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Abstract We consider the problem introduced by Korach and Stern in [17] of
building a network given connectivity constraints. A network designer is given
a set of vertices V and constraints Si ⊆ V , and seeks to build the lowest cost
set of edges E such that each Si induces a connected subgraph of (V,E). First,
we answer a question posed by Korach and Stern in [18]: for the offline version
of the problem, we prove an Ω(log n) hardness of approximation result for
uniform cost networks (where edge costs are all 1) and give an algorithm that
almost matches this bound, even in the arbitrary cost case. Then we consider
the online problem, where the constraints must be satisfied as they arrive. We
give an O(n log n)-competitive algorithm for the arbitrary cost online problem,
which has an Ω(n)-competitive lower bound. We look at the uniform cost case

as well and give an O(n2/3 log2/3 n)-competitive algorithm against an oblivious
adversary, as well as an Ω(

√
n)-competitive lower bound against an adaptive

adversary. We also examine cases when the underlying network graph is known
to be a star or a path and prove matching upper and lower bounds of Θ(log n)
on the competitive ratio for them.
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1 Introduction

We consider the following problem introduced by Korach and Stern in [17] –
users in a trusted set in a network want to send messages among themselves
without having the messages travel outside the group. Trusted sets of users
can overlap, creating complicated structures. We can imagine Yale University
wanting to participate in a trusted set with some of its peer universities, but
also wanting to participate in a trusted set of large institutions in Connecticut.
These two separate trusted sets overlap on large universities in Connecticut.

Thus, each trusted set imposes a constraint on the network – namely that
it be connected in its induced subgraph. The goal of the network designer
is to build a network, at lowest cost, that satisfies the connectivity require-
ments presented to him. This task presents various natural variations. We can
consider what happens if the constraints are given to the network designer in
advance, and when the constraints arrive online. If they arrive online, they can
be chosen adversarially or obliviously. We can imagine all edges in a network
having the same cost, or that edges in a network have arbitrary costs. There
are also cases when some information about the underlying network is known,
for example, that there exists a path that satisfies all the constraints, as is the
case in a serial network.

1.1 Past Work

In [17] Korach and Stern analyze the offline version of the Network Construc-
tion problem for the case where the constraints can be satisfied by a tree. They
give a polynomial time algorithm that finds the optimal solution in the tree-
realizable case. In [18] Korach and Stern consider this problem for the case
where the optimal solution forms a tree, and all of the connectivity constraints
must be satisfied by stars. They pose as an open question the case of general
graphs. Among our results, we answer their question in this paper.

In a different line of work [3] Alon et al. explore a wide range of network
optimization problems, including generalized connectivity, cuts, facility loca-
tion, and multicast. The connectivity problem they study involves ensuring
that a network with fractional edge weights has a flow of 1 over cuts specified
by the constraints. In [2] Alon et al. also study approximation algorithms for
the Online Set Cover problem, which has connections to Network Construction
problems which we explore in this paper. In [16] Gupta et al. also consider a
network design problem for pairwise vertex connectivity constraints.

In the area of active learning, the problem of discovering networks from
connectivity queries has been much studied [1,4,7,8,15,20]. In active learning
of hidden networks, the object of the algorithm is to learn the network exactly.
Our model is similar, except the algorithm only has the constraints it is given,
and the task is to output the cheapest network consistent with the constraints.

Another motivation for studying this problem is to discover social networks
from observations. This problem has also been studied in the active learning
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context [5]. Yet, we often passively observe phenomena that hint at the struc-
ture of an underlying social network. In the United States, the Centers for
Disease Control and Prevention release various data1 on persons affected by
illnesses, and we can consider affected persons as connected subsets in a popu-
lation. The problem would then be to find a maximum likelihood social network
given the disease data. If the prior distribution on edges is independent and
each edge appears with probability less than 1/2, this is equivalent to finding a
graph that satisfies all the connectivity constraints while minimizing the sum
of log-likelihood costs for each edge we include. Papers studying this and sim-
ilar problems from the learning perspective include a conference version of our
results [6], as well as works by Saito et al. [21] and Gomez-Rodriguez et al. [14].

1.2 Preliminaries

In this paper, we consider the following Network Construction problem.
V is a set of vertices, and for each undirected edge e = {vi, vj}, ce is the
cost of constructing edge e. A collection of connectivity constraints S =
{S1, S2, . . . , Sr} is given, where each Si is a subset of V . The task is to con-
struct a set E of edges between vertices of V such that for each i, the set Si

induces a connected subgraph of G = (V,E). The quality of the solution is
measured by comparing the sum of the costs of all the edges in E with the
optimal cost of satisfying all the connectivity constraints.

In the offline version of the problem, the algorithm knows all of the con-
straints at the outset; in the Online Network Construction problem, the
constraints are given to the algorithm one by one, and edges must be added
to G to satisfy each new constraint. By default, we allow the edges to have
arbitrary costs, but in the uniform cost version of the problem the edge
costs are all equal to 1.

When we restrict the underlying graph in a problem to a class of graphs,
e.g. trees, we mean that all constraints Si can be satisfied in an optimal solution
(for the online case, in hindsight,) by a graph from that class.

1.3 Our Results

In Section 2 we analyze the offline problem, where we show that the Uniform
Cost Network Construction problem (and therefore the arbitrary cost one) has
a hardness of approximation lower bound of Ω(log n) of the optimal solution.
We give an algorithm that gives an O(log r) approximation, where r is the
number of constraints. This matches the lower bound when r is polynomial
in n. We note that Chockler et al. [11], in the context of studying overlay
networks, independently give an NP-hardness bound for this problem. Ours is
a hardness of approximation result.

1 For more on CDC statistics, we direct the reader to www.cdc.gov/datastatistics/.
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In Section 3, we look at the Online Network Construction Problem. First, in
Subsection 3.1, we look at the case when the underlying uniform cost graph is a
star or path. In both cases, we show that any algorithm must have an Ω(log n)-
competitive ratio, and we give a matching O(log n)-competitive algorithm. We
also show that in the case when edges have costs, there is no cn-competitive
algorithm for any c < 1, even when the underlying graph is a path.

Then, in Subsection 3.2 we consider the general case of Online Network
Construction, where the topology of the underlying graph is unrestricted.
There we give an O(n log n)-competitive algorithm for the arbitrary cost case,
that almost matches our lower bound. For the Uniform Cost Network Con-
struction problem, we give an Ω(

√
n)-competitive lower bound, and in the case

of an oblivious adversary, we give an O(n2/3 log2/3 n)-competitive algorithm.

2 Offline Network Construction

We first examine the offline Uniform Cost Network Construction problem.

Theorem 1 If P 6=NP, the approximation ratio for the Uniform Cost Net-
work Construction problem on n nodes is Ω(log n).

Proof We reduce from the Hitting Set problem. The inputs to Hitting Set are
U = {v1, v2, . . . , vn} and {C1, C2, . . . , Cj} with Ci ⊆ U . The Hitting Set
problem is to minimize |H|, where H ⊆ U such that ∀Ci, H ∩ Ci 6= ∅. We
define an instance of the Uniform Cost Network Construction problem with
n3 by n vertices v(i,j), for all 1 ≤ i ≤ n3 (rows) and 1 ≤ j ≤ n (columns).
For each i, the vertices in row i, {v(i,1), v(i,2), . . . , v(i,n)}, correspond to the
elements {v1, . . . , vn} in the Hitting Set instance.

Now we define the connectivity constraints for the Uniform Cost Network
Construction problem. First we enforce that all pairs of vertices in each row
i are connected, by adding a connectivity constraint for each pair of vertices

{v(i,j), v(i,k)}. For each constraint Ci in the Hitting Set problem, we create
(
n3

2

)
connectivity constraints. Without loss of generality, let Ci = {v1, v2, . . . , vk}.
For each pair l 6= j such that 1 ≤ l, j ≤ n3 we add a connectivity constraint

Sl,j
Ci

= {v(l,1), v(l,2), . . . , v(l,k), v(j,1), v(j,2), . . . , v(j,k)} (1)

in the Uniform Cost Network Construction problem. This enforces the Hit-
ting Set constraints pairwise between the n3 rows of the network construction
problem.

Each pair of rows in our new instance contains the original Hitting Set
instance. First, the algorithm has no choice but to place a clique on each row.
Then, let equation (1) be a constraint. To satisfy Sl,j

Ci
, the algorithm must

choose some edge between row l and row j among vertices 1, . . . , k. We observe
that if the algorithm chooses an edge between two vertices corresponding to
different elements in the two rows, it could do at least as well by choosing
the edge going between two copies of one of the two elements. To see this,
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if edge {v(l,x), v(j,y)}, with x 6= y, is chosen to satisfy the constraint Sl,j
Ci

,
edge {v(l,x), v(j,x)} would have also satisfied the constraint (and corresponds
to choosing element x in the Hitting Set). Then, for any other constraint
between the two rows, {v(l,x), v(j,y)} will satisfy it only if {v(l,x), v(j,x)} will.
Hence an optimal algorithm may choose edges in one-to-one correspondence
with the elements in the original Hitting Set instance.

Because Hitting Set is the complement of Set Cover, if P 6=NP, its optimal

approximation ratio is Ω(log n) [13,19], and there are Θ
(
n3

2

)
pairs of Hitting

Set instances (or rows). The optimal solution has
(
n3
(
n
2

)
+ OPT

(
n3

2

))
edges

– the first term counts the pairwise constraints in each row. So unless P=NP,

the best polynomial time algorithm will require
(
n3
(
n
2

)
+Ω

(
log nOPT

(
n3

2

)))
edges, giving us the result. ut

Below, we give an algorithm that almost meets this lower bound, even in
the arbitrary cost case when r is polynomial in n.

Theorem 2 There is a polynomial time O(log r)-approximation algorithm for
the Network Construction problem on n nodes and r constraints.

Proof The inputs are the vertices V = {v1, v2, . . . , vn}, the cost ce of each
edge e = (vi, vj), and the constraints {S1, S2, . . . , Sr}. Let C(E) be a potential
function that takes in a set of edges and sums over all constraints Si, 1 minus
the number of components Si induces on (V,E). Let E be initially empty.
Now, consider the following greedy algorithm: until all constraints are satisfied

(while C(E) < 0), greedily add to E the edge that is arg maxe
C(E+e)−C(E)

ce
.

We now notice that C(E) is sub-modular in its edge set – as in, if A ⊆ B
then for all e, C(A + e) − C(A) ≥ C(B + e) − C(B). This is clear because
A can induce additional components for e to reduce compared to B. Because
each edge can increase the value of C by at most r, we can use Theorem 3 to
get an approximation of O(log r). ut

Theorem 3 (Wolsey [22]) Given the problem

min

∑
j∈S

xj : f(S) = f(N), S ⊆ N

 ,

where f is a nondecreasing submodular set function on a finite set N , with
f(∅) = 0. The value of the greedy heuristic never exceeds the optimal value by
more than a factor

H(max
x

f({x})),

where H(m) =
∑m

i ( 1
i ).
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3 Online Network Construction

Oftentimes, the algorithm must commit to its choices as constraints arrive.
For example, when the constraints represent diseases, we may wish to commit
resources to fight an epidemic. This leads us to consider the natural extension
of network construction to the online setting.

In the online setting, the collection of connectivity constraints S1, S2, . . . , Sr

is now given one at a time, and we say that upon being presented Si the algo-
rithm is on round i. Also, let Ei be the edge set after the algorithm satisfies
constraint Si. To explore the worst-case performance of our algorithms, unless
otherwise stated, we assume an adaptive adversary, meaning that the ad-
versary can wait for the algorithm to satisfy constraint Si before determining
constraint Si+1.

In this section, we are interested in competitive analysis. An algorithm
is c-competitive if the cost of its solution is less than c times OPT, where
OPT is the best solution in hindsight. In the case when we know that the
underlying graph is, for instance, a uniform cost path or star, we know that
OPT = (n− 1).

First, we prove a lemma helpful for analyzing online algorithms.

Lemma 1 Let n(G,S) be the number of connected components S ⊆ V induces
in G, and let Gi = (V,Ei). For every algorithm for the Online Network
Construction problem for both the arbitrary and uniform cost cases, there is
an algorithm that performs at least as well and adds exactly (n(Gi, Si+1)− 1)
edges on every round i.

Proof Let A be any algorithm for the online network construction problem. We
can make a new algorithm called Alazy, that on each round inserts only a subset
of edges that A has inserted up to that round, enough to keep the constraints
satisfied. Each edge that A inserts but Alazy does not, Alazy remembers as
possible edges for future rounds and adds them as needed to satisfy future
constraints. It is clear that Alazy needs to put down a spanning tree on the
components induced by constraint i, which is (n(Gi, Si+1)−1) edges; any fewer
edges would not satisfy the constraint. Thereby, Alazy satisfies the constraints,
and because Alazy uses a subset of the edges of A, it performs at least as well.

ut

3.1 Stars and Paths

First, we examine the case when the underlying graph is a star. This is a
natural framework for Network Construction problems because it corresponds
to the case when the constraints can be satisfied by a network with one server
(the star’s center) and the rest clients (the leaves.)

Theorem 4 The optimal competitive ratio for the Online Uniform Cost
Network Construction problem on n nodes when the algorithm knows that
an optimal solution forms a star graph is Θ(log n).
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Proof We first prove the lower bound – that the competitive ratio for any
algorithm is Ω(log n). The adversary maintains a partition of the vertices into
two sets: C, the possible centers, and D = (V −C), the non-centers. Initially C
has (n−1) vertices and D has one vertex, and the initial two constraints given
to the algorithm are V and C. At every step, the adversary looks for a vertex
v ∈ C that maximizes the number of edges {u, v} with u ∈ D given by the
algorithm, and moves v from C to D, that is, C ′ = C \ {v} and D′ = D∪{v}.
The new constraints given by the adversary are C ′ ∪ u for all u ∈ D′. Thus,
the algorithm must ensure at least one edge from each element of D′ to some
element of C ′. The adversary continues until it has moved all but one vertex
from C to D.

To analyze, we consider the edges from elements of D to the element v
moved from C to D when |C| = i. Each element of D must have at least one
edge to an element of C, so the maximum number of edges from D to one
element of C is at least the average: (n− i)/i. These edges are all distinct, so

the algorithm must produce at least
∑n−1

i=2 (n− i)/i = Ω(n log n) edges in all.
Yet, all these constraints can be satisfied by a star with (n − 1) edges. This
completes the proof of the lower bound.

For the upper bound, we give an O(log n)-competitive algorithm. The algo-
rithm will keep track of a set Ci of potential centers and Di = V − Ci known
non-centers at round i. Any node not appearing in some constraint cannot be
a center. The algorithm keeps nodes in Ci connected by a path, and each node
in Di is connected to some node in Ci, such that the number of edges going
into each node in Ci from Di is no more than d(|Di|)/|Ci|e, meaning that all
nodes in Ci have close to the same degree. Initially, C0 = V and is connected
by an arbitrary path (costing O(n) edges). At any stage of the algorithm,
when a constraint Si comes in, if it does not eliminate any potential centers,
it is easy to see Si is already satisfied. Otherwise, we remove any potential
centers Ri ⊂ Ci−1 that are now known to be non-centers from Ci−1 (to form
Ci), and we add them to Di−1 (to form Di). Further, we ignore all edges to
nodes in Ri. We re-stitch the path connecting nodes in Ci, which takes at
most |Ri|+1 edges. Then, we connect (in such a way that keeps the degrees of
the nodes in Ci about equal) all nodes in Ri to nodes in Ci, which takes |Ri|
edges, and also all nodes in Di−1 that became disconnected from Ci because

were connected to nodes in Ri, which takes O
(
|R||Di−1|
|Ci−1|

)
edges. This clearly

satisfies constraint Si.
To see why this gives us the needed result, we notice that at most n centers

can be removed from C, and therefore connections involving nodes in Ri take∑n
i=1O(|Ri|) = O(n). The rest of the connections, by the analysis in the para-

graph above, cost
∑

iO
(
|R||Di−1|
|Ci−1|

)
≤
∑

iO
(
|Ri|n
|Ci−1|

)
. If we consider removing

one center at a time (as opposed to in groups Ri), we can bound this from
above by O(n

∑n
i=1

1
n−i ) = O(n log n). ut

Next, we examine another natural structure – when the underlying graph
is a path.
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Theorem 5 The optimal competitive ratio for the Online Uniform Cost
Network Construction problem on n nodes when the algorithm knows an
optimal solution forms a path graph is Θ(log n).

Proof First we prove the lower bound, that any algorithm has a competitive
ratio of Ω(log n). We show an adversarial strategy that forces the algorithm
to use O(n log n) edges when the optimal solution in hindsight uses only (n−
1) edges. The adversary first shows all the nodes, which by Lemma 1 the
optimal algorithm connects using (n−1) edges. Then the adversary divides the
nodes into two independent sets and presents each of them to the algorithm in
arbitrary order. The optimal algorithm must connect the two subgraphs with
trees (again by Lemma 1), and the adversary repeats this process recursively.
We say that each depth in the recursion is a new level in this process. Because
the algorithm puts down O(n) edges per level, given this strategy for the
adversary, the optimal algorithm needs to put down a path at each step so as
to balance the sizes of two following independent sets and limit the algorithm
to O(log n) levels. Hence, the algorithm uses Ω(n log n) edges, but it is clear
that knowing the sets in advance, one can satisfy the connectivity requirements
using O(n) edges - by simply connecting the smallest sets and then merging
them accordingly into a path. This gives us the desired Ω(log n) gap.

Now we prove the upper bound by giving an O(log n)-competitive algo-
rithm. We first observe that every constraint Si is a sub-interval of the path,
and the algorithm must put down enough edges to capture a permutation of
the vertices consistent with the Si’s. The algorithm we introduce maintains a
pq-tree – a data structure, introduced by Booth and Lueker in [9], that keeps
track of all consistent orderings of nodes given contiguous intervals in a per-
mutation. A pq-tree is a tree that consists of leaf nodes, p-nodes, and q-nodes.
A leaf node is an element (or vertex in our case). A p-node (permutation
node) has 2 or more children of any type, and its children form a contiguous
interval, but can be ordered in any order. A q-node has 3 or more children
of any type and its children form an interval in the given order or its reverse.
Each new interval constraint updates the pq-tree, and then the algorithm adds
edges to satisfy the new constraint.

We will show that the algorithm can satisfy the constraints using O(n log n)
edges by using a potential function to keep track of the evolution of the pq-
tree. Let P be the set of p-nodes in a given tree and Q be the set of q-nodes.
Also for any node p, let c(p) count p’s children. For constants a and b, our
potential function is

Φ = a
∑
p∈P

((c(p)− 1)(log(c(p)− 1)) + b|Q|. (2)

We observe that the pq-tree before any constraints arrive has one p-node at
the root, and all its children are leaf nodes. This corresponds to an arbitrary
permutation of the vertices. So at the beginning, Φ = Θ(n log n). In compar-
ison, when the permutation is specified, the root is a q-node and the rest of
the nodes are leaves. In that case, Φ = Θ(1).
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Now we look at what happens when a constraint comes in. We will argue
that the number of edges we need to insert into our graph is a lower bound
on the drop in the potential function, and because it is always the case that
Φ ≥ 0, this will complete the proof.

We first analyze the most common type of update to a pq-tree. A constraint
comes in and splits a known interval into two, that is, it splits a p-node with
m children into two p-nodes (one with at most (k + 1) children and the other
with at most (m− k) children), and attaches them to a q-node parent. So the
drop in the potential function is as follows (where H(p) is the binary entropy
function.)

−∆Φ = a ((m− 1) log(m− 1)− (k log k + (m− k − 1) log(m− k − 1)))− b

= a(m− 1)

(
log(m− 1)− k log k

m− 1
− m− k − 1

m− 1
log(m− k − 1)

)
− b

= a(m− 1)

(
− k

m− 1
log

(
k

m− 1

)
− m− k − 1

m− 1
log

(
m− k − 1

m− 1

))
− b

= a(m− 1)H

(
k

m− 1

)
− b

≥ a(m− 1) min

(
k

m− 1
,
m− k − 1

m− 1

)
− b

= amin (k,m− k − 1)− b.

Now, 2 min (k,m− k − 1) is exactly how much is required in the worst case
to stitch up a split interval – because we have to connect up all of the nodes
in the smaller new interval, and patch at most as many gaps in the larger
interval (similar to the reasoning in the proof of the lower bound). It takes
at most 4 more edges to connect up the ends of the two new intervals to the
rest of the graph, and this can be paid for if a = 10 and b = 4. We remember
min (k,m− k − 1) ≥ 1, so we spend 2 on splitting the p-node, 4 on re-stitching,
and 4 on the new q-node, and thus a = 10.

Booth and Lueker in [9] characterized all of the possible updates to the
pq-tree using 10 patterns: L, P1, P2, P3, P4, P5, P6, Q1, Q2, and Q3, given
in the Appendix. Neither L, Q1, nor P1 changes the number of p-nodes or
q-nodes. P2-P6 split at most one p-node and create at most one q-node, and
are covered by our analysis above. Q2 and Q3 require us to reconnect at most
2 pairs of endpoints (with 4 edges), but also reduce the number of q-nodes by
1 or 2 (this is why b = 4), and the edges are paid for by the drop in Φ. ut

In the arbitrary cost case, the competitive ratio becomes considerably
worse.

Theorem 6 There is no (cn)-competitive algorithm for c < 1 for the Online
Network Construction problem on n vertices, even when the underlying
graph is a path.

Proof We let all edges among (n − 1) of the vertices have cost 0, and all
edges from the remaining vertex, s, have cost 1. The adversary first tells the
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algorithm that all the vertices are connected. When the algorithm satisfies
this constraint, the adversary excludes from the next constraint all vertices
the algorithm has chosen to directly connect to s. This continues until the
adversary forces the algorithm to use all of the 1 edges. However, because
each constraint is a subset of the previous constraint, the optimal solution
only needs to contain the final cost 1 edge, and can connect the remaining
vertices using a path that goes through the vertices in the order they were
excluded in the adversary’s choice of constraints. Hence, the algorithm was
forced to pay a cost of (n− 1), while the optimal solution pays a cost of 1. ut

3.2 General Graphs

We introduce the Online Fractional Network Construction problem, in
which the algorithm is similarly given a set of vertices V and edge costs ce
for all e = (v, w) ∈ V , and sees a sequence of constraints {S1, S2, . . . , Sr}.
The task is to assign fractional weights we to the edges (or pairs of vertices),
such that for each i, the maximum flow between each pair of vertices in Si

is at least 1, given the weights we (to be interpreted as edge capacities). The
quality of the solution is measured by comparing

∑
cewe with the optimal

cost of satisfying all the connectivity constraints. In the online problem, the
algorithm may not decrease any edge weights from round to round.

Lemma 2 There is an O(log n)-competitive polynomial time algorithm for the
Online Fractional Network Construction problem on n nodes.

Proof We give Algorithm 1 for the Online Fractional Network Construction
problem. Algorithm 1 is a modification of the algorithm in 3.1 of Alon et al.
[3], and this proof closely follows their logic.

Algorithm 1 An O(log n)-competitive Algorithm for the Online Fractional
Network Construction Problem

Let |V | = n and |E| = m
Upon seeing first constraint, set all we = 1

m2

for each constraint S do
for each pair v, w ∈ S do

if the flow from v to w in S is at least 1 then
do nothing

else
while the flow from v to w in S is less than 1 do

compute a min-weight cut C between v and w in S.
for each edge e ∈ C, we = we(1 + 1/ce)

end while
end if

end for
end for
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We say that the optimal solution OPT has cost α. We assume the value of
α is known, and we can then assume all edges have cost between 1 and m.2

We now follow the argument in Alon et al. [3], which works for Algorithm 1
almost without modification. First we note that the algorithm generates a
feasible solution. This is clear from its termination condition.

Now we will prove that the number of weight augmentation steps performed
during the run of the algorithm is O(α logm). Consider the potential function

Φ =
∑
e∈E

cew
∗
e lg(we),

where w∗e is the weight of edge e in OPT. It is clear from the initial edge
weights that the potential function begins as Φ0 = −O(α lg(m)). Because the
weight update rule ensures that no edge gets weight more than 2, the potential
function never exceeds α. The increase in the potential function with each
weight augmentation step is also at least 1:

∆Φ =
∑
e∈E

cew
∗
e lg(we(1 + 1/ce))−

∑
e∈E

cew
∗
e lg(we)

=
∑
e∈E

cew
∗
e lg(1 + 1/ce)

≥
∑
e∈E

w∗e (3)

≥ 1.

To derive Equation 3, we observe that for x ≥ 1, 2x − x ≥ 1, which implies
x lg(1 + 1/x) ≥ 1.

Finally, we look at the cost of our solution,
∑

e∈E wece, (which begins
at ≤ 1) and notice that in a weight augmentation step, it does not exceed∑

e∈E
we

ce
ce ≤ 1. So, whenever Φ increases by at least 1, the cost of our solution

increases by no more than 1. This finishes the proof. ut

We can now use Lemma 2 to develop an algorithm that almost matches
the lower bound from Theorem 6.

Theorem 7 There is an O(n log n)-competitive polynomial time algorithm for
the Online Network Construction problem on n nodes.

Proof We use Algorithm 1 together with a rounding scheme similar to the one
considered by Buchbinder [10] for solving linear programs, to get our result.

For each edge e, we choose 2n random variables X(e, i) independently and
uniformly from [0, 1]. For each edge, we let threshold T (e) = min2n

i=1X(e, i).
Then we run the algorithm for the Online Fractional Network Construction
problem, and whenever we ≥ T (e), we add e to our integral solution, and
continue. Now we claim the following.

2 Alon et al. [3] argue that we can use all edges of cost less than α/m and stay within our
bound, and we can ignore all edges with cost greater than α, and then rescale. They also
show how to guess α to within a factor of 2, justifying the assumption that α is known in
advance.
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1. The integral solution has expected cost O(n) times the fractional solution.
2. The integral solution satisfies all the constraints with high probability.

To prove the first claim, for any edge e and integer i, the probability that
X(e, i) < we is we. The probability that e is chosen to be in the integral solu-
tion is the probability that some X(e, i) < we – we call this event Ai. Hence,
the probability of ∪2ni=1Ai is at most 2nwe, and by linearity of expectation,
on every round, the expected cost of our solution is O(n) times that of the
fractional solution, which is an O(log n) approximation of OPT for the inte-
gral problem. Hence our solution is an O(n log n) approximation of OPT in
expectation.

To prove the second claim, we pick a constraint S. The constraint S is
satisfied if and only if for every cut C ∈ S, there exists an edge crossing C
in our solution. We fix a cut C. The probability the cut is not crossed is the
probability we have not chosen any edge crossing the cut. This probability is∏

e∈C (1− we)
2n ≤ e(−2n

∑
e∈C we). Because the cut is crossed with a flow of

1 in the fractional solution (i.e.
∑

e∈C we ≥ 1) at the time it is considered by
the algorithm, we can bound this by 1

e2n . There are r constraints and at most
2n cuts per constraint, so by the union bound, the probability our solution is
not feasible is

(
r2n

e2n

)
. Because r ≤ 2n < en, the probability our solution is not

feasible tends to 0 as n increases, completing the proof. ut

Proof (Alternate Algorithm)
We now give an alternate proof of the theorem by reducing the Online

Network Construction problem to Online Set Cover and using an algorithm
for the latter problem. In Online Set Cover, X = {1, 2, . . . , n} is a set of
n elements and S is a family of m weighted subsets of X. S is given to the
algorithm in advance, and elements of X ′ ⊆ X arrive one at a time in arbitrary
order online. While X is known to the algorithm, X ′ is not. The goal of the
algorithm is to select a collection of sets from S of lowest weight, such that
at any point in the algorithm, every element that has arrived is contained in
some selected subset. Once a subset is selected, it cannot be unselected.

In reducing the Online Network Construction problem to Online Set Cover,
we make the weighted edges correspond to the weighted sets given to the
algorithm. For each constraint to arrive online, we make a set cover element
for each possible cut through the constraint. A set covers an element if its
corresponding edge crosses the cut corresponding to the element. In the Online
Network Construction problem, each cut in a constraint must be crossed by
some edge, and if each cut is crossed, the constraint is satisfied. The cost of
the optimal solution to both problems is the same.

Hence, if the original Online Network Construction problem has n nodes,
then the Online Set Cover instance has O(n2) sets and O(2n) possible ele-
ments (or partitions of vertices). Alon et al. [2] and Buchbinder [10] provide
algorithms for Online Set Cover that give an O(log(m) log(n))-competitive ra-
tio if m is the number of sets and n is the number of elements. For the Online
Network Construction problem, this gives an O(n log n)-competitive bound,
completing the proof. ut
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We now make a simple observation for the uniform cost case.

Proposition 1 There is an O(n)-competitive polynomial time algorithm for
the Online Uniform Cost Network Construction problem on n nodes.

Proof Consider the algorithm that puts down a clique for each constraint
presented to it. Let q ≤ n be the number of nodes that appear in at least one
constraint. Our algorithm uses O(q2) edges, but the optimal algorithm must
clearly use at least Ω(q) edges. ut

We also present a lower bound for the online uniform cost case.

Theorem 8 The Online Uniform Cost Network Construction problem
on n nodes has an Ω(

√
n)-competitive lower bound.

Proof We divide the vertices into two sets Q and R, with |Q| =
√
n and |R| =

n−
√
n. For each v ∈ R, the adversary does runs through t stages, presenting

one constraint per stage. At stage 1 the adversary sets Q(v,1) = Q. At stage
t ≥ 1, the adversary gives the algorithm the constraint S(v,t) = Q(v,t) ∪ v.
Let C(v,t) be the set of vertices in Q which the algorithm connects to v in
response to being presented S(v,t). The adversary sets Q(v,t+1) = Q(v,t) \C(v,t)

and continues to the next stage. The adversary stops when Q(v,t) = ∅.
To analyze this strategy for the adversary, for each v, we order the edges

from v to R by the stage in which the algorithm has placed them, breaking
ties arbitrarily. It is clear that the last edge the algorithm places is sufficient
to connect v to R for all constraints S(v,t). Hence, all of these constraints can

be satisfied in retrospect by placing a clique on Q using
(√

n
2

)
= O(n) edges

and one edge per vertex in R, also using O(n) edges. The algorithm, however,
places Ω(n) edges per vertex in Q, amounting to Ω (n

√
n) edges in total, giving

the desired result. ut

We now consider the Online Network Construction problem with an obliv-
ious adversary who commits to all of the constraints {S1, S2, . . . , Sr} before
presenting any of them to the algorithm.

Theorem 9 There is a randomized polynomial time algorithm for the On-
line Uniform Cost Network Construction problem on n nodes and r =
poly(n) constraints that gives an expected O(n2/3 log2/3 n)-competitive ratio
against an oblivious adversary.

Proof We assume that that each vertex appears in some constraint (hence,
an optimal solution has m = Ω(n) edges). We then create an Erdös Rényi
random graph on our graph G, by putting in edges independently with a
specified probability. Random graph connectivity has a sharp threshold of
c logn

n for c > 1 [12]. When p = c log2/3 n
n1/3 , G has O(n5/3 log2/3 n) edges in

expectation. Now, our algorithm is simple – for each constraint Si such that
|Si| ≥ n1/3 log1/3 n, because of our choice of p, Si is already connected with
high probability in G. Because we assume that there are only polynomially
many constraints, for large enough c, all such constraints are satisfied in expec-
tation. For every constraint Si of size < n1/3 log1/3 n that we see, if and only if



14 Dana Angluin et al.

it is not already satisfied, we put a clique with O(n2/3 log2/3 n) edges on that
constraint, and each time we do that, we are guaranteed to hit at least one edge
in the optimal solution. Hence, this will ensure we place no more than OPT
cliques in total. Altogether, this costs us O(n5/3 log2/3 n+ OPT n2/3 log2/3 n)

edges in expectation, and because m = Ω(n), we have an O(n2/3 log2/3 n) ap-
proximation ratio. ut

4 Discussion and Open Problems

We leave open some interesting questions. In the offline case, we give an
Ω(log n) hardness of approximation lower bound and an O(log r) approxima-
tion algorithm for both the arbitrary cost and uniform cost Network Construc-
tion problems. If r is polynomial in n these bounds match, but otherwise there
can be a gap. We also have a log n asymptotic gap for the Online Network
Construction problem. For the Online Uniform Cost Network Construction
problem, we have an Ω(

√
n) adversarial lower bound and an O(n2/3/ log1/3 n)

algorithm for the oblivious case. Improving these bounds is an important prob-
lem.

Another open problem is to find tight bounds for trees in the uniform
cost case. For stars and paths, the bounds are tight, and our arguments can
be adapted to give a Ω(log n)-competitive lower bounds against an oblivious
adversary. Perhaps an O(log n)-competitive algorithm can be found for trees in
general, but our algorithms for paths and stars rely on their specific properties
and do not immediately generalize. Finally, one can consider generalizations
of the Network Construction Problem, for example constraints could require
the vertices to be k-connected in the induced subgraphs.
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Appendix: Updating a pq-tree

We briefly describe the patterns in [9] for updating pq-trees, as broken down
into 10 cases. This can be used as a guide for tracking the changes in Equa-
tion 2.

L This pattern simply relabels some leaf nodes.
P1 This pattern simply relabels a p-node.
P2 This pattern moves some children of a p-node into their own p-node.
P3 This pattern moves some children of a p-node into their own p-node and

creates a parent q-node.
P4 This pattern moves some children of a p-node to be children of a newly

created p-node, whose parent is a q-node that is a child of the original
p-node.

P5 This pattern moves some children of a p-node into their own p-node that
is the child of the original p-node, which becomes transformed to a q-node.

P6 This pattern moves some children of a p-node to their own p-node that is
moved to be the child of a newly created q-node formed by merging two
q-nodes.

Q1 This pattern simply relabels a q-node.
Q2 This pattern deletes a q-node and moves its children to become children of

its parent q-node.
Q3 This pattern deletes two q-nodes and merges their children to become

children of their parent q-node.


