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1.1 Introduction

Population protocols are used as a theoretical model for a collection (or pop-
ulation) of tiny mobile agents that interact with one another to carry out a
computation. The agents are identically programmed finite state machines.
Input values are initially distributed to the agents, and pairs of agents can ex-
change state information with other agents when they are close together. The
movement pattern of the agents is unpredictable, but subject to some fairness
constraints, and computations must eventually converge to the correct out-
put value in any schedule that results from that movement. This framework
can be used to model mobile ad hoc networks of tiny devices or collections of
molecules undergoing chemical reactions. This chapter surveys results that
describe what can be computed in various versions of the population protocol
model.

First, consider the basic population protocol model as a starting point. A
formal definition is given in Sect. 1.2. Later sections describe how this model
has been extended or modified to other situations. Some other directions in
which the model could be extended as future work are also identified.

The defining features of the basic model are:

• Finite-state agents. Each agent can store only a constant number of bits
in its local state (independent of the size of the population).

• Uniformity. Agents in the same state are indistinguishable and a single
algorithm is designed to work for populations of any size.

• Computation by direct interaction. Agents do not send messages or share
memory; instead, an interaction between two agents updates both of their
states according to a joint transition table. The actual mechanism of such
interactions is abstracted away.

• Unpredictable interaction patterns. The choice of which agents interact is
made by an adversary. Agents have little control over which other agents
they interact with. (In some variants of the model, the adversary may be
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limited to pairing only agents that are adjacent in an interaction graph,
typically representing distance constraints.) A global fairness condition is
imposed on the adversary to ensure the protocol makes progress.

• Distributed inputs and outputs. The input to a population protocol is
distributed across the initial states of the entire population. The output is
distributed to all agents.

• Convergence rather than termination. Agents cannot, in general, detect
when they have completed their computation; instead, the agents’ outputs
are required to converge after some finite time to a common, correct value.

The population protocol model [3] was designed to represent sensor net-
works consisting of very limited mobile agents with no control over their
own movement. It also bears a strong resemblance to models of interacting
molecules in theoretical chemistry [19, 20].

The population protocol model was inspired in part by the work of Dia-
madi and Fischer [16] on trust propagation in a social network. The urn
automata of [2] can be seen as a first draft of the model that retained in
vestigial form several features of classical automata: instead of interacting
with one another, agents could interact only with a finite-state controller,
complete with input tape. The motivation given for the current model in [3]
was the study of sensor networks in which passive agents were carried along
by other entities; the canonical example was a flock of birds with a sensor
attached to each bird. The name of the model was chosen by analogy to
population processes [12] in probability theory.

A population protocol often looks like an amorphous soup of lost, nearly
mindless, anonymous agents blown here and there at the whim of the adver-
sary. Although individual agents lack much intelligence or control over their
own destinies, the population as a whole is nonetheless capable of performing
significant computations. For example, even the simplest model is capable
of solving some practical, classical distributed problems like leader election,
majority voting, and organizing agents into groups. Some extensions of the
model are much more powerful—under some conditions, they provide the
same power as a traditional computer with the same total storage capacity.
Some examples of simple population protocols are given in Sect. 1.2.1.

Much of the work so far on population protocols has concentrated on char-
acterizing what predicates (i.e., boolean-valued functions) on the input values
can be computed. This question has been resolved for the basic model, and
studied for several different variants of the model and under various assump-
tions, such as a bounded-degree interaction graph or random scheduling.

The worst-case interaction graph for computation turns out to be a com-
plete graph, since any other interaction graph can simulate a complete inter-
action graph by shuffling states between the nodes [3]. In a complete inter-
action graph, all agents with the same state are indistinguishable, and only
the counts of agents in each state affect the outcome of the protocol. The
set of computable predicates in most variants of the basic model for such a
graph is now known to be either exactly equal to or closely related to the
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set of semilinear predicates, those definable in first-order Presburger arith-
metic [21, 32]. These results, which originally appeared in [1, 3, 6, 8, 7, 9, 15],
are summarized in Sects. 1.3, 1.4, 1.5, 1.7 and 1.9. Sometimes the structure
of incomplete interaction graphs can be exploited to simulate a Turing ma-
chine, which implies that a restricted interaction graph can make the system
stronger than a complete interaction graph.

Several extensions of the basic model have been considered that are in-
tended to reflect the limitations and capabilities of practical systems more
accurately. The basic model requires coordinated two-way communication
between interacting agents; this assumption is relaxed in Sect. 1.4. Work on
incorporating agent failures into the model are discussed in Sects. 1.7 and 1.9.
Versions of the model that give agents slightly increased memory capacity are
discussed in Sect. 1.8.

More recent work has concentrated on performance. Because the weak
scheduling assumptions in the basic model allow the adversary to draw out
a computation indefinitely, the worst-case adversary scheduler is replaced by
a random scheduling assumption, where the pair of agents that interacts at
each step is drawn uniformly from the population as a whole. This gives a
natural notion of time equal to the total number of steps to convergence and
parallel time equal to the average number of steps initiated by any one agent
(essentially the total number of steps divided by the number of agents).

As with adversarial scheduling, for random scheduling the best-understood
case is that of a complete interaction graph. In this case, it is possible to sim-
ulate a register machine, where subpopulations of the agents hold tokens
representing the various register values in unary. It is not hard to imple-
ment register operations like addition, subtraction, and comparison by local
operations between pairs of agents; with the election of a leader, one can
further construct a finite-state control. The main obstacle to implementing
a complete register machine is to ensure that every agent completes any
needed tasks for each instruction cycle before the next cycle starts. In [3],
this was handled by having the leader wait a polynomial number of steps on
average before starting the next cycle, a process which gives an easy proof
of polynomially-bounded error but which also gives an impractically large
slowdown. Subsequent work has reduced the slowdown to polylogarithmic by
using epidemics both to propagate information quickly through the popula-
tion and to provide timing [4, 5]. These results are described in more detail
in Sect. 1.6.

1.2 The Basic Model

In the basic population protocol model, a collection of agents are each given
an input value, and agents have pairwise interactions in an order determined
by a scheduler, subject to some fairness guarantee. Each agent is a kind of
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finite state machine and the program for the system describes how the states
of two agents can be updated by an interaction. The agents are reliable: no
failures occur. The agents’ output values change over time and must even-
tually converge to the correct output value for the inputs that were initially
distributed to the agents.

A protocol is formally specified by

• Q, a finite set of possible states for an agent,
• Σ, a finite input alphabet,
• ι, an input map from Σ to Q, where ι(σ) represents the initial state of an

agent whose input is σ,
• ω, an output map from Q to the output range Y , where ω(q) represents

the output value of an agent in state q, and
• δ ⊆ Q4, a transition relation that describes how pairs of agents can inter-

act.

A computation proceeds according to such a protocol as follows. The com-
putation takes place among n agents, where n ≥ 2. Each agent initially has
an input value from Σ. Each agent’s initial state is determined by applying ι
to its input value. This determines an initial configuration for an execution.
A configuration of the system can be described by a vector of all the agents’
states. Because agents with the same state are indistinguishable in the basic
model, each configuration could also be viewed as an unordered multiset of
states.

An execution of a protocol proceeds from the initial configuration by in-
teractions between pairs of agents. Suppose two agents in states q1 and q2

meet and have an interaction. They can change into states q′1 and q′2 as a
result of the interaction if (q1, q2, q

′
1, q

′
2) is in the transition relation δ. Note

that interactions are in general asymmetric, with one agent (q1) acting as the
initiator of the interaction and the other (q2) acting as the responder. An-
other way to describe δ is to list all possible interactions using the notation
(q1, q2) → (q′1, q

′
2). (By convention, there is a null transition (q1, q2) → (q1, q2)

if no others are specified with (q1, q2) on the left hand side.) If there is only
one possible transition (q1, q2) → (q′1, q

′
2) for each pair (q1, q2), then the pro-

tocol is deterministic. If C and C ′ are configurations, C → C ′ means C ′ can
be obtained from C by a single interaction of two agents. In other words,
C contains two states q1 and q2 and C ′ is obtained from C by replacing q1

and q2 by q′1 and q′2, where (q1, q2, q
′
1, q

′
2) is in δ. An execution of the pro-

tocol is an infinite sequence of configurations C0, C1, C2, . . ., where C0 is an
initial configuration and Ci → Ci+1 for all i ≥ 0. Thus, an execution is a
sequence of snapshots of the system after each interaction occurs. In a real
distributed execution, interactions between several disjoint pairs of agents
could take place simultaneously, but when writing down an execution those
simultaneous interactions can be ordered arbitrarily. The notation ∗→ repre-
sents the transitive closure of →, so C

∗→ C ′ means that there is a fragment
of an execution that goes from configuration C to configuration C ′.
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The order in which pairs of agents interact is unpredictable: think of the
schedule of interactions as being chosen by an adversary, so that protocols
must work correctly under any schedule the adversary may choose. In order
for meaningful computations to take place, the adversarial scheduler must
satisfy some restrictions; otherwise it could, for example, divide the agents
into isolated groups and schedule interactions only between agents that be-
long to the same group.

The fairness condition imposed on the scheduler is quite simple to state,
but is somewhat subtle. Essentially, the scheduler cannot avoid a possible
step forever. More formally, if C is a configuration that appears infinitely
often in an execution, and C → C ′, then C ′ must also appear infinitely often
in the execution. Another way to think of this is that anything that always
has the potential to occur eventually does: it is equivalent to require that any
configuration that is always reachable is eventually reached.

At any point during an execution of a population protocol, each agent’s
state determines its output at that time. If the agent is in state q, its out-
put value is ω(q). Thus, an agent’s output may change over the course of an
execution. The fairness constraint allows the scheduler to behave arbitrarily
for an arbitrarily long period of time, but does require that it behave nicely
eventually. It is therefore natural to phrase correctness as a property to be
satisfied eventually too. For example, the scheduler could schedule only in-
teractions between agents 1 and 2, leaving the other n−2 agents isolated, for
millions of years, and it would be unreasonable to expect any sensible out-
put during the period when only two agents have undergone state changes.
Thus, for correctness, all agents must produce the correct output (for the
input values that were initially distributed to the agents) at some time in the
execution and continue to do so forever after that time.

In general, the transition relation can be non-deterministic: when two
agents meet there may be several possible transitions they can make. This
non-determinism sometimes comes in handy when describing protocols. How-
ever, it is not a crucial assumption: using a bit of additional machinery, agents
can simulate a nondeterministic transition function by exploiting the nonde-
terminism of the interaction schedule. (See [1] for details.)

To summarize, a protocol computes a function f that maps multisets of
elements of Σ to Y if, for every such multiset I and every fair execution that
starts from the initial configuration corresponding to I, the output value of
every agent eventually stabilizes to f(I).

1.2.1 Examples of Population Protocols

Example 1. Suppose each agent is given an input bit, and all agents are sup-
posed to output the ‘or’ of those bits. There is a very simple protocol to
accomplish this: each agent with input 0 simply outputs 1 as soon as it dis-
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covers that another agent had input 1. Formally, Σ = Y = Q = {0, 1} and
the input and output maps are the identity functions. The only interaction in
δ is (0, 1) → (1, 1). If all agents have input 0, no agent will ever be in state 1.
If some agent has input 1 the number of agents with state 1 cannot decrease
and fairness ensures that it will eventually increase to n. In both cases, all
agents stabilize to the correct output value.

Example 2. Suppose the agents represent dancers. Each dancer is (exclu-
sively) a leader or a follower. Consider the problem of determining whether
there are more leaders than followers. Let Y = {0, 1}, with 1 indicating that
there are more leaders than followers. A centralized solution would count the
leaders and the followers and compare the totals. A more distributed solu-
tion is to ask everyone to start dancing with a partner (who must dance the
opposite role) and then see if any dancers are left without a partner. This can-
cellation procedure is formalized as a population protocol with Σ = {L,F}
and Q = {L,F, 0, 1}. The input map ι is the identity, and the output map ω
maps L and 1 to 1 and maps F and 0 to 0. The transitions of δ are

(L,F ) → (0, 0),
(L, 0) → (L, 1),
(F, 1) → (F, 0) and
(0, 1) → (0, 0).

The first rule ensures that, eventually, either no L’s or no F ’s will remain. At
that point, if there are L’s remaining, the second rule ensures that all agents
will eventually produce output 1. Similarly, the third rule takes care of the
case where F ’s remain. In the case of a tie, the last rule ensures that the
output stabilizes to 0.

It may not be obvious why the protocol in Example 2 must converge. Con-
sider, for example, the following transitions between configurations, where in
each configuration, the agents that are about to interact are underlined.

{L,L, F} → {0, L, 0} → {1, L, 0} → {0, L, 0} → {0, L, 1} → {0, L, 0}

Repeating the last four transitions over and over yields a non-converging
execution in which every pair of agents interacts infinitely often. However,
this execution is not fair: the configuration {0, L, 1} appears infinitely often
and {0, L, 1} → {1, L, 1}, but {1, L, 1} never appears. This is because the first
two agents only interact at “inconvenient” times, i.e., when the third agent
is in state 0. The definition of fairness rules this out. Thus, in some ways, the
definition of fairness is stronger than saying that each pair of agents must
interact infinitely often. (In fact, the two conditions are incomparable, since
there can be fair executions in which two agents never meet. For example,
an execution where every configuration is {L,L,L} and all interactions take
place between the first two agents is fair.)
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Exercise 1. Show the protocol of Example 2 converges in every fair execu-
tion.

The definition of fairness was chosen to be quite weak (although it is still
strong enough to allow useful computations). Many models of mobile systems
assume that the mobility patterns of the agents follow some particular prob-
ability distribution. The goal of the population protocol model is to be more
general. If there is an (unknown) underlying probability distribution on the
interactions, which might even vary with time, and that distribution satisfies
certain independence properties and ensures that every interaction’s probabil-
ity is bounded away from 0, then an execution will be fair with probability 1.
Thus, any protocol will converge to the correct output with probability 1.
So the model captures computations that are correct with probability 1 for
a wide range of probability distributions, even though the model definition
does not explicitly incorporate probabilities.

Other predicates can be computed using an approach similar to Example 2.

Exercise 2. Design a population protocol to determine whether more than
60% of the dancers are leaders.

Exercise 3. Design a population protocol to determine whether more than
60% of the dancers dance the same role.

Some predicates, however, require a different approach.

Example 3. Suppose each agent is given an input from Σ = {0, 1, 2, 3}. Con-
sider the problem of computing the sum of the inputs, modulo 4. The protocol
can gather the sum (modulo 4) into a single agent. Once an agent has given
its value to another agent, its value becomes null, and it obtains its output
value from the eventually unique agent with a non-null value. Formally, let
Q = {0, 1, 2, 3,⊥0,⊥1,⊥2,⊥3}, where ⊥v represents a null value with out-
put v. Let ι(v) = v and ω(v) = ω(⊥v) = v for v = 0, 1, 2, 3. The transition
rules of δ are (v1, v2) → (v1 + v2,⊥v1+v2) and (v1,⊥v2) → (v1,⊥v1), where
v1 and v2 are 0, 1, 2 or 3. (The addition is modulo 4.) Rules of the first type
ensure that, eventually, at most one agent will have a non-null value. Since
the rules maintain, as an invariant, the sum of all non-null states (modulo 4),
the unique remaining non-null value will be the sum modulo 4. The second
type of rule then ensures that all agents with null states eventually converge
to the correct output.

In some cases, agents may know when they have converged to the correct
output, but in general they cannot. While computing the ‘or’ of input bits
(Example 1), any agent in state 1 knows that its state will never change
again: it has converged to its final output value. However, no agent in the
protocol of Example 3 can ever be certain it has converged, since it may be
that one agent with input 1 has not yet taken part in any interactions, and
when it does start taking part the output value will have to change.
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Two noteworthy properties of the population protocol model are its uni-
formity and anonymity. A protocol is uniform because its specification has
no dependence on the number of agents that take part. In other words, no
knowledge about the number of agents is required by the protocol. The sys-
tem is anonymous because the agents are not equipped with unique identifiers
and all agents are treated in the same way by the transition relation. Indeed,
because the state set is finite and does not depend on the number of agents in
the system, there is not even room in the state of an agent to store a unique
identifier.

1.3 Computability

Just as traditional computability theory often restricts attention to decision
problems, one can restrict attention to computing predicates, i.e., functions
with range Y = {0, 1}, when studying what functions are computable by
population protocols. There is no real loss of generality in this restriction. For
any function f with range Y , let Pf,y be a predicate defined by Pf,y(x) = 1 if
and only if f(x) = y. Then, f is computable if and only if Pf,y is computable
for each y ∈ Y . The “only if” part of this statement is trivial. For the converse,
a protocol can compute all the predicates Pf,y in parallel, using a separate
component of each agent’s state for each y. (Note that Y is finite because
each distinct output value corresponds to at least one state in the original
protocol.) This will eventually give each agent enough information to output
the value of the function f .

For the basic population protocol model, there is an exact characterization
of the computable predicates. To describe this characterization, some defini-
tions and notation are required. A multiset over the input alphabet Σ can also
be thought of as a vector with d = |Σ| components, where each component is
a natural number representing the multiplicity of one input character. For ex-
ample, the input multiset {a, a, a, b, b} over the input alphabet Σ = {a, b, c}
can be represented by the vector (3, 2, 0) ∈ N3. Let (x1, x2, . . . , xd) ∈ Nd

be a vector that represents the input to a population protocol. Here, d is
the size of the input alphabet, Σ. A threshold predicate is a predicate of the

form
d∑

i=1

cixi < a, where c1, . . . , cd and a are integer constants. A remainder

predicate is a predicate of the form
d∑

i=1

cixi ≡ a (mod b), where c1, . . . , cd, a

and b > 0 are integer constants. Angluin et al. [3] gave protocols to compute
any threshold predicate or remainder predicate; the protocols are generaliza-
tions of those in Examples 2 and 3. They use the observation that addition
is trivially obtained by renaming states: to compute A + B from A and B,
just pretend that any A or B token is really an A + B token. Finally, one
can compute the and or the or of two of these predicates by running the
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protocols for each of the basic predicates in parallel, using separate com-
ponents of the agents’ states, and negation simply involves relabeling the
output values. Thus, population protocols can compute any predicate that is
a boolean combination of remainder and threshold predicates. Surprisingly,
the converse also holds: these are the only predicates that a population pro-
tocol can compute. This was shown for the basic model by Angluin, Aspnes,
and Eisenstat [6].

Before discussing the proof of this result, there are two alternative char-
acterizations of the computable predicates that are useful in understanding
the result. These characterizations are also used in the details of the proof.

The first is that the computable predicates are precisely the semilinear
predicates, defined as follows. A semilinear set is a subset of Nd that is a finite
union of linear sets of the form {b+k1a1+k2a2+· · ·+kmam | k1, . . . , km ∈ N},
where b is a d-dimensional base vector, and a1 through am are basis vectors.
See Figs. 1.1a and 1.1b for examples when d = 2. A semilinear predicate on
inputs is one that is true precisely on a semilinear set. See Fig. 1.1c for an
example.

To illustrate how semilinear predicates characterize computable predicates,
consider the examples of the previous paragraph. Membership in the linear
set S of Fig. 1.1a can be described by a boolean combination of threshold
and remainder predicates: (x2 < 6)∧¬(x2 < 5)∧(x1 ≡ 0 (mod 2)). Similarly,
the linear set T of Fig. 1.1b can be described by ¬(2x1 − x2 < 6) ∧ ¬(x2 <
2)∧ (2x1−x2 ≡ 0 (mod 6)). The semilinear set S∪T of Fig. 1.1c is described
by the disjunction of these two formulas.

A second alternative characterization of semilinear predicates is that they
can be described by first-order logical formulas in Presburger arithmetic,
which is arithmetic on the natural numbers with addition but not multipli-
cation [32]. Thus, for example, the set T of Fig. 1.1b can be described by
¬(x1 +x1−x2 < 6)∧¬(x2 < 2)∧∃j(x1 +x1−x2 = j +j +j +j +j +j). Pres-
burger arithmetic allows for quantifier elimination, replacing universal and
existential quantifiers with formulas involving addition, <, the equivalence
mod b predicates for each constant b, and the usual logical connectives ∧,
∨, and ¬. For example, eliminating quantifiers from the formula for T yields
¬(x1 + x1 − x2 < 6)∧¬(x2 < 2)∧ (x1 + x1 − x2 ≡ 0 (mod 6)), which can be
computed by a population protocol, as mentioned above.

The proof that only semilinear predicates are computable is obtained by
applying results from partial order theory. The proof is quite involved, but
the essential idea is that, like finite-state automata, population protocols
can be “pumped” by adding extra input tokens that turn out not to affect
the final output. By carefully considering exactly when this is possible, it
can be shown that the positive inputs to a population protocol (considered
as sets of vectors of natural numbers) can be separated into a collection of
cones over some finite set of minimal positive inputs, and that each of these
cones can be further expressed using only a finite set of basis vectors. This
is sufficient to show that the predicate corresponds to a semilinear set as
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Fig. 1.1a A linear set S = {b + k1a1 | k1 ∈ N}
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Fig. 1.1b A linear set T = {b + k1a1 + k2a2 | k1, k2 ∈ N}
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Fig. 1.1c A semilinear set S ∪ T
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described above [6, 8]. A sketch of this argument is given in Section 1.3.1.
The full characterization is:

Theorem 1 ([3, 6, 8]). A predicate is computable in the basic population
protocol model if and only if it is semilinear.

Similar results with weaker classes of predicates hold for restricted models
with various forms of one-way communication [7]; Sect. 1.4 describes these
results in more detail. Indeed, these results were a precursor to the semilin-
earity theorem of [6]. The journal paper [8] combines and extends the results
of [6] and [7].

A useful property of Theorem 1 is that it continues to hold unmodified in
many simple variants of the basic model. The reason is that any change that
weakens the agents can only decrease the set of computable predicates, while
any model that is still strong enough to compute congruence modulo k and
comparison can still compute all the semilinear predicates. So the semilinear
predicates continue to be those that are computable when the inputs are not
given immediately but stabilize after some finite time [1] or when one agent
in an interaction can see the other’s state but not vice versa [8], as in each
case it is still possible to compute congruence and threshold in the limit. A
similar result holds when a small number of agents can fail [15]; here a slight
modification must be made to allow for partial predicates that can tolerate
the loss of part of the input. All of these results are described in later sections.

1.3.1 Sketch of the Impossibility Proof

The proof that all predicates computable in the basic population protocol
model are semilinear is quite technical. To give a flavor of the results, here
is a simplified version, a pumping lemma that says that any predicate stably
computed by a population protocol is a finite union of monoids: sets of the
form

{b + k1a1 + k2a2 + . . . | ki ∈ N for all i},

where the number of terms may be infinite (this is the first step in proving the
full lower bound in [6], where the number of generators for each monoid is also
shown to be finite). The main tool is Higman’s Lemma [23], which states that
any infinite sequence x1,x2, . . . in Nd has elements xi, xj with xi ≤ xj and
i < j, where comparisons between vectors are done componentwise. It follows
from Higman’s Lemma that (a) any subset of Nd has finitely many minimal
elements (Dickson’s Lemma), and (b) any infinite subset of Nd contains an
infinite ascending sequence a1 < a2 < a3 . . . .

For the proof, configurations are represented as vectors of counts of agents
in each state. Thus, a configuration is a vector in N|Q|, just as an input
is a vector in N|Σ|. Using Dickson’s Lemma, it can be shown that the set
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of output-stable configurations of a population protocol, where all agents
agree on the output and continue to agree in all successor configurations, is
semilinear. The proof is that if some configuration C is not output-stable,
then there is some submultiset of agents x that can together produce an
agent with a different output value. But since any y ≥ x can also produce
this different output value, the property of being non-output-stable is closed
upwards, implying that there is a finite collection of minimal non-output-
stable configurations. Thus, the set of non-output-stable configurations is
a finite union of cones, so both it and its complement—the output-stable
configurations—are semilinear. (The complement of a semilinear set is also
semilinear.)

Unfortunately this is not enough by itself to show that the input con-
figurations that eventually reach a given output state are also semilinear.
The second step in the argument is to show that when detecting if a con-
figuration x is output-stable, it suffices to consider its truncated version
τk(x1, x2, . . . , xm) = (min(x1, k),min(x2, k), . . . ,min(xm, k)), provided k is
large enough to encompass all of the minimal non-output-stable configura-
tions as defined previously. The advantage of this step is that it reduces the
set of configurations that must be considered from an infinite set to a finite
set.

For each configuration c in this finite set, define the set of extensions X(c)
of c by

X(c) = {x | ∃d such that c + x ∗→ d and τk(d) = τk(c)}.

Intuitively, this means that x is in X(c) if c can be “pumped” by x, with the
extra agents added in x disposed of in the coordinates of c that already have
k or more agents. It is not hard to show that extensions are composable: if
x,y are in X(c), then so is x + y. This shows that b + X(c) is a monoid for
any configurations b and c.

Finally, given any predicate that can be computed by a population proto-
col, these extensions are used to hunt for a finite collection of monoids whose
union is the set Y of all inputs that produce output 1. The method is to
build up a family of sets of the form x+X(c) where x is an input and c is an
output-stable configuration reachable from that input. In more detail, order
Y so that yi ≤ yj implies i ≤ j; let B0 = ∅; and compute Bi as follows:

• If yi ∈ x + X(c) for some (x, c) ∈ Bi−1, let Bi = Bi−1.
• Otherwise, construct Bi by adding to Bi−1 the pairs

– (yi, s(yi)), and
– (yi, s(c + yi − x)) for all (x, c) ∈ Bi−1 with x ≤ yi,

where s(z) is any stable configuration reachable from z.

Finally, let B =
⋃

Bi.
Then {b + X(c) | (b, c) ∈ B} covers Y because a set containing yi was

added to Bi if yi was not already included in one of the sets in Bi−1. Further-
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more, none of these sets contain anything outside Y . The proof of this last
fact is that because b ∗→ c, z ∈ b+X(c) implies z ∗→ z′ for some z′ ∈ c+X(c)
(just run the b ∗→ c computation, ignoring any agents in z− b). But then z
converges to same output as c, by the definition of X(c), the construction of
Bi only includes vectors c that are successors of inputs in Y , so this output
value is positive. It follows that B gives a representation of Y as a union of
monoids, one for each element of B. It remains to show that B is finite.

To do so, suppose B is infinite. Use Higman’s Lemma to get an increasing
sequence b1 < b2 < . . . such that (bi, ci) ∈ B for some ci. Use Higman’s
Lemma again to get an infinite subsequence (bij , cij ) where both the b and
c components are increasing. Because these components are increasing, they
eventually reach the bound imposed by truncation: for some ij , τk(ci(j+1)) =
τk(cij ). But then bi(j+1) − bij is in X(cij ), so bi(j+1) cannot be in B, a
contradiction.

This argument showed that any stably computable set has a finite cover
by monoids of the form

{b + k1a1 + k2a2 + . . . | ki ∈ N for all i}.

An immediate corollary is that any infinite stably computable set Y can be
pumped: there is some b and a such that b + ka is in Y for all k ∈ N. Sadly,
this is not enough to exclude some non-semilinear sets like {(x, y) |x < y

√
2}.

However, with substantial additional work these bad cases can be excluded
as well; the reader is referred to [6, 8] for details.

1.4 One-way Communication

In the basic population protocol model, it is assumed that two interacting
agents can simultaneously learn each other’s state before updating their own
states as a result of the interaction. This requires two-way communication
between the two agents. Angluin et al. [8] studied several weaker interac-
tion models where, in an interaction, information flows in one direction only.
A receiver agent learns the state of a sender agent, but the sender learns
nothing about the state of the receiver. The power of a system with such
one-way communication depends on the precise nature of the communication
mechanism.

The model is called a transmission model if the sender is aware that an
interaction has happened (and can update its own state, although the update
cannot depend on the state of the receiver). In an observation model, on the
other hand, the sender’s state is observed by the receiver, and the sender is
not aware that its state has been observed. Another independent attribute
is whether an interaction happens instantaneously (immediate transmission
and immediate observation models) or requires some interval of time (de-
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layed transmission and delayed observation models). The queued transmis-
sion model is similar to the delayed transmission model, except that receivers
can temporarily refuse incoming messages so that they are not overwhelmed
with more incoming information than they can handle. The queued transmis-
sion model is the closest to traditional message-passing models of distributed
computing.

The weakest of these one-way models is the delayed observation model:
Agents can observe other agents’ input symbols to determine whether each
input symbol is present in the system or not. If an agent ever sees another
agent with the same input symbol as itself, it learns that there are at least two
copies of that symbol, and can tell every other agent this fact. Thus, delayed
observation protocols can detect whether the multiplicity of any particular
input symbol is 0, 1 or at least 2, so a protocol can compute any predicate
that depends only on this kind of information. Nothing else can be computed.
For example there is no way for the system to determine whether some input
symbol occurs with multiplicity at least 3. Intuitively, this is because there
is no way to distinguish between a sequence of observations of several agents
with the same input and a sequence of observations of a single agent.

The immediate observation model is slightly stronger: protocols in this
model can count the number of agents with a particular input symbol, up to
any constant threshold. For example, a protocol can determine whether the
number of copies of input symbol a is 0, 1, 2, 3 or more than 3. Consequently,
any predicate that depends only on this kind of information can be computed.
A kind of pumping lemma can be used to show that no other predicates are
computable.

Angluin et al. also showed that the immediate and delayed transmission
models are equivalent in power. They gave a characterization of the com-
putable predicates that shows the power of these models is intermediate be-
tween the immediate observation model and the standard two-way model.

Finally, the queued transmission model is equivalent in power to the stan-
dard two-way model: any protocol designed for the two-way model can be
simulated using queued transmission and vice versa. This holds even though
the set of configurations reachable from a particular initial configuration of
a protocol in the queued transmission model is in principle unbounded; the
ability to generate large numbers of buffered messages does not help the pro-
tocol, largely because there is no guarantee of where or when they will be
delivered.

1.5 Restricted Interaction Graphs

In some cases the mobility of agents will have physical limitations, and this
will limit the possible interactions that can occur. An interaction graph rep-
resents this information: nodes represent agents and edges represent possible
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interactions. The basic model corresponds to the case where the graph is
complete. In this model, a configuration is always represented as a vector
of n states. (The agents are no longer indistinguishable, so one cannot use
a multiset.) If C and C ′ are configurations, C → C ′ means that C ′ can be
obtained from C through a single interaction of adjacent agents, and the def-
initions of executions and fairness are as before, using this modified notion
of a step.

Having a non-complete (but connected) interaction graph does not make
the model any weaker, since adjacent agents can swap states to simulate free
movement [3]. For some interaction graphs, the model becomes strictly more
powerful. For example, consider a straight-line graph. It is not difficult to
simulate a linear-space Turing machine by using each agent to represent one
square of the Turing machine tape. This allows computation of any func-
tion or predicate that can be computed by a Turing machine using linear
space. Many such functions are not semilinear and thus not computable in
the complete interaction graph of the basic model. For example, a population
protocol can use standard Turing machine methods to compute a multiplica-
tion predicate over the input alphabet {a, b, c} that is true if and only if the
number of a’s multiplied by the number of b’s is equal to the number of c’s.

In addition to computing predicates on the inputs to agents, it also makes
sense in this model to ask whether properties of the interaction graph itself
can be computed by the agents in the system. Such problems, which were
studied by Angluin et al. [1], could have useful applications in determining
the network topology induced by an ad hoc deployment of mobile agents.
This section describes some of their results.

As a simple example, one might want to determine whether the interaction
graph has maximum degree k or more, for some fixed k. This can be done
by electing a single moving leader token. Initially, all agents hold a leader
token. When two leader tokens interact, the tokens coalesce, and when a
leader agent interacts with a non-leader agent the leader token may change
places. To test the maximum degree, the leader may instead choose to mark
up to k distinct neighbors of its current node. By counting how many nodes
it successfully marks, the leader can get a lower bound on the degree of the
node.

A complication is that the leader has no way to detect when it has inter-
acted with all neighbors of the current node. The best it can do is nonde-
terministically wait for some arbitrary but finite time before gathering in its
marks and trying again. In doing so it relies on the fairness condition to even-
tually drive it to a state where it has correctly computed the maximum degree
(or determined that it is greater than k). To accomplish the unmarking, the
leader keeps track of how many marks it has placed, so that it can simply
wait until it has encountered each marked neighbor again. During the initial
leader election phase, two leaders deploying marks could interfere with each
other. To handle this, the survivor of any interaction between two leaders
collects all outstanding marks from both and resets its degree estimate.
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A similar mechanism can be used to assign unique colors to all neighbors
of each node in a bounded-degree graph: a wandering colorizer token deploys
pairs of marks to its neighbors and recolors any it finds with the same color.
Once this process converges, the resulting distance-2 coloring (so called be-
cause all nodes at distance 2 have distinct colors) effectively provides local
identifiers for the neighbors of each node. These can be used to carry out ar-
bitrary distributed computations using standard techniques (subject to the
O(1) space limit at each node). An example given in [1] is the construction of
a rooted spanning tree, which can be used to simulate a Turing machine tape
(as in the case of a line graph) by threading the Turing machine tape along a
traversal of the tree (a technique described earlier for self-stabilizing systems
by Itkis and Levin [25]). It follows that arbitrary properties of bounded-
degree graphs that can be computed by a Turing machine using linear space
can also be computed by population protocols.

1.6 Random Interactions

An alternative assumption that also greatly increases the power of the model
is to replace the adversarial (but fair) scheduler of the basic model with
a more constrained interaction pattern. The simplest such variant assumes
uniform random interactions: each pair of agents is equally likely to interact
at each step.

Protocols for random scheduling were given in the initial population pro-
tocol paper of Angluin et al. [3], based in part on similar protocols for the
related model of urn automata [2]. The central observation was that the main
limitation observed in trying to build more powerful protocols in the basic
model was the inability to detect the absence of agents with a particular state.
However, if a single leader agent were willing to wait long enough, it could
be assured (with reasonably high probability) that it would meet every other
agent in the population, and thus be able to verify the presence or absence of
particular values stored in the other agents by direct inspection. The method
used was to have the leader issue a single special marked token to some agent;
when the leader encountered this special agent k times in a row it could be
reasonably confident that the number of intervening interactions was close
to Θ(nk+1). This is sufficient to build unary counters supporting the usual
increment, decrement, and zero test operations (the last probabilistic). With
counters, a register machine with an O(log n) bit random-access memory can
be simulated using a classic technique of Minsky [29].

The cost of this simulation is a polynomial blowup for the zero test and
a further polynomial blowup in the simulation of the register machine. A
faster simulation was given by Angluin, Aspnes, and Eisenstat [5], based on
epidemics to propagate information quickly through the population. This sim-
ulation assumes a single designated leader agent in the initial configuration,
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which acts as the finite-state controller for the register machine. Register
values are again stored in unary as tokens scattered across the remaining
agents.

To execute an operation, the leader initiates an epidemic containing an
operation code. This opcode is copied through the rest of the population in
Θ(n log n) interactions on average and with high probability; the latter result
is shown to follow by a reduction to a concentration bound for the coupon
collector problem due to Kamath et al. [27]. Arithmetic operations such as
addition, comparison, subtraction, and multiplication and division by con-
stants can be carried out by the non-leader agents in O(n logc n) interactions
(or O(logc n) parallel time units) each, where c is a constant. Some of these
algorithms are quite simple (adding A to B requires only adding a new B
token to each agent that already holds an A token, possibly with an addi-
tional step of unloading extra B tokens onto empty agents to maintain O(1)
space per agent), while others are more involved (comparing two values in [5]
involves up to O(log n) alternating rounds of doubling and cancellation, be-
cause simply having A and B tokens cancel each other as in Example 2 might
require as many as Θ(n2) expected interactions for the last few survivors to
meet). The most expensive operation is division, at O(n log5 n) interactions
(or O(log5 n) parallel time units).1

Being able to carry out individual arithmetic operations is of little use if
one cannot carry out more than one. This requires that the leader be able
to detect when an operation has finished, which ultimately reduces down to
being able to detect when Θ(n log n) interactions have occurred. Here the
trick of issuing a single special mark is not enough, as the wait needed to
ensure a low probability of premature termination is too long.

Instead, a phase clock based on successive waves of epidemics is used.
The leader starts by initiating a phase 0 epidemic which propagates through
the population in parallel to any other activity. When the leader meets an
agent that is already infected with phase 0, it initiates a phase 1 epidemic
that overwrites the phase 0 epidemic, and similarly with phase 2, 3, and so
on, up to some fixed maximum phase m − 1 that is in turn overwritten by
phase 0 again. Angluin et al. show that, while the leader might get lucky and
encounter one of a small number of newly-infected agents in a single phase,
the more typical case is that a phase takes Θ(n log n) interactions before the
next is triggered, and over m phases the probability that all are too short is
polynomially small. It follows that for a suitable choice of m, the phase clock
gives a high-probability Θ(n log n)-interaction clock, which is enough to time
the other parts of the register machine simulation.

A curious result in [5] is that even though the register machine simulation
has a small probability of error, the same techniques can compute semilinear
predicates in polylogarithmic expected parallel time with no error in the
limit. The trick is to run a fast error-prone computation to get the answer

1 While the conference version of [5] claimed O(n log4 n) interactions, this was the result of
a calculation error that has been corrected by the authors in the full version of the paper.
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quickly most of the time, and then switch to the result of a slower, error-
free computation using the mechanisms of [3] after some polynomially long
interval. The high time to converge for the second algorithm is apparent only
when the first fails to produce the correct answer; but as this occurs only
with polynomially small probability, it disappears in the expectation.

This simulation leaves room for further improvement. An immediate task
is to reduce the overhead of the arithmetic operations. In [4], the same au-
thors show how to drop the cost of the worst-case arithmetic operation to
O(n log2 n) interactions by combining a more clever register encoding with a
fast approximate majority primitive based on dueling epidemics. This proto-
col has only three states: the decision values x and y, and b (for “blank”).
When an x token meets a y token or vice versa, the second token turns blank.
When an x or y token meets a blank agent, it converts the blank token to
its own value. Much of the technical content of [4] involves showing that
this process indeed converges to the majority value in O(n log n) interactions
with high probability, which is done using a probabilistic potential function
argument separated into several interleaved cases. The authors suggest that
simplifying this argument would be a very useful target for future research.
It is also possible that further improvements could reduce the overhead for
arithmetic operations down to the O(n log n) interactions needed simply for
all tokens to participate.

A second question is whether the distinguished leader in the initial con-
figuration could be replaced. The coalescing leader election algorithm of [3]
takes Θ(n2) interactions to converge, which may dwarf the time for simple
computations. A heuristic leader-election method is proposed in [4] that ap-
pears to converge much faster, but more analysis is needed. The authors also
describe a more robust version of the phase clock of [5] that, by incorporat-
ing elements of the three-state majority protocol, appears to self-stabilize in
O(n log n) interactions once the number of leaders converges to a polynomial
fraction, but to date no proof of correctness for this protocol is known.

1.7 Self-stabilization and Related Problems

A series of papers [9, 10, 18] have examined the question of when popula-
tion protocols can be made self-stabilizing [17], or at least can be made to
tolerate input values that fluctuate over some initial part of the computa-
tion. Either condition is a stronger property than the mere convergence of
the basic model, as both require that the population eventually converge to
a good configuration despite an unpredictable initial configuration. Many of
the algorithms designed to start in a known initial configuration (even if it
is an inconvenient one, with, say, all agents in the same state) will not work
if started in a particularly bad one. An example is leader election by coa-
lescence: this algorithm can reduce a population of many would-be leaders
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down to a single unique leader, but it cannot create a new leader if the initial
population contains none.

Angluin et al. [9] gave the first self-stabilizing protocols for the population
protocol model, showing how to carry out various tasks from previous papers
without assuming a known initial configuration. These include a distance-2
coloring protocol for bounded-degree graphs based on local handshaking in-
stead of a wandering colorizer token (which is vulnerable to being lost). Their
solution has each node track whether it has interacted with a neighbor of each
particular color an odd or even number of times; if a node has two neighbors
of the same color, eventually its count will go out of sync with that of one or
the other, causing both the node and its neighbor to choose new colors. This
protocol is applied in a framework that allows self-stabilizing protocols to be
composed, to give additional protocols such as rooted spanning tree construc-
tion for networks with a single special node. This last protocol is noteworthy
in part because it requires O(log D) bits of storage per node, where D is the
diameter of the network; it is thus one of the earliest examples of pressure to
escape the restrictive O(1)-space assumption of the original population pro-
tocol model. Other results in this paper include a partial characterization of
which network topologies do or do not support self-stabilizing leader election.

This work was continued by Angluin, Fischer, and Jiang [10], who consid-
ered the issue of solving the classic consensus problem [31] in an environment
characterized by unpredictable communication, with the goal of converging to
a common consensus value at all nodes eventually (as in a population proto-
col) rather than terminating with one. The paper gives protocols for solving
consensus in this stabilizing sense with both crash and Byzantine failures.
The model used deviates from the basic population protocol model in several
strong respects: agents have identities (and the O(log n)-bit memories needed
to store them), and though the destinations to which messages are delivered
are unpredictable, communication itself is synchronous.

Fischer and Jiang [18] return to the anonymous, asynchronous, and finite-
state world of standard population protocols to consider the specific problem
of leader election. As observed above, a difficulty with the simple coalescence
algorithm for leader election is that it fails if there is no leader to begin with.
Fischer and Jiang propose adding to the model a new eventual leader de-
tector, called Ω?, which acts as an oracle that eventually correctly informs
the agents if there is no leader. (The name of the oracle is by analogy to
the classic eventual leader election oracle Ω of Chandra and Toueg [14].)
Self-stabilizing leader election algorithms based on Ω? are given for complete
interaction graphs and rings. Curiously, the two cases distinguish between
the standard global fairness condition assumed in most population protocol
work and a local fairness condition that requires only that each action oc-
curs infinitely often (but not necessarily in every configuration in which it
is enabled). The latter condition is sufficient to allow self-stabilizing leader
election in a complete graph but is provably insufficient in a ring. Many of
these results are further elaborated in Hong Jiang’s Ph.D. dissertation [26].
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1.8 Larger States

The assumption that each agent can only store O(1) bits of information is
rather restrictive. One direction of research is to slowly relax this constraint to
obtain other models that are closer to real mobile systems while still keeping
the model simple enough to allow for a complete analysis.

1.8.1 Unique Identifiers

As noted in Sect. 1.2, the requirements that population protocols be inde-
pendent of n and use O(1) space per agent imply that agents cannot have
unique identifiers. This contrasts with the vast majority of models of dis-
tributed computing, in which processes do have unique identifiers that are
often a crucial component of algorithms. Guerraoui and Ruppert investigated
a model, called community protocols, that preserve the tiny nature of agents
in population protocols, but allow agents to be initially assigned unique iden-
tifiers drawn from a large set [22]. Each agent is equipped with O(1) memory
locations that can each store an identifier. It is assumed that transition rules
cannot be dependent on the values of the identifiers: the identifiers are atomic
objects that can only be tested for equality with one another. (For example,
bitwise operations on identifiers are not permitted.) This preserves the prop-
erty that protocols are independent of n. They gave the following precise
characterization of what can be computed in this model.

Theorem 2 ([22]). A predicate is computable in the community protocol
model if and only if it can be computed by a nondeterministic Turing machine
that uses O(n log n) space and permuting the input characters does not affect
the output value.

The necessity of the second condition (symmetry) follows immediately
from the fact that the identifiers cannot be used to order the input symbols.
The proof that any computable predicate can be computed using O(n log n)
space on a nondeterministic Turing machine uses a nondeterministic search
of the graph whose nodes are configurations of the community protocol and
whose edges represent transitions between configurations.

Conversely, consider any symmetric predicate that can be computed by
a nondeterministic Turing machine using O(n log n) space. The proof that
it can also be computed by a community protocol uses Schönhage’s pointer
machines [34] as a bridge. A pointer machine is a sequential machine model
that runs a program using only a directed graph structure as its memory.
A community protocol can emulate a pointer machine by having each agent
represent a node in the graph data structure. Some care must be taken to
organize the agents to work together to simulate the sequential machine.
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It was known that a pointer machine that uses O(n) nodes can simulate a
Turing machine that uses O(n log n) space [35].

It follows that the restriction that agents can use their additional memory
space only for storing O(1) identifiers can essentially be overcome: the agents
can do just as much as they could if they each had O(log n) bits of storage
that could be used arbitrarily.

1.8.2 Heterogeneous Systems

One interesting direction for future research is allowing some heterogeneity in
the model, so that some agents have more computational power than others.
As an extreme example, consider a network of weak sensors that interact
with one another, but also with a base station that has unlimited capacity.

Beauquier et al. [13] studied a scenario like this, focusing on the problem
of having the base station compute n, the number of mobile agents. They
replaced the fairness condition of the population protocol model by a re-
quirement that all pairs of agents interact infinitely often. They considered
a self-stabilizing version of the model, where the mobile agents are initial-
ized arbitrarily. (Otherwise the problem can be trivially solved by having the
base station mark each mobile agent as it is counted.) The problem cannot
be solved if each agent’s memory is constant size: they proved a tight lower
bound of n on the number of possible states the mobile agents must be able
to store.

1.9 Failures

The work described so far assumes that the system experiences no failures.
This assumption is somewhat unrealistic in the context of mobile systems of
tiny agents, and was made to obtain a clean model as a starting point. Some
work has studied fault-tolerant population protocols, although this topic is
still largely unexplored.

1.9.1 Crash Failures

Crash failures are a relatively benign type of failure: faulty agents simply
cease having any interactions at some time during the execution. Delporte-
Gallet et al. [15] examined how crash failures affect the computational power
of population protocols. They showed how to transform any protocol that
computes a function in the failure-free model into a protocol that can tolerate
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O(1) crash failures. However, this requires some inevitable weakening of the
problem specification.

To understand how the problem specification must change when crash
failures are introduced, consider the majority problem described in Example
2. This problem was solved under the assumption that there are no failures.
Now consider a version of the majority problem where up to 5 agents may
crash. Consider an execution with m followers and m + 5 leaders. According
to the original problem specification, the output of any such execution must
be 1. Suppose, however, that the agents associated with 5 of the m + 5
leaders crash before having any interactions. There is no way that the non-
faulty agents can distinguish such an execution from a failure-free execution
involving m followers and m leaders. In the latter execution, the output must
be 0. So, the majority problem, in its original form, cannot be solved when
crash failures occur. Nevertheless, it is possible to solve a closely related
problem. Suppose there are preconditions on the problem, requiring that the
margin of the majority is at least 5. More precisely, it is required that either
the number of leaders exceeds the number of followers by more than 5 or the
number of followers exceeds the number of leaders by at least 5. Under this
precondition, it can be shown that the majority problem becomes solvable
even when up to 5 agents may crash.

The above example can be generalized in a natural way: to solve a problem
in a way that tolerates up to f crash failures, where f is a constant, there
must be a precondition that says the removal of f of the input values cannot
change the output value. It is not difficult to see that such a precondition is
necessary. To prove that this is sufficient to make the predicate computable
in a fault-tolerant way (assuming that the original predicate is computable
in the failure-free model), Delporte-Gallet et al. [15] designed an automatic
transformation that converts a protocol P for the failure-free model into a
protocol P ′ that will tolerate up to f failures.

The transformation uses replication. In P ′, agents are divided (in a fault-
tolerant way) into Θ(f) groups, each of size Θ(n/f). Each group simulates an
execution of P on the entire set of inputs. Each agent of P ′ can store, in its
own memory, the simulated states of O(f) agents of P , since f is a constant,
so each group of Θ(n/f) agents has sufficient memory space to collectively
simulate all agents of P . To get a group’s simulation started, agents within
the group gather the initial states (in P ) of all agents. Up to f agents may
crash before giving their initial states to anyone within that group, but the
precondition ensures that this will not affect the output of the simulated
run. Thus, any group whose members do not experience any crashes will
eventually produce the correct output. It follows that at least f + 1 of the
2f + 1 groups will converge on the correct output, and any non-faulty agent
can compute this value by remembering the output value of the last agent
it saw from each group and taking the majority value. (If the range of the
function to be computed is larger than {0, 1}, a larger number of groups must
be used.)
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A variant of the simulation handles a combination of a constant number
of transient failures (where an agent spontaneously changes state) and crash
failures [15]. It can also be used in the community protocol model described
in Sect. 1.8.1 [22].

1.9.2 Byzantine Failures

An agent that has a Byzantine failure may behave arbitrarily: it can interact
with all other agents, pretending to be in any state for each interaction. This
behavior can cause havoc in a population protocol since none of the usual
techniques used in distributed computing to identify and contain the effects
of Byzantine agents can be used. Indeed, it is known that no non-trivial
predicate can be computed by a population protocol in a way that tolerates
even one Byzantine agent [22]. Two ways of circumventing this fact have been
studied.

In the community protocol model of Sect. 1.8.1, some failure detection is
possible, provided that the agent identifiers cannot be tampered with. Guer-
raoui and Ruppert give a protocol that solves the majority problem, toler-
ating a constant number of Byzantine failures, if the margin of the majority
is sufficiently wide [22]. (In defining this model, the fairness condition has to
be altered to exclude Byzantine agents.)

Byzantine agents also appear in the random-scheduling work of [4], where
it is shown that the approximate majority protocol quickly converges to a
configuration in which nearly all non-faulty agents possess the correct deci-
sion value despite the actions of a small minority of o(

√
n) Byzantine agents.

Here there is no extension of the basic population protocol model to include
identifiers, but the convergence condition is weak, and the Byzantine agents
can eventually—after exponential time—drive the protocol to any configura-
tion, including stable configurations in which no agent holds a decision value.
Determining the full power of random scheduling in the presence of Byzantine
agents remains open.

1.10 Relations to Other Models

There are other mathematical models that bear some similarities to popula-
tion protocols. Techniques or results from those models might prove useful
in studying population protocols.

The cellular automata model of von Neumann [30] also models compu-
tation by a collection of communicating finite automata. However, the agents
lack any mobility. In the classical version of this model, identical agents are
arranged in a highly symmetric, regular, constant-degree graph (such as a



24 1 An Introduction to Population Protocols

grid) and each agent updates its state based on a snapshot of all of its neigh-
bours’ states. This model assumed all agents run synchronously, but some
researchers have studied an asynchronous version of the model, defined by
Ingerson and Buvel [24], in which a single agent updates its state in each
step. The way in which this agent is chosen varies. Their work (and most
that followed) is experimental. In each interaction, only one agent’s state
is updated (as in the immediate observation model discussed in Sect. 1.4).
However, their model still assumes that an agent can learn the states of all
its neighbours simultaneously, in contrast to the pairwise interactions that
form the basis of population protocols.

Inspired by biological processes, Păun defined P systems [33] to model a
collection of mobile finite-state agents that interact with one another and
also with membranes. The membranes divide space into regions and groups
of agents within a single region have interactions. The system specifies a set
of interaction rules for each region. These interactions can create new agents,
destroy existing agents, change agents’ states, cause agents to cross a mem-
brane into an adjacent region, or even dissolve a membrane to merge two
adjacent regions. The basic model is synchronous, and the choice of which
interactions happen in each round of computation is highly constrained by
priorities assigned to each rule. Unlike typical distributed models of compu-
tation, where algorithms must compute correctly in all possible executions,
the emphasis here is on nondeterministic computation: there should exist a
correct execution for each input. These factors make P systems a very pow-
erful computational model. However, a simplified version of this model may
be appropriate for modelling mobile systems where the algorithm has some
coarse-grained control over the mobility pattern of the agents (controlling
which region the agent is in, without controlling its position within that re-
gion).

For the probabilistic variants of the population protocol model, where
interactions are scheduled according to a probability distribution, each con-
figuration of the system creates a probability distribution on the set of pos-
sible successor configurations. Thus, a population protocol can be modelled
as a Markov chain in a straightforward way. Researchers have studied some
classes of Markov chains that are similar to population protocols. For ex-
ample, Markov population processes [12, 28] (which inspired the name
of population protocols), model a collection of agents finite state agents but
instead of pairwise interactions, a step in the process can be either the birth
or death of an agent (in some particular state), or the spontaneous change of
an agent from one state to another. The probabilities of these events can de-
pend on the relative numbers of agents in each state, but agents in the same
state are treated as indistinguishable, as in population protocols. Population
processes have been used to model biological populations, rumour spreading
and problems in queueing theory.



1.11 Summary and Outlook 25

1.11 Summary and Outlook

Population protocol models are a fairly recent development. Some of the most
basic questions about them have been answered, but there also remain a great
number of open questions. There are many ways in which the population
protocol model could be further extended to open new avenues of research.

So far, work on random interactions has focussed on the uniform model,
where all pairs of agents are equally likely to interact at each step. This may
not be a very realistic probability distribution for many systems. One way
to make it more realistic (without making it impossibly difficult to analyze)
might be to look at a uniform distribution within a system with a very reg-
ular interaction graph (instead of a complete graph). For example, could the
simulation of a linear-space Turing machine for bounded-degree interaction
graphs (described in Sect. 1.5) be made efficient in this case? Modelling the
probabilistic movement of agents explicitly would also be of great interest,
but would probably require substantial technical machinery.

Existing characterizations of what can be done focus on problems that re-
quire agreement (i.e., all agents stabilizing to the same output). Many prob-
lems that are of interest in distributed computing do not have this property.
Agents may need to produce different outputs (as in leader election) or the
output may have to be distributed across the entire system (just as the input
is distributed). For example, Angluin et al. [3] describe a simple algorithm
for dividing an integer input by a constant. In this case the result cannot be
represented in a single agent; instead, the number of agents that output 1 sta-
bilizes to the answer. Other examples of problems that cannot be captured
by function computation are the spanning tree construction and the node
colouring algorithm described in Sect. 1.5. The problem of characterizing ex-
actly which problems of this more general type can be solved is open. Coping
with failures in those kinds of computations is also not well-understood.

The model of population protocols was intentionally designed to abstract
away many genuine issues in mobile systems, to obtain a model that could
be theoretically analysed. Once this model is well understood, it would be
desirable to begin augmenting the model to handle some of those issues. The
restriction to a constant amount of memory space per agent may be overly
strict: even though the model is intended to describe extremely weak agents
where one should be as parsimonious as possible with memory requirements,
agents with slightly larger memory capacities could also be considered. The
design of algorithms that would respect other real-world constraints on such
agents is also an interesting topic: for example, how can the algorithms mini-
mize the number of interactions required in order to preserve power to extend
the lifetime of the batteries used by the agents. See also Sect. 1.8.2 for a dis-
cussion of the effects of assuming heterogeneity, a common feature of practical
mobile systems.

Many known population protocols require strong assumptions about the
initial configuration; for example, the register machine simulation of [5] re-
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quires an initial designated leader agent, and will generally not recover from
erroneous configurations (even those reachable with low probability) in which
the phase clock is corrupted. It is an interesting question of whether such pro-
tocols can be made more robust, or whether the price of high performance is
vulnerability to breakdown.
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