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Abstract

This paper initiates a study into the century-old issue of market predictability from the
perspective of computational complexity. We develop a simple agent-based model for a stock
market where the agents are traders equipped with simple trading strategies, and their trades
together determine the stock prices. Computer simulations show that a basic case of this
model is already capable of generating price graphs which are visually similar to the recent
price movements of high tech stocks. In the general model, we prove that if there are a large
number of traders but they employ a relatively small number of strategies, then there is a
polynomial-time algorithm for predicting future price movements with high accuracy. On the
other hand, if the number of strategies is large, market prediction becomes complete for two new
computational complexity classes CPP and promise-BCPP, where PNP[OUogn)] BPPpath C
promise-BCPP C CPP = PP. These computational hardness results open up a novel possibility
that the price graph of an actual stock could be sufficiently deterministic for various prediction

goals but appear random to all polynomial-time prediction algorithms.

1 Introduction

The issue of market predictability has been debated for more than a century (see [8] for earlier
papers and [6, 15,20, 22] for more recent viewpoints). In 1900, the pioneering work “Theory of
Speculation” of Louis Bachelier used Brownian motion to analyze the stochastic properties of
security prices [8]. Since then, Brownian motion and its variants have become textbook tools for
modeling financial assets. Relatively recently, the radically different methodology of Mandelbrot
used fractals to approximate price graphs deterministically [23]. In this paper, we initiate a study

into this long-running issue from the perspective of computational complexity.
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We develop a simple agent-based model for a stock market [9,21]. The agents are traders
equipped with simple trading strategies, and their trades together determine the stock prices. We
first consider a basic case of this model where there are only two strategies, namely, momentum
and contrarian strategies. The choice of this base model and thus our general model is justified
at two levels: (1) Experimental and empirical studies in the finance literature [1,4,7,10-12, 19]
show that a large number of traders primarily follow these two strategies. (2) Our own simulation
results show that despite its simplicity, the base model is capable of generating price graphs which
are visually similar to the recent price movements of high tech stocks (Figures 1 and 2).

With these justifications, we then consider the issue of market predictability in the general
model. We prove that if there are a large number of traders but they employ a relatively small
number of strategies, then there is a polynomial-time algorithm to predict future price movements
with high accuracy (Theorem 5). On the other hand, if there are also a large number of strategies,
then the problem of predicting future prices becomes computationally very hard. To describe this
hardness, we define two new computational complexity classes called CPP and promise-BCPP
(Definitions 8 and 16). We show that some market prediction problems are hard for these two
classes (Theorems 17 and 18) and that PNPOUesn)] € BPP .., C promise-BCPP C CPP = PP.

These computational completeness results open up the possibility that the price graph of an
actual stock could be sufficiently deterministic for various prediction purposes but appear random
to all polynomial-time prediction algorithms. This is in contrast to the most popular academic
belief that the future price of a stock cannot be predicted from its historical prices because the
latter are statistically random and contain no information. This new possibility also differs from
the fractal-based methodology in that the price graph of a stock could be a fractal but the fractal
might not be computable in polynomial time. The findings in this paper can by no means settle the
debate about market predictability. Our goal is only that our alternative approach could provide
new insights to the predictability issue in a systematic manner. In particular, it could provide a
general framework to investigate the many documented technical trading rules [25] and to generate
novel and significant interdisciplinary research problems for computer science and finance.

The rest of the paper is organized as follows. Section 2 discusses the basic market model. Sec-
tion 3 formulates the general model. Section 4 proves the complexity results for market prediction
in the general model. We conclude the paper with some directions for future research in Section 5.

2 A Basic Market Model

In this section, we present a very simple market model, called the deterministic-switching MC
(DSMC) model. The letter M stands for a momentum strategy, and the letter C for a contrarian
strategy. These two strategies and the model itself are defined in Section 2.1. Some computer
simulations for this model are reported in Section 2.2.

Intuitively, these strategies are heuristics (“rules of thumb”) used by traders in the absence of
reliable asset valuation models. As discussed in [12], a momentum trader may observe a sequence
of “up” trades (price increments) and execute a buy trade in the anticipation that she will not
be one of the last buyers, knowing very well that the asset is overpriced. Similarly, she may see
some “down” trades (price decrements) and then make a sell trade in the hope that there will be
more sellers after her. In contrast, after detecting a number of “up” (respectively, down) trades, a
contrarian trader may submit a sell (respectively, buy) trade, anticipating a price reversal.

Both experimental and empirical studies have shown that traders look at past price dynamics
to form their expectations of future prices, and a large number of them primarily follow momentum
or contrarian strategies [1,7,10,11]. In addition, the traders may switch between these two dia-



metrically opposite strategies. Momentum and contrarian strategies are dominant in the behavior
of professional market timers as well [19]. The use of momentum and contrarian strategies some-
times signifies gambling tendencies among traders [7]. In fact, a market model with momentum
and contrarian traders can also be interpreted as a market with noise traders and rational traders,
where the noise traders essentially follow a momentum strategy while the rational traders attempt
to exploit the noise traders by following a contrarian strategy [4, 12].

2.1 Defining the DSMC Model

In the DSMC model, there is only one stock traded in the market. The model is completely
specified by three integer parameters m, L,k > 0, and a real parameter o« > 0 as follows.

There are m traders in the market, and each trader’s strategy set consists of momentum (M)
and contrarian (C) strategies. At the beginning of day 1 of the investment period, each trader
randomly chooses her initial strategy from {M,C} and an integer ¢; € [2, L] with equal probability,
where L is the mazimum strategy switching period. This is the only source of randomness in the
DSMC model; from this point onwards, there is no random choice.

Rule 1 (Deterministic Strategy Switching Rule) For days 1,...,k + 1, there is no trading.
Each trader starts trading from day k42 using her initial strategy. Trader ¢ uses the same strategy
for ¢; days and switches it at the beginning of every ¢; days.

The next rule defines the two strategies with respect to a given memory size k, which is the
same for all traders.

Rule 2 (Trading Rule) At the beginning of day t, observe the stock prices Py of days f €
t—(k+1),t—1]. For g € [t —k,t — 1], count the number k, of days ¢ when P, > P, _i; and
the number k; of days when Py < Py_;. The k-day trend is defied as Tr(k,t) = k, — kq. Then, if
Tr(k,t) > 0 (respectively, < 0), the momentum strategy M buys (respectively, sells) one share of
the stock at the market price determined by Rule 3 below. In contrast, the contrarian strategy C
sells (respectively, buys) one share of the stock.

For instance, suppose that k¥ = 2, and investor ¢ picks her initial strategy M and ¢; = 2 at the
beginning of day 1. She then observes the prices of days 1, 2, 3, which are, say, $80,$82,$90. At
the beginning of day 4, she issues a market order to buy one share of the stock. The orders issued
by the traders on day 4 together determine the price of day 4 as specified by Rule 3. Suppose that
the price of day 4 is $91, then investor 7 issues another market buy order at the beginning of day
5. Since her /¢; is 2, at the beginning of day 6, she switches her strategy from M to C.

Rule 3 (Price Adjustment Rule) The prices for days 1,...,k+ 1 are given. On day t > k + 2,
let my and m, be the total numbers of buys and sells, respectively. Then, the price P, on day ¢ is
determined by the following equation:

P, — P,_y = a-(my — myg),

where « is the unit of price change.
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Figure 1: A one-year price sequence generated using the DSMC model. Parameters: number of
traders m = 20, memory size k = 2, maximum strategy switching period L = 8, unit of price
change oo = 0.25, number of trading days = 250. The price graph appears strikingly similar to the
recent price movements of high tech stocks.
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Figure 2: A one-year price sequence generated using the DSMC model. The parameters are the
same as those for Figure 1.



2.2 Computer Simulation on the DSMC Model

We have conducted some computer simulations of the DSMC model to test whether it can generate
realistic price graphs. Because we had to examine the graphs visually, our time constraints limited
the number of these simulations to only about six hundred. For a large fraction of them, we set
m = 20, L = 8, and the initial k£ prices in the range of $70 to $90. We then focused on testing the
effect of memory size k [24]. Two main findings are as follows:

e For k£ =1, the price graphs were not visually real.

e For k = 2, about one out of four graphs were strikingly similar to those of recent high tech
stocks, which was a major positive surprise to us. Two representatives of such graphs are
shown in Figures 1 and 2.

These two statements are based on our subjective impressions and limited simulations. To
further understand the DSMC model, it would be useful to automate statistical analysis on the
price graphs generated by this model and compare them with real stock prices.

3 A General Market Model

In this section, we define a market model, called the AS model, where the word AS stands for
arbitrary strategies. It can be verified in a straightforward manner that the DSMC model is a
special case of the AS model.

In the AS model, there is only one stock traded in the market. The model is completely specified
as follows with five parameters: (1) the number m of traders, (2) a unit a > 0 of price change, (3)
aset I = {S',...,S"} of strategies, (4) a price adjustment rule (Equation 1 or 2 below), and (5)
a joint distribution of the population variables X7, ..., X}.

Rule 4 (Market Initialization) There are m traders in the market. At the beginning of day 1
of the investment period, each trader randomly chooses her initial strategy from II. Let X; be the
number of traders who choose S*. Then, each X; is a random variable, which is the only source
of randomness in the model. (Unlike the DSMC model, because the allowable generality of II, the
AS model does not need strategy switching.)

Different joint distributions of the variables X; lead to different specific models and prediction
problems. In Section 4.2, we consider joint distributions that tend to Gaussian in the limit as the
number m of traders becomes large. In Section 4.3, we consider the case where the variables X;
are independent, and each is 0 or 1 with equal probability.

Rule 5 (Trading Strategies) There is no trading on day 0. At the beginning of day ¢ > 1, a
trader observes the historical prices Fy, ..., P,—; and reacts by issuing a market order to buy one
share of the stock, hold (i.e., do nothing), or sell one share according her strategy. Formally, a
strategy is a collection of functions S = {S1,Ss,...,St, ...}, where each §; maps Py,...,P._1 to
+1 (buy), 0 (hold), or —1 (sell).

The price P, of day t is determined at the end of the day by the day’s m market orders

using Rule 6. Since the traders choose their strategies randomly, the sequence Py, Py,..., P, ...
is a stochastic process. We write F; for the probability space induced by all possible sequences
(Py,...,P) [18]. Then, we think of each function S; as a random variable on F;_;.

We distinguish between strategies that react to price movements and those that ignore them.



e S is an active strategy if the functions S; may or may not be constant functions. An active
trader is one with an active strategy. Examples of active strategies include many used by
day traders, who try to capture extremely short-term price trends.

e S is a passive strategy if the functions S; all are constant functions. A passive trader is one
with a passive strategy. Examples of passive strategies include two very popular ones: (1)
dollar averaging, which invests an equal amount every day over a chosen period, and (2)
monthly retirement contributions by educational institutions, which are made on the same
day every month.

Rule 6 (Price Adjustment) The price P, is given. At the end of day ¢t > 1, the price P, is
determined by the day’s market orders to buy or sell from the traders. We consider two simple
rules:

With the proportional increment (PI) rule,

h
P,=P 1+a) XS, (1)
=1

where « is the unit of price change. Thus we can observe directly the net difference between the
number of buyers and sellers on day £.
With the fized increment (FI) rule,

h
P, = P, | + a-sign (Z Xi-s;) . (2)

=1

In this case, the market moves up or down depending on whether the majority of traders are buying
or selling, but the amount by which it moves is fixed at «.

For notational brevity, an AS+FI model refers to an AS model with the fixed increment rule,
and an AS+PI model refers to an AS model with the proportional increment rule.

In reality, the price tends to move up if there are more buy orders than sell orders; similarly,
the price tends to move down if there are more sell orders than buy orders. The FT rule is meant to
model the sign but not the magnitude of the slope of this correlation, while the PI rule attempts to
model both. Clearly, there can be many other increment rules, which this paper leaves for future
research.

4 Predicting the Market

Informally, the market prediction problem at the beginning of day ¢ is defined as follows:

e The data consists of (1) the five parameters of an AS-model, i.e., m, «, II, X;, and a price
adjustment rule, and (2) a price history Py, ..., P_1.

e The goal is to predict the price P; by estimating the conditional probabilities Pr[P, > P, |
PU, PN ,Pt_l], PI‘[Pt < Pt—l | PU» cee ,Pt_l], and PI‘[Pt = Pt—l | PU, ce aPt—l]-

Note that Pr[P, > P,y | Py, ..., P,_1] is symmetric to Pr[P, < P,y | Py,...,P,_1] and Pr[P, =
P4 | P[],...,Ptfl] =1- PI‘[Pt > P | Po,...,Ptfl] — PI‘[Pt < Py | Po,...,Ptfl]. Thus, from
this point onwards, our discussion focuses on estimating Pr[P; > P,y | Py, ..., P—1].



From an algorithmic perspective, we sometimes assume that the price adjustment rule and the
joint distribution of the variables X; are fixed, and that the input to the algorithm is m, «, a
description of 11, and the price history. This allows different algorithms for different model families
as well as side-steps the issue of how to represent the possibly very complicated joint distribution of
the variables X; as part of the input. As for the description of IT, we only need Si,...,S! for each
S' € II instead of the whole II, and the description of these functions can simplified by restricting
their domains to consist of the price sequences consistent with the given price history.

4.1 Markets as Systems of Linear Constraints

In the AS+FI model with parameters m and «, a price sequence Py, ..., P, and II can yield a set
of linear inequalities in the population variables X; as follows. If the price changes on day t, we

have
h

sign(P, — Pro1) Y S X; > 0. (3)
i=1
If the price does not change, we have instead the equation

h
Y Six; =o. (4)
=1

Furthermore, any assignment of the variables X; that satisfies either inequality is feasible with
respect to the corresponding price movement on day . In both cases, S} is computable from the
price sequence Fy,..., P, ;. The same statements hold for days 1,...,f — 1. Therefore, given m
and «, we can extract from IT and FP,..., P; a set of linear constraints on the variables X;. The
converse holds similarly. We formalize these two observations in Lemmas 1 and 2 below.

Lemma 1 In the AS+FI model with parameters m and «, giwven Il and a price sequence P, ..., Pg,
there are matrices A and B with coefficients in {—1,0,4+1}, h columns each, and [ rows in total.
The rows of A (respectively, B) correspond to the days when P; # Pj_y (respectively, P; = Pj_1).

Furthermore. the column vectors x = (X1,...,X)" consistent with I and P, ... , Pg are exactly
those that satisfy Az > 0 and Bz = 0. The matrices A and B can be computed in time O(hST),
where T 1s an upper bound on the time to compute a single S; from Py, ..., Pg over all j € [1,0]
and S°.

Proof: Follows immediately from Equations 3 and 4. il

Lemma 2 In the AS+FI model with parameters m and «, given a system of linear inequalities
Az > 0,Bz =0, where A and B have coefficients in {—1,0,4+1} with h columns each, and B rows
in total, there exist (1) a set Il of h strategies corresponding to the h columns of A and B, and
(2) a (B + 1)-day price sequence Py,...,Pg with the latter § days corresponding to the B rows of
A and B. Furthermore, the values of the population variables X1, ..., X, are feasible with respect
to the price movement on day j if and only if column vector x = (X1,...,X,)" satisfies the j-th
constraint in A and B. Also, Py, ..., Pg and a description of IL can be computed in O(hB) time.

Proof: Follows immediately from Equations 3 and 4. 1

In the AS+PI model we obtain only equations, of the form:

h
. 1
Z SIX; =—(P, — P_1). (5)
i=1 @

7



In this case there is a direct correspondence between market data and systems of linear equations.
We formalize this correspondence in Lemmas 3 and 4 below.

Lemma 3 In the AS+PI model with parameters m and c, given 11 and a price sequence Py, ..., Pg,
there is a matriz B with coefficients in {—1,0,+1}, h columns, and B rows, and a column vector b
of length h, such that the column vectors x = (X1,...,Xp,)" consistent with II and P, ... , Pg are
exactly those that satisfy Bx = b. The coefficients of B and b can be computed in time O(hST),
where T 1s an upper bound on the time to compute a single S; from Py, ..., Pg over all j € [1,0]
and S*.

Proof: Follows immediately from Equation 5. il

Lemma 4 In the AS+PI model with parameters m and «, given a system of linear equations
Bx = b, where B is a [ X h matriz with coefficients in {—1,0,+1}, there exist (1) a set Il of h
strategies corresponding to the h columns of B, and (2) a (B + 1)-day price sequence Py, ..., Ps
with the last B days corresponding to the B rows of B. Furthermore, the values of the population
variables X1,...,X,, are feasible with respect to the price movement on day j if and only if column
vector © = (X1,...,X,) " satisfies the j-th constraint in B. Also, P, ... , Pg and a description of
IT can be computed in O(hp) time.

Proof: Follows immediately from Equation 5. il

4.2 An Easy Case for Market Prediction: Many Traders but Few Strategies

In Section 4.2.1, we show that if an AS+FI market has far more traders than strategies, then it
takes polynomial time to estimate the probability that the next day’s price will rise. In Section
4.2.2, we discuss why the same analysis technique does not work for an AS+PI market.

4.2.1 Predicting an AS+FI Market

For the sake of emphasizing the dependence on m, let Pr,,[E] be the probability that event E
occurs when there are m traders in the market.
This section makes the following assumptions:

E1 The input to the market prediction problem is simply a price history P, ..., P;—1. The output
is lim,,,— 00 PI‘m[Pt > P | Py,... ,Ptfl].

E2 The market follows the AS+FI model.

E3 II is fixed. The values S; over all i € [1,h] are computable from the input in total time
polynomial in j.

E4 Each of the m traders independently chooses a random strategy S° from II with fixed probability
p; > 0, where py + -+ +pp, = 1.

The parameter « is irrelevant.

Notice that the column vector X = (Xy,...,X,)" is the sum of m independent identically-
distributed vector-valued random variables with a center at p = m-(p1,...,pp)". We recenter
and rescale X to Y = (X — m-(pl,...,pp)")/v/m. Then, by the Central Limit Theorem (see,
e.g., [3, Theorem 29.5]), as m — 400, Y converges weakly to a normal distribution centered at
the h-dimensional vector (0,...,0)". In Theorem 5 below, we rely on this fact to estimate the
probability that the market rises for price histories that occur with nonzero probability.



Theorem 5 Assume that lim,, o Prp,[Po, ..., Pi—1] > 0. Then there is a fully polynomial-time
approzimation scheme for estimating limy, oo Prp [Py > Py | Po,...,Pi—1] from Py,...,P_1.
The time complezity of the scheme is polynomial in (1) the length t of the price history, (2) the
inverse of the relative error bound €, and (3) the inverse of the failure probability 7).

Remark. We omit the explicit dependency of the running time in h and pi,...,p, in order to
concentrate on the main point that market prediction is easy with this section’s four assumptions.
The parameters h and pq,...,pp are constant under the assumptions.

Proof: We use Lemma 1 to convert the price history Fp, ..., P,_1 and the strategy set II into
a system of linear constraints AX > 0 and BX = 0, with the next day’s price change P, — P,
determined by sign(c-X') for some c. Since the values S; are computable in time polynomial in j,
this conversion takes time polynomial in .

Then, Prp,[FPo, ..., P—1] = Prp[AX > OABX = 0]. Since limy, o0 Prpp[AX > 0ABX =0] > 0,
the constraints in B must be vacuous; in other words, for each P; = 0 with i € [0,¢ — 1], the
corresponding constraint in B is 0-X; +---+0-X, = 0. Therefore, Pr,,,[P, ..., Pi—1] = Prp[AX >
0]. Furthermore, since both A and ¢ are constant with respect to m,

limy, 00 Prpp[AX > 0A X > 0]
limy;,— 00 Pry[AX > 0]

m!l_r}IlooPI'm[Pt > P | PO,---aPt—l] = (6)
So to compute the desired limy,, o0 Prj, [P > Py | Py, ..., P—1], we compute lim,,_,, Pr,,[AX >
0Ac-X > 0] and limy, o0 Prp[AX > 0] as follows.

To avoid the degeneracy caused by 2?21 X; = m, we work with X' = (Xy,...,X},_;) " instead
of X by replacing X, with m — Z?;ll X; and making related changes. Let p’' = (p1,...,pn_1)",
which is the center of X’. As is true for Y, as m — +o0, the vector Y' = (X' — m-p')/v/m
converges weakly to a normal distribution centered at the (h — 1)-dimensional point (0,...,0)"
Under the assumption that each p; is nonzero, the distribution of Y’ is full-dimensional (within
its restricted (h — 1)-dimensional space), as in the limit the variance of each coordinate Y] is
nonzero conditioned on the values of the other coordinates, which implies that the smallest subspace
containing the distribution must contain all 4 — 1 axes. We can calculate the covariance matrix of
Y’ directly from the p;, as it is equal to the covariance matrix for a single trader: on the diagonal,
Cii = pi — p?; and for off-diagonal elements, C;; = —p;p;. Given C, Y’ has density p(z) = ae® €7
for some constant a, and we can evaluate this density in O(h?) time given z, which is O(1) time
under our assumption that II is fixed.

Let A; be the i-th constraint of A, i.e., A;1 X1 +---+ A; , X5 > 0. Let A} denote the constraint
(Ai71 — Ai,h7 e 7Ai,h—1 — Ai,h)- Let ¢ = (c1 —Chy-vnyCho1 — Cp).

We next convert the constraints of A on X into constraints on Y'. First of all, notice that
A X = /m-(AY') + m-Ajp. So A; X > 0 if and only if ALY’ > —\/m-A;p. The term —/m-A;p
may not be constant. In such a case, as m — oo, the hyper plane bounding the half space
AY' > —/m-A;p keeps moving away from the origin, which presents some technical complication.
To remove this problem, we analyze the term in three cases. If A;p < 0, then since m-p is the
center of X, as m — o0, Pr;,[4;X < 0] converges to 1. In other words, A4; is infeasible with
probability 1 in the limit. Then, since lim,, oo Pry,[Py, ..., P—1] > 0, such A; cannot exist in
A. Similarly, if A;p > 0, then limy, o Prj[4; X > 0] = 1 and A; is vacuous. The interesting
constraints are those for which A;p = 0; in this case, by algebra, A;X > 0 if and only if ATY’ > 0.
Thus, let D be the matrix formed by these constraints; D can be computed in O(ht) time. Then,
since D is constant with respect to m, lim,, o Pr,,[AX > 0] = lim,, o Pr,,, [DY' > 0]. Similarly,
Pr,,[AX > 0Ac¢X > 0] converges to (1) 0, (2) Pr,,[DY' > 0], or (3) Pr,,,[DY’ > 0A-Y' > 0] for
case (1) ¢-p < 0, case (2) ¢-p > 0, or case (3) ¢-p = 0, respectively.



Therefore, by Equation 6, lim,, . Pry,[Pr > Py | Po,...,P,—1] equals 0 for case (1) and
equals 1 for case (2). Case (3) requires further computation.

- limp 00 Pt [DY’ > 0 A €Y > 0]
lim Prp[P > Py | Py, ..., Pr1] =
i P[P > Py | Py, P limp, 00 Pr[DY' > 0]

(7)

The numerator and denominator of the ratio in Equation 7 are both integrals of the distribution
of Y/ in the limit over the bodies of possibly infinite convex polytopes. To deal with the possible
infiniteness of the convex bodies DY’ > 0 A Y’ > 0 and DY’ > 0, notice that the density
drops exponentially. So we can truncate the regions of integration to some finite radius around
the (h — 1)-dimensional origin (0,...,0)" with only exponentially small loss of precision. Finally,
since the distribution of Y’ in the limit is normal, by applying the Applegate-Kannan integration
algorithm for log-concave distributions [2] to the numerator and denominator separately, we can
approximate limy, oo P[Py > Pi—1 | Py, ..., P,—1] within the desired time complexity. il

4.2.2 Remarks on Predicting an AS+PI Market

The probability estimation technique based on taking m to oo does not appear to be applicable to
the AS+PI model for the following reasons.

First of all, by Lemma 3, the input price history induces a system of linear equations BX = b.
If any equation in BX = b is not equivalent to X1 +---+ X =m or 0- Xy +--- + 0-Xp = 0, then
hmm%m PI‘m[Pg, e ,Ptfl] =0.

A natural attempt to overcome this seemingly technical difficulty would be to (1) solve BX = b
to choose a maximal set U of independent variables X; and (2) evaluate Pr,,[Fy, ..., P,—1] in the
probability space induced by this set. Still, a single constraint such as B; 1- X1+ - -+B; - Xj, = a-myg
with B; ; > 0 for all j € [1,h] and B; j» > 0 for some X;» € U forces lim,, o0 Pr/n [Py, ..., P—1] =0
in the new probability space. This is due to the fact that m is constant with respect to m.

A further attempt would be to evaluate limy, oo Pry [Py > Pi—1 | Py, ..., Pi—1] by directly
working with the probability space induced by Fp, ..., P,_1. This also does not work because we
show below that the market prediction problem can be reduced to the case where taking a limit
in m has no effect on the distribution of the strategy counts. Suppose that we are given a market
which follows the assumptions E1, E3, and E4 of Section 4.2.1 except that this market uses the PI
rule and has my traders. We construct a new market with any m > my traders with the following
modifications:

1. The price history Pp,...,P,_; is extended with an extra day into Pj,..., P/ ;, P/, where

PJ{ = P;j for 0 < j <t — 1. Each strategy S; is extended into a new strategy S, where (1) on
day j € [1,t — 1], S{(Fo,...,Pj—1) = Si(P, ..., Pj—1), (2) on day ¢, S; always buys, and (3)
on day ¢t + 1, SZI(P(;, R ,Ptl) =S;(Py,...,Pi—1). Thus, Pt, = Ptlfl + a-myg.

2. Add a passive strategy S| that always holds.
3. Letpéz%pi for 1 Sighandpgl_i_l:%.

Note that since P} — P/_; = a-mg, m — my traders choose the passive strategy Sp41. Also, the
new market and the new price history can accommodate any m > my traders. Note that because
of the constraint P/ — P/_; = a-myg, the probability distribution of (Xi,---,X3)" conditioned
on Pj,..., P! in the new market for each m > my is identical to the probability distribution of
(X1,---,Xp,)" conditioned on P,..., P, | in the original market with m = mg. Furthermore,
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Pr, [P/, > P | Py,...,P]] = Prpy[P. > Py | Py,...,Pi_1]. So we have obtained the desired
reduction.

Consequently, we are left with a situation where the number of active strategies may be com-
parable to the number of traders. Such a market turns out to be very hard to predict, as shown
next in Section 4.3.

4.3 A Hard Case for Market Prediction: Many Strategies

Section 4.2 shows that predicting an AS+FI market is easy (i.e., takes polynomial time) when the
number m of traders vastly exceeds the number A of strategies. In this section, we consider the case
where every trader may have a distinct strategy, and show that predicting an AS+FI or AS+PI
market becomes very hard indeed.

We now define two decision-problem versions of market prediction. Both versions make the
following assumption:

e BFach X; is independently either 0 or 1 with equal probability.
The bounded market prediction problem is:

e Input: a set of n passive strategies and a price history spanning n days such that the proba-
bility that the market rises on day n + 1 conditioned on the price history is either (1) greater
than 2/3 or (2) less than 1/3.

e Question: Which case is it, case (1) or case (2)?

The output of bounded market prediction is not defined when the input does not yield a bounded
probability of a rise or fall on the next day. Bounded market prediction is thus an example of a
promise problem [13,14], defined as a pair of predicates (Q, R) where @, the promise, specifies
which inputs are permitted, and R specifies which inputs in () are contained in the language.

The unbounded market prediction problem is:

e Input: a set of n passive strategies and a price history spanning n days.

e Question: Is the probability that the market rises on day n 4+ 1 conditioned on the price
history greater than 1/2 (without the usual € term)?

The unbounded market prediction problem has less financial payoff than the bounded one due
to different probability thresholds. For each of these two problems, there are in effect two versions,
depending on which price increment rule is used; however, both versions turn out to be equally
hard. These two problems can be analyzed by similar techniques, and our discussion below focuses
on the bounded market prediction problem with a hardness theorem for the unbounded market
prediction problem in Section 4.3.5.

We show in Section 4.3.1 how to construct passive strategies and price histories such that
solving bounded market prediction is equivalent to estimating the probability that a Boolean
circuit outputs 1 on a random input conditioned on a second circuit outputting 1. In Section
4.3.2, we show that this problem is hard for PNPIOUcgn)] and complete for a class that lies between
pNP[O(ogn)] and PP. Thus bounded market prediction is not merely NP-hard, but cannot be solved
in the polynomial-time hierarchy at all unless the hierarchy collapses to a finite level.

11



4.3.1 Reductions from Circuits to Markets

Lemma 6 converts a circuit into a system of linear inequalities, while Lemma, 7 converts a system
of linear inequalities into a system of linear equations. These systems can then be converted into
AS+FTI and AS+PI market models using Lemmas 2 and 4, respectively.

Note that the restriction in Lemma 6 to circuits consisting of 2-input NOR gates is not an
obstacle to representing arbitrary combinatorial circuits (with constant blow-up), as 2-input NOR
gates are universal.

Lemma 6 For any n-input Boolean circuit C consisting of m 2-input NOR gates, there exists a
system Az > 0 of 3m + 2 linear constraints in n+m+ 2 unknowns and a length n+m+2 column
vector ¢ with the following properties:

1. Both A and c have coefficients in {—1,0,+1} that can be computed in time O((n + m)?).

2. Any 0-1 wvector (x1,...,2,) has a unique 0-1 extension © = (T1,...,Tp, Tntl,s- - Tyntm+2)
satisfying Az > 0.

3. If Az > 0, then cx > 0 if and only if C(x1,%2,...,2,) = 1.

Proof: Let x, represent the output of the k-th NOR gate, where 1 < k < m. Without loss
of generality we assume that gate m is the output gate.
The variables z,1,,+1 and %, 1,12 are dummies to allow for a zero right-hand-side in Az > 0;
our first two constraints are Tpim4+1 > 0 and Tpima2 > 0.
Suppose gate k has inputs z; and z;. The NOR operation is implemented by the following
three linear inequalities:
T; + Tk < 2
i + Tptke < 2;
z; + x + Tppp > 0.

The first two constraints ensure that the output is never 1 if an input is 1, while the last requires that
the output is 1 if both inputs are 0; the constraints are thus satisfied if and only if 2,4, = = (z;Vz;).
Using the dummy variables, the first two constraints are written as

—T; — Tptk T Zntmrr + Tpimt2 > 0
—Zj; — Tnp+k + Tn+m+1 + Tntm+2 > 0.

Let Az > 0 be the system obtained by combining all of these inequalities. Then for each
(1,...,2n), Az > 0 determines x, for all kK > 1. The vector ¢ is chosen so that ¢z = 1. I

One might suspect that the fixed increment rule’s ability to hide the exact values of the left-hand
side of each constraint is critical to disguise the inner workings of the circuit. However, by adding
slack variables we can translate the inequalities into equations, allowing the use of a proportional
increment rule without revealing extra information.

Lemma 7 Let Az > 0 be a system of m linear inequalities in n variables where A has coefficients
in {—1,0,+1}. Then there is a system By = 1 of mn—m+1 linear equations in 2mn —3m+n+1
variables with the following properties:

1. B has coefficients in {—1,0,+1} that can be computed in time O((mn)?).
2. There is a bijection f : x — y between the 0-1 solutions x to Ax > 0 and the 0-1 solutions y
to By =1, such that ; = y; for 1 < j <n whenever y = f(z).

12



Proof: For each 1 <7 < m, let A; be the constraint Zj Ajjxzj > 0. To turn these inequalities
into equations, we add slack variables to soak up any excess over 1, with some additional care taken
to ensure that there is a unique assignment to the slack variables for each setting of the variables
Lj.

We will use the following 0-1 variables, which we think of as alternate names for y; through
Y2mn—3m+n+1-

Variables | Purpose Indices Count

zj original variables 1<75<n n

U constant 1 none 1

5ij slack variables for A; 1<i<m,1<j<n—-1|m(n-1)

tij slack variables for s;; > s; 41 | 1 <1 <m,1 <j<n—2|m(n—2)

Name Equation Purpose Indices Count

U u =1 set u none 1
B; > Aijzj — 3585 =1 | represent A, 1<i<m m
Sii 8ij — Sij41 —tij+u=1]|require s;; > ;541 | 1 <i<m, 1 <j<n—-2|m(n—2)

Observe that for each 4, 3_; s;; can take on any integer value o; between 0 and n — 1, and that
for any fixed value of o;, the S;; constraints uniquely determine the values of s;; and ¢;; for all j.
So each constraint B; permits x; = >_; Ajjz; to take on precisely the same values 1 to n that A;
does, and each x; uniquely determines o; and thus the assignment of all s;; and ¢;;. |l

4.3.2 Conditional Probability Complexity Classes

Suppose that we take a polynomial-time probabilistic Turing machine, fix its inputs, and use the
usual Cook’s Theorem construction to turn it into a circuit whose inputs are the random bits used
during its computation. Then, we can feed the resulting circuit to Lemmas 6 and 2 to obtain an
AS+FI market model in which there is exactly one assignment of population variables for each set
of random bits, and the price rises on the last day if and only if the output of the Turing machine is
1. By applying Lemma 7 to the intermediate system of linear inequalities, we can similarly convert
a circuit to an AS+PI model. It follows that bounded market prediction is BPP-hard for either
model. But with some cleverness, we can exploit the conditioning on past history to show that
bounded market prediction is in fact much harder than this. We do so in Section 4.3.4, after a
brief detour through computational complexity in this section.

We proceed to define some new counting classes based on conditional probabilities. One of
these, BCPP, has the useful feature that bounded market prediction solves all problems in BCPP,
and is complete for the “promise problem” version of BCPP, which we will write as promise-BCPP
and which we define in Section 4.3.3. We will use this fact to relate the complexity of bounded
market prediction to more traditional complexity classes.

The usual counting classes of complexity theory (PP, BPP, R, ZPP, C_, etc.) are defined
in terms of counting the relative numbers of accepting and rejecting states of a nondeterministic
Turing machine. We will define a new family of counting classes by adding a third decision state
that does not count for the purposes of determining acceptance or rejection.

A noncommittal Turing machine is a nondeterministic Turing machine with three decision
states: accept, reject, and abstain. We represent a noncommittal Turing machine as a deterministic
Turing machine which takes a polynomial number of random bits in addition to its input; each
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assignment of the random bits gives a distinct computation path. A computation path is accept-
ing/rejecting/abstaining if it ends in an accept/reject/abstain state, respectively. We often write
1, 0, or L as shorthand for the output of an accepting, rejecting, or abstaining path.

Conditional versions of the usual counting classes are obtained by carrying over their definitions
from standard nondeterministic Turing machines to noncommittal Turing machines, with some care
in handling the case of no accepting or rejecting paths. We can still think of these modified classes
as corresponding to probabilistic machines, but now the probabilities we are interested in are
conditioned on not abstaining.

Definition 8 The conditional probabilistic polynomial-time class (CPP) consists of those languages
L for which there exists a polynomial-time noncommittal Turing machine M such that « € L if
and only if the number of accepting paths when M is run with input z exceeds the number of
rejecting paths.

Definition 9 The bounded conditional probabilistic polynomial-time class (BCPP) consists of those
languages L for which there exists a constant ¢ > 0 and a polynomial-time noncommittal Turing
machine M such that (1) z € L implies that a fraction of at least 3 + € of the total number of
accepting and rejecting paths are accepting and (2) x ¢ L implies that a fraction of at least % + €
of the total number of accepting and rejecting paths are rejecting.

Definition 10 The conditional randomized polynomial-time class (CR) consists of those languages
L for which there exists a constant ¢ > 0 and a polynomial-time noncommittal Turing machine
M such that (1) z € L implies that a fraction of at least € of the total number of accepting and
rejecting paths are accepting, and (2) = ¢ L implies that there are no accepting paths.

As we show in Theorems 11 and 12, CPP and CR turn out to be the same as the unconditional
classes PP and NP, respectively.

Theorem 11 CPP = PP.

Proof: First of all, PP C CPP because a PP machine is a CPP machine that happens
not to have any abstaining paths. For the inverse direction, represent each abstaining path of a
CPP machine by a pair consisting of one accepting and one rejecting path, and each accepting or
rejecting path by two accepting or rejecting paths. Then the resulting PP machine accepts if and
only if the CPP machine does. Il

Theorem 12 CR = NP.

Proof: To show NP C CR, replace each rejecting path of an NP machine with an abstaining
path in a CR machine. For the inverse direction, replace each abstaining path of the CR machine
with a rejecting path in the NP machine. |l

The class BCPP is more obscure; it is equivalent to the threshold version of BPP, BPP .,
[17].1. The class BPP ¢ is defined as the class of all languages accepted by a threshold machine
with threshold % + € for some € > 0, where a threshold machine accepts or rejects if at least a fixed
proportion of its computation paths accept or reject, with each computation path counted as one
without regard to its probability.

'"We are grateful to Lance Fortnow[16] for pointing out this equivalence
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Theorem 13 BCPP = BPP .

Proof: To show BCPP C BPPn, replace each abstaining path with one accepting and one
rejecting path. To show BPP,;, € BCPP, we must normalize the BPP ., computation so that
all paths include the same number of branches. Suppose that in some BPP,:, computation, the
number of branches on any path is bounded by some polynomial 7'(n). Extend each path in the
BPP,,in machine with k& < T(n) branches into 27" =% paths in the BCPP machine, of which all
but one are abstaining and the remaining path accepts or rejects depending on the output of the
corresponding BPPp,n path. B

BCPP = BPP,541, is a much stronger class than the analogous non-conditional class BPP. For
example, if one takes a NP machine and replaces each accepting path with exponentially many
accepting paths and each rejecting path with an equally large family of abstaining paths sprinkled
with a single rejecting path, the result is a BCPP machine that accepts the same language as the
NP machine. By repeating this sort of amplification of “good” paths, BCPP can in fact simulate
O(logn) queries of an NP-oracle. Because of the equivalence of BCPP and BPP 44, we can show
this formally by using similar results for BPP ¢, from [17].

Corollary 14 PNFlO(ogn)] ¢ BCPP C PP.

Proof: The first inclusion is immediate from Theorem 13 and the fact that PNPIOUegn)] C
BPPa¢n, shown in Corollary 3.4 in [17]. The second inclusion follows from Theorem 13 and the
observation that BPP a4, C PPpayn = PP, also from [17]. 1l

An interesting open question is where exactly BCPP = BPP,, lies between pNP[O(logn)]
and PP. It is conceivable that by cleverly exploiting the power of conditioning to amplify low-
probability events one could show BCPP = PP. However, we will content ourselves with the much
easier observation that the usual amplification technique for BPP also applies to BCPP; as with
other results in this section, this observation follows from the equivalence of BCPP and BPP 5.

Corollary 15 If L € BCPP, then there exists a noncommittal Turing machine M such that the
probability that M accepts conditioned on not abstaining is at least 1 — f(n) if x € L and at most
f(n) if x ¢ L, where n = |z| and f(n) is any function of the form 2=°0) for some constant ¢ > 0.

Proof: Immediate from Theorem 13 and Theorem 3.1 of [17]. Il

4.3.3 Promise Problems and Promise-BCPP

Part of the motivation for defining BCPP and CPP was to identify exactly the complexity of solving
bounded and unbounded market prediction. Unfortunately, while we can show that bounded
market prediction is hard for BCPP, in the sense that any problem in BCPP reduces to bounded
market prediction, it is not clear that bounded market prediction is actually contained in BCPP.

The reason is that the definition of BCPP does not allow excluding bad inputs. Though we
don’t care what our BCPP machine does when given an instance of market prediction in which
the next day’s price movement is not predictable, the definition of the class still requires that the
machine produce more than % + € accepting or rejecting paths. The natural solution to bounded
market prediction using a noncommittal machine does not have this property, and it is not clear
that we can guarantee it in general. Instead, we define a promise-problem version of BCPP, and
show (in Section 4.3.4) that bounded market prediction is complete for this class.
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Definition 16 The class promise-BCPP consists of all pairs of predicates (@, R) for which there
exists a constant € > 0 and a polynomial-time noncommittal Turing machine M such that for all
z € Q, (1) z € R implies that a fraction of at least % + € of the total number of accepting and
rejecting paths are accepting and (2) z ¢ R implies that a fraction of at least % + € of the total
number of accepting and rejecting paths are rejecting.

A pair of predicates (@, R), in which @) specifies which inputs are valid and R specifies which
valid inputs should be accepted, is called a promise problem [13,14]. Polynomial-time reductions,
as defined for languages, have a natural analog for promise problems: (@, R) is polynomial-time
reducible to (@', R') if and only if there is a polynomial-time function f such that (a) f(Q) C f(Q"),
and (b) for all z € Q, f(z) € R’ if and only if z € R.? Similarly, a particular promise problem is
hard for a class of such problems if every problem in the class reduces to it in polynomial-time,
and that it is complete for a class if it is both hard for the class and contained in the class.

There is also a natural correspondence between promise problems and standard languages. A
solution to a promise problem (Q, R) is a language L for which L and R agree on inputs in Q;
in this way promise problems can be turned into languages. In the other direction, any standard
language L can be through of as a promise problem (true, L).

With this correspondence, we can easily see that BCPP = BPP ;4 is contained in promise-BCPP,
in the sense that for any L in BCPP, (true, L) is in promise-BCPP; and that promise-BCPP is
in turn contained in CPP, in the sense that any problem (@, R) in promise-BCPP has a solution
in CPP(we can just run the noncommittal machine that accepts (Q, R)). We will abuse notation
slightly by writing BPP,:, C promise-BCPP C CPP, eliding the implicit conversions between
languages and promise problems.

4.3.4 Bounded Market Prediction is Promise-BCPP-Complete

In Section 4.3.2, we have defined the complexity class BCPP and observed that it is equal to
BPPpasn, which implies that it contains the powerful class PNPOQogn)]  Tp this section, we show
that solving bounded market prediction solves all problems in BCPP.

In a sense, this result says that market prediction is a universal prediction problem: if we can
predict a market, we can predict any event conditioned on past history as long as we can sample
from an underlying discrete probability space whose size is at most exponential.

It also says that bounded market prediction is very hard. That is, using Corollaries 15 and 14,
even if the next day’s price is determined with all but an exponentially small probability, it cannot
be solved in the polynomial-time hierarchy unless the hierarchy collapses to a finite level.

Theorem 17 The bounded market prediction problem is complete for promise-BCPP, in either
the AS+FI or the AS+PI model.

Proof: First we show that bounded market prediction is a member of promise-BCPP. Given
a market, construct a noncommittal Turing machine M whose input is the price history and
strategies, and whose random inputs supply the settings for the population variables X;. Let M
abstain if the price history is inconsistent with the input and population variables; depending on
the model, this is either a matter of checking the linear inequalities produced by Lemma 1 or
the equations produced by Lemma 3. Otherwise, M accepts if the market rises and rejects if the
market falls on the next day. The probability that M accepts thus equals the probability that the

2There are many ways to define more complicated reductions involving promise problems; a detailed discussion
of this issue can be found in [5].
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market rises: either more than 2/3 or less than 1/3. Since the problem is to distinguish between
these two cases, M solves the problem within the definition of promise-BCPP.

In the other direction, we will show how to reduce from any promise-BCPP-language L to
bounded market prediction. Suppose (@, R) is accepted by some BCPP-machine M for all 2 €
Q. We will translate M and its input x into a bounded market prediction problem. First use
Corollary 15 to amplify the conditional probability that M accepts to either more than 2/3 or
less than 1/3 as bounded market prediction demands. Then convert M into two polynomial-size
circuits, one computing

0 if M(z,r) =1,
Cl(r):{ 1 if M(z,r) £1,

and the other computing
)0 it M(x,r) # 1
Cilr) = { 1 if M(z,r) = 1.

Without loss of generality we may assume that Cy and C; are built from NOR gates. Applying
Lemma 6 to each yields two sets of constraints Ayy > 0 and A;y > 0 and column vectors cy
and ¢; such that cyy > 0 if and only if Cyy = 1 and cjz > 0 if and only if C(x) = 1, where y
satisfies the previous linear constraints and z is the initial prefix of y counsisting of variables not
introduced by the construction of Lemma 6. We also have from Lemma 6 that there is a one-to-
one correspondence between assignments of = and assignments of y satisfying the A constraints, so
probabilities are not affected by this transformation.

Now use Lemma 2 to construct a market model in which Ayy >0, Ajy > 0, and cyy > 0 are
enforced by the strategies and price history, and sign(c;y) determines the price change on the next
day of trading. Thus the consistent settings of the variables X; are precisely those corresponding
to settings of r for which Cy(r) = 1, or, in other words, those yielding computation paths that do
not abstain. The market rises when C;(r) = 1, or when M accepts. So if we can predict whether
the market rises or falls with conditional probability at least 2/3, we can predict the likely output
of M. It follows that bounded market prediction for the AS+FI model is promise-BCPP-hard.

To show the similar result for the AS+PI model, use Lemma 7 to convert the constraints
Ayy > 0, A1y > 0 into a system of linear equations Bz = 1, and then proceed as before, using
Lemma 4 to convert this system to a price history and letting ¢; z determine the price change (and
thus the sign of the price change) on the next day of trading. il

4.3.5 Unbounded Market Prediction is CPP-Complete

The unbounded market prediction problem seems harder because the probability threshold in
question is % with no ¢ bound in contrast to the thresholds % and % for the bounded market
prediction problem. The following theorem reflects this intuition. However, since we do not know
whether BCPP is distinct from PP, we do not know whether unbounded prediction is strictly

harder.

Theorem 18 The unbounded market prediction problem is complete for CPP = PP, in either the
AS+FI or the AS+PI model.

Proof: Similar to the proof of Theorem 17. il
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5 Future Research Directions

There are many problems left open in this paper. Below we briefly discuss some general directions
for further research.

We have reported a number of simulation and theoretical results for the AS model. As for
empirical analysis, it would be of interest to fit actual market data to the model. We can then
use the estimated parameters to (1) test whether the model has any predicative power and (2)
test the effectiveness of new or known trading algorithms. This direction may require carefully
choosing “realistic” strategies for II. Besides the momentum and contrarian strategies, there are
some popular ones which are worth considering, such as those based on support levels. Investment
newsletters could be a useful source of such strategies.

The AS model is an idealized one. We have chosen such simplicity as a matter of research
methodology. It is relatively easy to design highly complicated models which can generate very
complex market behavior. A more challenging and interesting task is to design the simplest possible
model which can generate the desired market characteristics. For instance, a significant research
direction would be to find the simplest model in which market prediction is computationally hard.
On the other hand, it would be of great interest to find the most general models in which market
prediction takes only polynomial time. For this goal, we can consider injecting more realism into
the model by introducing resource-bounded learning (the generality of IT is equivalent to unbounded
learning), variable memory size, transaction costs, buying power, limit orders, short sell, options,
etc.
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