(t) be the probability that Xiis not less than or equal to t. Let q(t) = Qni=1 qi(t) be theprobability that none of the Xi are less than or equal tot. Note that eah qi(t) is a dereasing right-ontinuous left-limited funtion with limt!�1 qi(t) = 1 and limt!1 qi(t) =Pr[Xi = 1℄. Similarly, q(t) = Qi qi(t) is right-ontinuous,left-limited, and has limt!�1 q(t) = 1 and limt!1 q(t) =Pr[8iXi =1℄.Suppose that this latter quantity is less than or equal to e�1.(If not, the �rst ase of the lemma holds.) Then for some�nite t, q(t) � e�1. Let t0 be the least suh t.Now suppose q(t0) � e�2. Then, by Lemma 4, the probabil-ity that exatly one Xi is less than or equal to t0 is at least2e�2 � 0:27 : : : .Otherwise, we have q(t0) < e�2 but q(t0�) =limt!t0� q(t) > e�1. (We are using the usual onventionthat f(x�) denotes the left limit of f at x.) This dison-tinuity must orrespond to a disontinuity in qi for some i.At most one qi has a disontinuity at t0, by the assumptionthat the probability that distint Xi, Xj both equal t0 iszero. Hene, for all j 6= i we have qj(t0�) = qj(t0) and thusqi(t0�)=qi(t0) = q(t0�)=q(t0) � e�1.Sine qi(t0�) � 1, it follows immediately that qi(t0) � e�1and thus the probability that Xi is less than or equal to t0 isat least 1�e�1. Now the probability that no other Xj is lessthan or equal to t0 is at least q(t0)=qi(t0) � q(t0�) > e�1.Sine the variables are independent, the probability thatonly Xi is less than or equal to t0 is thus at least (1 �e�1)e�1 � 0:23 : : : .
6.2 Size of the leadIn this setion, we show that if enough rounds have passed,a proess that is likely to be ahead of the others is in fatlikely to be several rounds ahead. The proof is somewhatompliated by the lak of restritions on the noise distribu-tion, but the following lemma shows how the Strong Law ofLarge Numbers an be used to smooth the noise terms outa bit.Lemma 6. Let X1; X2; : : : be �nite non-negative indepen-dent identially distributed random variables whose ommondistribution is not onentrated on a point. De�ne Sn =Pni=1Xi. For any , there exist n; t suh that Pr[Sn < t℄ < 12but Pr[Sn < t� ℄ > 0.Proof. Let us �rst onsider the ase whereXi has a �niteexpetationm. Then the Strong Law of Large Numbers saysthat Sn=n onverges to m in the limit with probability 1.So for any � > 0, the probability that Sn is less than m� �goes to zero and thus drops below 1=2 for all n greater thansome n0.



Let tn = n(m � �). As long as n > n0, we have Pr[Sn <t℄ < 12 . Now suppose that Pr[Sn < tn � ℄ = 0 whenevern > n0. Sine the Xi are independent, this event an onlyour if for eah Xi, Xi < tn�n = m��� n with probability0. Taking the union of ountably many suh bad eventsfor eah rational � and eah n > n0 shows that the eventXi < m, also has probability 0. It follows that Xi � E[Xi℄almost surely and thus the distribution of Xi is onentratedon E[Xi℄, a ontradition.If Xi does not have a �nite expetation, then Sn=n growswithout bound with probability 1 (see the orollary to The-orem 22.1 in [14℄). So for any x, there exists n0, suh thatPr[Sn=n < x℄ < 12 for n > n0. We repeat the above anal-ysis for t = nx; if Pr[Sn < t � ℄ = 0 for all suh t, we getXi � x � n almost surely, implying Xi exeeds any �nitebound x. Again, a ontradition.One the noise terms have been smoothed, it is not hardto show that they eventually aumulate enough to push awinner ahead:Lemma 7. Fix  > 0. Let X1; X2; : : : be �nite inde-pendent identially distributed random variables suh thatthere exists a threshold t0 for whih Pr[X < t0℄ < 12 butPr[X < t0 � ℄ = Æ0 > 0. De�ne Sn =Pni=1Xi.Then for any � > 0, there exists an n = O(log(1=�)), suhthat for any t, Pr[Sn < t℄ > � implies Pr[Sn < t � jSn <t℄ > 17Æ0.Proof. Set n = 8(ln(1=�) + 1). Eah Xi has probabilityat most 1=2 of being less than t0, so a simple appliationof Cherno� bounds shows that the probability that 3/4 ormore of the Xi are less than t0 is at most e�n=8 = �=e.We will use this fat to argue that even when onditioningon Sn < t, there is nearly one hane in four that Xn inpartiular is greater than t0. In this ase, Sn�1 is less thant � t0 and we an use independene to replae Xn with anew value less than t0 � , giving a sum Sn less than t� ,all without reduing the probability by muh.Formally, we have the following sequene of inequalities,eah of whih is implied by the previous one. Let Pr[Sn <t℄ = p and suppose p > �. Then we have:Pr[Sn < t℄ = pPr[Sn < t ^ at least 14 of Xi are > t0℄ > p� �=ePr[Sn < t ^Xn > t0℄ > 14 (p� �=e)Pr[Sn�1 < t� t0℄ > 14 (p� �=e)Pr[Sn�1 < t� t0 ^Xn < t0 � ℄ > 14 (p� �=e)Æ0Pr[Sn < t� ℄ > 14 (p� �=e)Æ0Pr[Sn < t� jSn < t℄ > 14 (p� �=e)Æ0=p

Sine p > �, this last quantity is at least 14 (1�1=e)Æ0, whihis in turn greater than 17Æ0.We an now ombine Lemmas 6 and 7 into the following:Lemma 8. Let X1; X2; : : : be �nite non-negative indepen-dent identially distributed random variables whose om-mon distribution is not onentrated on a point. De�neSn = Pni=1Xi. Fix  > 0. Then there is a onstant Æ,suh that for any � > 0, there exists n = O(log(1=�)), suhthat Pr[Sn < t� jSn < t℄ > Æ whenever Pr[Sn < t℄ > �.Proof. Use Lemma 6 to group the Xi together into par-tial sums Yi =Pin0+n0j=in0+1Xj with the property that for somet Pr[Yi < t℄ < 12 but Pr[Yi < t � ℄ = Æ0 > 0. (Note thatn0 does not depend on �, so it disappears into the onstantfator.) Then apply Lemma 7 to sums of these Yi variablesto get the full result.
6.3 When the Race EndsIn this setion, we show that a rae between n independentdelayed renewal proesses with bounded added delays endsin O(log n) rounds with at least onstant probability. In thefollowing setion, we translate this result, whih appears asCorollary 10, bak into terms of the LEAN-CONSENSUSalgorithm to get Theorem 11.Theorem 9. Let fXijg, where i; j � 1, be a two-dimensional array of �nite non-negative independent iden-tially distributed random variables with a ommon distri-bution funtion F that is not onentrated on a point. Letf�ijg, where i � 1; j � 0, be a two-dimensional array ofonstants with 0 � �ij � M when j � 1. Let fHijg, wherei; j � 1, be a two-dimensional array of independent randomvariables, eah of whih is equal to 1 with probability h(n)and 0 otherwise. De�neS0ir = �i0 + rXj=1 (�ij +Xij +Hij) :Assume that for any �nite t, integer r, and i 6= j, Pr[S0ir =S0jr = t℄ = 0. Let  be any integer onstant greater than 0.Then there exists a onstant Æ > 0, suh that for any n,there exists r = O(log n) and t, suh thatPr � 8i S0ir =1_ �9i � n : S0i;r+ < t ^ 8i0 6= i; i0 � n : S0i0r > t� � > Æ:The onstant fator in r = O(log n) and the onstant Æ maydepend on , F , M , and h, but do not depend on n.Proof. Sine eah Xij is �nite with probability 1, thereexists some onstant 1 suh that Pr[Pr+j=r+1Xij < 1℄ > 12 .Let Tir = Prj=1Xij and let Sir = Tir +Prj=0�ir. ApplyLemma 8 to the sequene Xij with  = M+1 and � = n�2to obtain r = O(log n) and a onstant Æ0 for whih Pr[Tir <t � M � 1jTir < t℄ > Æ0 whenever Pr[Tir < t℄ > n�2.Adding the missing onstant terms Prj=0�ij to Tir to get



Sir is equivalent to subtrating these same terms from eahourrene of t, so we in fat have Pr[Sir < t�M�1jSir <t℄ > Æ0 whenever Pr[Sir < t℄ > n�2. This gives us our targetround r.Now apply Lemma 5 to S0ir, for all i � n, to show that withprobability at least 1=5 either 8iS0ir = 1 or there existsa time t0, suh that there is a unique winner i � n forwhih S0ir is less than t0. Let us assume without loss ofgenerality that n is at least 6. Throw out all ases where ihas Pr[S0ir < t0℄ � n�2; this leaves a probability of at least1=5 � 1=n � 1=30 that (a) there is a unique winner i, and(b) i satis�es the ondition Pr[S0ir < t0℄ > n�2, implyingPr[Sir = S0ir < t0℄ > n�2 and thus Pr[Sir < t0 � M �1jSir < t0℄ > Æ0. So with probability at least 130 Æ0, we haveSir < t0 � M � 1, and thus with probability at least 160 Æ0we have Si;r+ < Sir + M + 1 = S0ir + M + 1 < t0.Suppose that this event holds. It is still possible for S0i;r+to be in�nite if Pr+j=r+1Hij = 1. Call this event I; ifPr[I℄ = 1 � (1 � h(n)) > 1120 Æ0, then h(n) is boundedbelow by a onstant and there exists r0 = O(log n) suhthat Pr[8iS0ir0 =1℄ is at least a onstant. Alternatively, wehave Pr[S0i;r+ = Si;r+ < S0ir + M + 1℄ > Æ = 1120 Æ0: Ineither ase, the theorem holds.Corollary 10. Under the onditions of the preedingtheorem, R has expetation O(log n), where R is the �rstround for whih either� There exists i, suh that S0i;R+ < S0i0R for all i0 6= i,or� For all i, S0i;R+ =1.Proof. Theorem 9 says that the desired event ourswith onstant probability Æ after a phase onsisting of r =O(log n) rounds. If it does not our, we an apply thetheorem again to the subset of the i's for whih S0i;r+ is�nite, starting with round r +  + 1 and setting the initialdelay �i0 to the value of S0i;r+ from the previous phase. Onaverage, at most 1=Æ = O(1) suh phases are needed.
6.4 When LEAN-CONSENSUS EndsTranslating Corollary 10 bak into terms of the LEAN-CONSENSUS algorithm gives:Theorem 11. Under the noisy sheduling model withrandom failures, starting from any reahable state in theLEAN-CONSENSUS algorithm in whih the largest roundnumber of any proess is r, the algorithm running with native proesses terminates by round r + r0, where r0 hasexpeted value O(log n).Proof. Apply Corollary 10 with  = 2 and the initialdelays �i0 set to the times at whih eah proess ompletesround r. This shows that after expeted O(log n) roundseither some proess P �nishes some round s before any otherproess �nishes round s� 2, or all proesses fail. In the �rstase, if P prefers b, it is the only proess to have written to

ab[s � 1℄ or a1�b[s � 1℄ by the time it reads a1�b[s � 1℄ aspart of round s. Thus it reads a zero from a1�b[s � 1℄ anddeides. All other proesses deide at most one round laterby Lemma 3.It is not hard to see that this bound is the best possible, upto onstant fators.Theorem 12. There exists a noise distribution F and aset of delays � suh that the LEAN-CONSENSUS algorithmrequires expeted 
(log n) rounds in the noisy shedulingmodel, even without failures.Proof. Let all �ij = 0 for j > 0, and let F have eah op-eration take either 1 or 2 time units with equal probability.Then any single proessor ompletes its �rst log n operationsin 1 time unit eah with probability 1=n. To avoid simul-taneous operations, let �i0 be some small distint epsilonvalue for eah i.Start n=2 proesses with input 0 and n=2 with input 1. Theprobability that there exists at least one 0-input proess andat least one 1-input proess that both omplete their �rstlog n operations in 1 time unit eah is given by 1��1� 1n�n=2!2whih goes to (1�e�1=2)2 = �(1) in the limit as n grows. Sothere is a onstant probability that at least one proess witheah input runs for log n operations without ever hangingits preferene to that of a faster proess with the oppositepreferene, and we get expeted 
(log n) rounds of disagree-ment.
7. TERMINATION WITH QUANTUM AND

PRIORITY-BASED SCHEDULINGIn this setion, we onsider the question of termination sub-jet to hybrid quantum and priority-based sheduling on auniproessor. The required quantum size is 8 operations;uriously, this is the same size required for the speializedalgorithm given in [5℄. We see this oinidene as furtherevidene that all onsensus algorithms ultimately onvergeto a ommon ideal algorithm (whih, alas, is probably notidential to LEAN-CONSENSUS).Theorem 13. When running LEAN-CONSENSUS in ahybrid-sheduled system with a quantum of at least 8 op-erations, every proess deides after exeuting at most 12operations.Proof. We will show that at most one of a0[1℄ and a1[1℄is set before some proess �nishes round 2 and deides. Con-sider an exeution in whih a0[1℄ and a1[1℄ are eah set atsome point. Let P0 and P1 be the �rst proesses to set a0[1℄and a1[1℄, respetively. Neither P0 nor P1 an have observedthe round-1 write of the other, or it would have hanged itspreferene. Thus both proesses' round-1 reads of a0[1℄ anda1[1℄ must have ourred before either performed its round-1 write. Sine we are on a uniproessor, this an only our



if one of the proesses was pre-empted before its write o-urred.Assume without loss of generality that P0 is this unlukyproess. Sine P0 is the �rst proess to write to a0[1℄, ifwe an show that P0 is not resheduled before some pro-ess ompletes round 2, then that proess deides 1 (and byLemma 3, all proesses eventually deide 1) as soon as asit observes a zero in a0[1℄. So we need only show that P0is not resheduled until some other proess ompletes eightoperations.Let Q1 be the proess that pre-empts P0. At the time of pre-emption, Q1 is at the start of a quantum; it either �nisheseight operations without being pre-empted or is pre-emptedby a higher-priority proess Q2. But Q2 in turn an only bepre-empted before ompleting its quantum by some higher-priority proess Q3. After at most n suh pre-emptions, werun out of higher-priority proesses, and the last proessruns to the end of its quantum and deides. Note that allof the proesses in this hain (exept possibly Q1) have ahigher priority than P0 and thus annot be equal to P0.It follows that some proess �nishes round 2 before P0 isresheduled, and thus every proess deides 1 by the end ofround 3.
8. SIMULATION RESULTSFigure 1 gives the results of simulating LEAN-CONSENSUSwith various interarrival distributions. These simulationsare of the model as desribed in Setion 3.1; in partiular itis assumed that all operations take zero time and that thereare no ontention e�ets or synhronization issues.The X axis is plotted on a logarithmi sale and representsthe number of proesses. The Y axis is plotted on a lin-ear sale and represents the round at whih the �rst proessterminates (whih may be one less than the round at whihthe last proess terminates). Eah point in the graph rep-resents an average termination round in 10,000 trials withthe given distribution and number of proesses. The start-ing times for all proesses are the same exept for a smallrandom epsilon, generated uniformly in the range (0; 10�8).In eah ase, half the proesses are started with input 0 andhalf with input 1. There are no failures.The random number generator used was drand48. The dis-tributions used were:1. Normal distribution with mean 1 and standard devia-tion 0.2 (variane 0.04), rejeting points outside (0; 2).2. 2=3 or 4=3 with equal probability.3. 0:5 plus an exponential random variable with mean0:5. This orresponds to a delayed Poisson proess.4. Geometri with p = 0:5.5. Uniform in (0; 2).6. Exponential with mean 1. This orresponds to a Pois-son proess with no initial delay; it is also equivalentto generating a shedule by hoosing one proess uni-formly at random for eah time unit.

It is worth noting that while the expeted number of roundsgrows logarithmially for most distributions, both the rate ofgrowth and the initial value are small. These small onstantfators may be the result of most proesses adopting thevalues of early leaders, so that termination an be reahedby agreement among leaders rather than the emergene of asingle leader.The inverted behavior with a normal distribution is intrigu-ing; it suggests that with large numbers of proesses thereare more hanes for one partiularly speedy proess to leapahead of its ompetitors, and that for some distributionsthis e�et overshadows the e�et of having more ompeti-tors to leap ahead of. It is not lear from the data whetherthis urve eventually turns around and starts rising again,or whether it onverges to some onstant asymptote.
9. CONCLUSIONS, EXTENSIONS, AND

FUTURE WORKWe see this paper as making two main ontributions. The�rst is the extration of the adaptive �(log n) time LEAN-CONSENSUS protool from its more sophistiated prede-essors and the demonstration that this simpli�ed algorithman solve onsensus in models that are less extreme thanthose predeessors were designed to survive but that areperhaps loser to apturing the sheduling behavior an al-gorithm is likely to experiene in pratie. Although LEAN-CONSENSUS does not really ontain any new ideas, we be-lieve that ripping out features that pratitioners might balkat implementing is a valuable task in its own right.The seond is the noisy sheduling model. This model limitsthe adversary not by overing its eyes but by making itshands shake. It allows us to express the understanding thatin the real world failures and timing are usually not fullyunder the ontrol of intelligent demons, while still retaininga healthy respet for the subtlety and unpreditability of theworld. We believe that this \perturbed worst-ase analysis"approah is likely to have appliations in many areas bothin and outside of distributed omputing.There are still many questions left unanswered and manyways in whih the noisy sheduling model ould be extended.We disuss some of these issues below.
Non-random failures.It would be nie to understand how LEAN-CONSENSUSfares with failures that are not random. We an get anupper bound in this situation by restarting Theorem 11whenever a proess dies. Sine the adversary must kill atleast one proess every expeted O(log n) rounds, the al-gorithm terminates in expeted O(f log n) rounds where fis the number of failures. This bound ompares favorablywith the O(n log2 n) work per proessor needed by the bestknown randomized algorithm that solves onsensus with afully-adaptive adversary and up to n � 1 failures [9℄, butthe fully-adaptive adversary is muh stronger than one lim-ited to noisy sheduling. It seems likely that a better upperbound than O(f log n) ould be obtained by a more arefulanalysis that inludes how proesses hange preferenes; weonjeture that the real bound is in fat O(log n).
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Figure 1: Results of simulating LEAN-CONSENSUS with various interarrival distributions.
Statistical adversaries.We would also like to do away with the �xed boundM on thedelay between operations under the ontrol of the adversary.The tehnial reason for inluding this bound in the modelis that it provides a sale for the noise introdued by the Xijvariables; if the adversary an inrease �ij without limit, itan onstrut a steadily slower and slower exeution in whihthe noise, relative to the gap between rounds, never aumu-lates enough to a�et the shedule. But a weaker statistialonstraint, suh as requiring Prj=1�ij � rM , might avoidsuh Zeno-like pathologies while allowing more variation inthe gaps between operations.4 The present proof does notwork with just this statistial onstraint (the partiular stepthat breaks down is the use of Lemma 8 to show that beingahead at round r often means being ahead by  at round r),but we onjeture that the statistial onstraint is in fatenough to get termination in O(log n) rounds.
Synchronization and contention.Though the present work was motivated by a desire to moveaway from powerful theoretial adversaries toward a modelmore losely reeting the non-maliiousness of misbehaviorin real systems, we annot laim that the model auratelydesribes the behavior of any real shared-memory system.One diÆulty is that real shared-memory systems gener-ally do not guarantee full serializability of memory oper-ations in the absene of additional synhronization opera-tions (see [27, Setion 8.6℄). We an overome this diÆultyby adding synhronization barriers to eah round of LEAN-CONSENSUS; in priniple this does not a�et the analysissine the struture of eah round is still the same as all otherrounds. A seond problem is memory ontention, whih wehave not analyzed. The diÆulty with both expliit syn-hronization and memory ontention is that their e�ets areunlikely to be onsistent with the assumption that the tim-ing of di�erent proesses' operations are independent. To4This is a bit like using the statistial adversary of [18℄.

the extent that this lak of independene disperses proesses(say, by slowing down laggards �ghting over ongested early-round registers while allowing the speedy to sail throughrelatively lear late-round registers), it helps the algorithm.Whether suh an e�et would our in pratie annot easilybe predited without experimentation.
Lower bounds.The noisy sheduling model is friendly enough that anO(log n) running time for onsensus might not be the bestpossible. A ounterexample like the one given in the proofof Theorem 12 might be able to show that no deterministialgorithm with ertain strong symmetry properties (suh asno dependene on proess identity and a mirror-image han-dling of the di�erent inputs) an do better, but it not obviouswhere to look for a more general lower bound. It is not outof the question that a lever algorithm ould solve onsensuswith noisy sheduling in as little as O(1) time.
Other problems.Finally, though we have onentrated on a partiularly sim-pli�ed protool for solving a single fundamental problem, itwould be interesting to see how other algorithms fare in thenoisy sheduling model. It seems likely, for example, thatalgorithms designed for unknown-delay models suh as Aluret al.'s [3℄ should ontinue to work in the noisy shedulingmodel, perhaps with some onstraint on the noise distribu-tion to exlude random delays with unbounded expetations.Similarly the line of inquiry started by Gafni and Mitzen-maher [23℄, on analyzing the behavior of timing-based al-gorithms for mutual exlusion and related problems withrandom sheduling, ould naturally extend to the more gen-eral model of noisy sheduling.
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