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We develop a simple agent-based model for a sto
k market [9, 21℄. The agents are tradersequipped with simple trading strategies, and their trades together determine the sto
k pri
es. We�rst 
onsider a basi
 
ase of this model where there are only two strategies, namely, momentumand 
ontrarian strategies. The 
hoi
e of this base model and thus our general model is justi�edat two levels: (1) Experimental and empiri
al studies in the �nan
e literature [1, 4, 7, 10{12, 19℄show that a large number of traders primarily follow these two strategies. (2) Our own simulationresults show that despite its simpli
ity, the base model is 
apable of generating pri
e graphs whi
hare visually similar to the re
ent pri
e movements of high te
h sto
ks (Figures 1 and 2).With these justi�
ations, we then 
onsider the issue of market predi
tability in the generalmodel. We prove that if there are a large number of traders but they employ a relatively smallnumber of strategies, then there is a polynomial-time algorithm to predi
t future pri
e movementswith high a

ura
y (Theorem 5). On the other hand, if there are also a large number of strategies,then the problem of predi
ting future pri
es be
omes 
omputationally very hard. To des
ribe thishardness, we de�ne two new 
omputational 
omplexity 
lasses 
alled CPP and promise-BCPP(De�nitions 8 and 16). We show that some market predi
tion problems are hard for these two
lasses (Theorems 17 and 18) and that PNP[O(logn)℄ � BPPpath � promise-BCPP � CPP = PP.These 
omputational 
ompleteness results open up the possibility that the pri
e graph of ana
tual sto
k 
ould be suÆ
iently deterministi
 for various predi
tion purposes but appear randomto all polynomial-time predi
tion algorithms. This is in 
ontrast to the most popular a
ademi
belief that the future pri
e of a sto
k 
annot be predi
ted from its histori
al pri
es be
ause thelatter are statisti
ally random and 
ontain no information. This new possibility also di�ers fromthe fra
tal-based methodology in that the pri
e graph of a sto
k 
ould be a fra
tal but the fra
talmight not be 
omputable in polynomial time. The �ndings in this paper 
an by no means settle thedebate about market predi
tability. Our goal is only that our alternative approa
h 
ould providenew insights to the predi
tability issue in a systemati
 manner. In parti
ular, it 
ould provide ageneral framework to investigate the many do
umented te
hni
al trading rules [25℄ and to generatenovel and signi�
ant interdis
iplinary resear
h problems for 
omputer s
ien
e and �nan
e.The rest of the paper is organized as follows. Se
tion 2 dis
usses the basi
 market model. Se
-tion 3 formulates the general model. Se
tion 4 proves the 
omplexity results for market predi
tionin the general model. We 
on
lude the paper with some dire
tions for future resear
h in Se
tion 5.2 A Basi
 Market ModelIn this se
tion, we present a very simple market model, 
alled the deterministi
-swit
hing MC(DSMC) model. The letter M stands for a momentum strategy, and the letter C for a 
ontrarianstrategy. These two strategies and the model itself are de�ned in Se
tion 2.1. Some 
omputersimulations for this model are reported in Se
tion 2.2.Intuitively, these strategies are heuristi
s (\rules of thumb") used by traders in the absen
e ofreliable asset valuation models. As dis
ussed in [12℄, a momentum trader may observe a sequen
eof \up" trades (pri
e in
rements) and exe
ute a buy trade in the anti
ipation that she will notbe one of the last buyers, knowing very well that the asset is overpri
ed. Similarly, she may seesome \down" trades (pri
e de
rements) and then make a sell trade in the hope that there will bemore sellers after her. In 
ontrast, after dete
ting a number of \up" (respe
tively, down) trades, a
ontrarian trader may submit a sell (respe
tively, buy) trade, anti
ipating a pri
e reversal.Both experimental and empiri
al studies have shown that traders look at past pri
e dynami
sto form their expe
tations of future pri
es, and a large number of them primarily follow momentumor 
ontrarian strategies [1, 7, 10, 11℄. In addition, the traders may swit
h between these two dia-2



metri
ally opposite strategies. Momentum and 
ontrarian strategies are dominant in the behaviorof professional market timers as well [19℄. The use of momentum and 
ontrarian strategies some-times signi�es gambling tenden
ies among traders [7℄. In fa
t, a market model with momentumand 
ontrarian traders 
an also be interpreted as a market with noise traders and rational traders,where the noise traders essentially follow a momentum strategy while the rational traders attemptto exploit the noise traders by following a 
ontrarian strategy [4, 12℄.2.1 De�ning the DSMC ModelIn the DSMC model, there is only one sto
k traded in the market. The model is 
ompletelyspe
i�ed by three integer parameters m;L; k > 0, and a real parameter � > 0 as follows.There are m traders in the market, and ea
h trader's strategy set 
onsists of momentum (M)and 
ontrarian (C) strategies. At the beginning of day 1 of the investment period, ea
h traderrandomly 
hooses her initial strategy from fM; Cg and an integer `i 2 [2; L℄ with equal probability,where L is the maximum strategy swit
hing period. This is the only sour
e of randomness in theDSMC model; from this point onwards, there is no random 
hoi
e.Rule 1 (Deterministi
 Strategy Swit
hing Rule) For days 1; : : : ; k + 1, there is no trading.Ea
h trader starts trading from day k+2 using her initial strategy. Trader i uses the same strategyfor `i days and swit
hes it at the beginning of every `i days.The next rule de�nes the two strategies with respe
t to a given memory size k, whi
h is thesame for all traders.Rule 2 (Trading Rule) At the beginning of day t, observe the sto
k pri
es Pf of days f 2[t � (k + 1); t � 1℄. For g 2 [t � k; t � 1℄, 
ount the number ku of days g when Pg > Pg�1; andthe number kd of days when Pg < Pg�1. The k-day trend is de�ed as Tr(k; t) = ku � kd. Then, ifTr(k; t) � 0 (respe
tively, < 0), the momentum strategy M buys (respe
tively, sells) one share ofthe sto
k at the market pri
e determined by Rule 3 below. In 
ontrast, the 
ontrarian strategy Csells (respe
tively, buys) one share of the sto
k.For instan
e, suppose that k = 2, and investor i pi
ks her initial strategy M and `i = 2 at thebeginning of day 1. She then observes the pri
es of days 1, 2, 3, whi
h are, say, $80; $82; $90. Atthe beginning of day 4, she issues a market order to buy one share of the sto
k. The orders issuedby the traders on day 4 together determine the pri
e of day 4 as spe
i�ed by Rule 3. Suppose thatthe pri
e of day 4 is $91, then investor i issues another market buy order at the beginning of day5. Sin
e her `i is 2, at the beginning of day 6, she swit
hes her strategy from M to C.Rule 3 (Pri
e Adjustment Rule) The pri
es for days 1; : : : ; k+1 are given. On day t � k+2,let mb and ms be the total numbers of buys and sells, respe
tively. Then, the pri
e Pt on day t isdetermined by the following equation:Pt � Pt�1 = ��(mb �ms);where � is the unit of pri
e 
hange.
3
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Figure 1: A one-year pri
e sequen
e generated using the DSMC model. Parameters: number oftraders m = 20, memory size k = 2, maximum strategy swit
hing period L = 8, unit of pri
e
hange � = 0:25, number of trading days = 250. The pri
e graph appears strikingly similar to there
ent pri
e movements of high te
h sto
ks.
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Figure 2: A one-year pri
e sequen
e generated using the DSMC model. The parameters are thesame as those for Figure 1. 4



2.2 Computer Simulation on the DSMC ModelWe have 
ondu
ted some 
omputer simulations of the DSMC model to test whether it 
an generaterealisti
 pri
e graphs. Be
ause we had to examine the graphs visually, our time 
onstraints limitedthe number of these simulations to only about six hundred. For a large fra
tion of them, we setm = 20, L = 8, and the initial k pri
es in the range of $70 to $90. We then fo
used on testing thee�e
t of memory size k [24℄. Two main �ndings are as follows:� For k = 1, the pri
e graphs were not visually real.� For k = 2, about one out of four graphs were strikingly similar to those of re
ent high te
hsto
ks, whi
h was a major positive surprise to us. Two representatives of su
h graphs areshown in Figures 1 and 2.These two statements are based on our subje
tive impressions and limited simulations. Tofurther understand the DSMC model, it would be useful to automate statisti
al analysis on thepri
e graphs generated by this model and 
ompare them with real sto
k pri
es.3 A General Market ModelIn this se
tion, we de�ne a market model, 
alled the AS model, where the word AS stands forarbitrary strategies. It 
an be veri�ed in a straightforward manner that the DSMC model is aspe
ial 
ase of the AS model.In the AS model, there is only one sto
k traded in the market. The model is 
ompletely spe
i�edas follows with �ve parameters: (1) the number m of traders, (2) a unit � > 0 of pri
e 
hange, (3)a set � = fS1; : : : ;Shg of strategies, (4) a pri
e adjustment rule (Equation 1 or 2 below), and (5)a joint distribution of the population variables X1; : : : ;Xh.Rule 4 (Market Initialization) There are m traders in the market. At the beginning of day 1of the investment period, ea
h trader randomly 
hooses her initial strategy from �. Let Xi be thenumber of traders who 
hoose Si. Then, ea
h Xi is a random variable, whi
h is the only sour
eof randomness in the model. (Unlike the DSMC model, be
ause the allowable generality of �, theAS model does not need strategy swit
hing.)Di�erent joint distributions of the variables Xi lead to di�erent spe
i�
 models and predi
tionproblems. In Se
tion 4.2, we 
onsider joint distributions that tend to Gaussian in the limit as thenumber m of traders be
omes large. In Se
tion 4.3, we 
onsider the 
ase where the variables Xiare independent, and ea
h is 0 or 1 with equal probability.Rule 5 (Trading Strategies) There is no trading on day 0. At the beginning of day t � 1, atrader observes the histori
al pri
es P0; : : : ; Pt�1 and rea
ts by issuing a market order to buy oneshare of the sto
k, hold (i.e., do nothing), or sell one share a

ording her strategy. Formally, astrategy is a 
olle
tion of fun
tions S = fS1;S2; : : : ;St; : : :g, where ea
h St maps P0; : : : ; Pt�1 to+1 (buy), 0 (hold), or �1 (sell).The pri
e Pt of day t is determined at the end of the day by the day's m market ordersusing Rule 6. Sin
e the traders 
hoose their strategies randomly, the sequen
e P0; P1; : : : ; Pt; : : :is a sto
hasti
 pro
ess. We write Ft for the probability spa
e indu
ed by all possible sequen
eshP0; : : : ; Pti [18℄. Then, we think of ea
h fun
tion St as a random variable on Ft�1.We distinguish between strategies that rea
t to pri
e movements and those that ignore them.5



� S is an a
tive strategy if the fun
tions St may or may not be 
onstant fun
tions. An a
tivetrader is one with an a
tive strategy. Examples of a
tive strategies in
lude many used byday traders, who try to 
apture extremely short-term pri
e trends.� S is a passive strategy if the fun
tions St all are 
onstant fun
tions. A passive trader is onewith a passive strategy. Examples of passive strategies in
lude two very popular ones: (1)dollar averaging, whi
h invests an equal amount every day over a 
hosen period, and (2)monthly retirement 
ontributions by edu
ational institutions, whi
h are made on the sameday every month.Rule 6 (Pri
e Adjustment) The pri
e P0 is given. At the end of day t � 1, the pri
e Pt isdetermined by the day's market orders to buy or sell from the traders. We 
onsider two simplerules:With the proportional in
rement (PI) rule,Pt = Pt�1 + �� hXi=1Xi�Sit ; (1)where � is the unit of pri
e 
hange. Thus we 
an observe dire
tly the net di�eren
e between thenumber of buyers and sellers on day t.With the �xed in
rement (FI) rule,Pt = Pt�1 + �� sign hXi=1Xi�Sit! : (2)In this 
ase, the market moves up or down depending on whether the majority of traders are buyingor selling, but the amount by whi
h it moves is �xed at �.For notational brevity, an AS+FI model refers to an AS model with the �xed in
rement rule,and an AS+PI model refers to an AS model with the proportional in
rement rule.In reality, the pri
e tends to move up if there are more buy orders than sell orders; similarly,the pri
e tends to move down if there are more sell orders than buy orders. The FI rule is meant tomodel the sign but not the magnitude of the slope of this 
orrelation, while the PI rule attempts tomodel both. Clearly, there 
an be many other in
rement rules, whi
h this paper leaves for futureresear
h.4 Predi
ting the MarketInformally, the market predi
tion problem at the beginning of day t is de�ned as follows:� The data 
onsists of (1) the �ve parameters of an AS-model, i.e., m, �, �, Xi, and a pri
eadjustment rule, and (2) a pri
e history P0; : : : ; Pt�1.� The goal is to predi
t the pri
e Pt by estimating the 
onditional probabilities Pr[Pt > Pt�1 jP0; : : : ; Pt�1℄, Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄, and Pr[Pt = Pt�1 j P0; : : : ; Pt�1℄.Note that Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ is symmetri
 to Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄ and Pr[Pt =Pt�1 j P0; : : : ; Pt�1℄ = 1 � Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄ � Pr[Pt < Pt�1 j P0; : : : ; Pt�1℄. Thus, fromthis point onwards, our dis
ussion fo
uses on estimating Pr[Pt > Pt�1 j P0; : : : ; Pt�1℄.6



From an algorithmi
 perspe
tive, we sometimes assume that the pri
e adjustment rule and thejoint distribution of the variables Xi are �xed, and that the input to the algorithm is m, �, ades
ription of �, and the pri
e history. This allows di�erent algorithms for di�erent model familiesas well as side-steps the issue of how to represent the possibly very 
ompli
ated joint distribution ofthe variables Xi as part of the input. As for the des
ription of �, we only need Si1; : : : ;Sit for ea
hSi 2 � instead of the whole �, and the des
ription of these fun
tions 
an simpli�ed by restri
tingtheir domains to 
onsist of the pri
e sequen
es 
onsistent with the given pri
e history.4.1 Markets as Systems of Linear ConstraintsIn the AS+FI model with parameters m and �, a pri
e sequen
e P0; : : : ; Pt and � 
an yield a setof linear inequalities in the population variables Xi as follows. If the pri
e 
hanges on day t, wehave sign(Pt � Pt�1) hXi=1 SitXi > 0: (3)If the pri
e does not 
hange, we have instead the equationhXi=1 SitXi = 0: (4)Furthermore, any assignment of the variables Xi that satis�es either inequality is feasible withrespe
t to the 
orresponding pri
e movement on day t. In both 
ases, Sit is 
omputable from thepri
e sequen
e P0; : : : ; Pt�1. The same statements hold for days 1; : : : ; t � 1. Therefore, given mand �, we 
an extra
t from � and P0; : : : ; Pt a set of linear 
onstraints on the variables Xi. The
onverse holds similarly. We formalize these two observations in Lemmas 1 and 2 below.Lemma 1 In the AS+FI model with parameters m and �, given � and a pri
e sequen
e P0; : : : ; P�,there are matri
es A and B with 
oeÆ
ients in f�1; 0;+1g, h 
olumns ea
h, and � rows in total.The rows of A (respe
tively, B) 
orrespond to the days when Pj 6= Pj�1 (respe
tively, Pj = Pj�1).Furthermore. the 
olumn ve
tors x = (X1; : : : ;Xh)> 
onsistent with � and P0; : : : ; P� are exa
tlythose that satisfy Ax > 0 and Bx = 0. The matri
es A and B 
an be 
omputed in time O(h�T ),where T is an upper bound on the time to 
ompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Proof: Follows immediately from Equations 3 and 4.Lemma 2 In the AS+FI model with parameters m and �, given a system of linear inequalitiesAx > 0; Bx = 0, where A and B have 
oeÆ
ients in f�1; 0;+1g with h 
olumns ea
h, and � rowsin total, there exist (1) a set � of h strategies 
orresponding to the h 
olumns of A and B, and(2) a (� + 1)-day pri
e sequen
e P0; : : : ; P� with the latter � days 
orresponding to the � rows ofA and B. Furthermore, the values of the population variables X1; : : : ;Xn are feasible with respe
tto the pri
e movement on day j if and only if 
olumn ve
tor x = (X1; : : : ;Xn)> satis�es the j-th
onstraint in A and B. Also, P0; : : : ; P� and a des
ription of � 
an be 
omputed in O(h�) time.Proof: Follows immediately from Equations 3 and 4.In the AS+PI model we obtain only equations, of the form:hXi=1 SitXi = 1�(Pt � Pt�1): (5)7



In this 
ase there is a dire
t 
orresponden
e between market data and systems of linear equations.We formalize this 
orresponden
e in Lemmas 3 and 4 below.Lemma 3 In the AS+PI model with parameters m and �, given � and a pri
e sequen
e P0; : : : ; P�,there is a matrix B with 
oeÆ
ients in f�1; 0;+1g, h 
olumns, and � rows, and a 
olumn ve
tor bof length h, su
h that the 
olumn ve
tors x = (X1; : : : ;Xh)> 
onsistent with � and P0; : : : ; P� areexa
tly those that satisfy Bx = b. The 
oeÆ
ients of B and b 
an be 
omputed in time O(h�T ),where T is an upper bound on the time to 
ompute a single Sij from P0; : : : ; P� over all j 2 [1; �℄and Si.Proof: Follows immediately from Equation 5.Lemma 4 In the AS+PI model with parameters m and �, given a system of linear equationsBx = b, where B is a � � h matrix with 
oeÆ
ients in f�1; 0;+1g, there exist (1) a set � of hstrategies 
orresponding to the h 
olumns of B, and (2) a (� + 1)-day pri
e sequen
e P0; : : : ; P�with the last � days 
orresponding to the � rows of B. Furthermore, the values of the populationvariables X1; : : : ;Xn are feasible with respe
t to the pri
e movement on day j if and only if 
olumnve
tor x = (X1; : : : ;Xn)> satis�es the j-th 
onstraint in B. Also, P0; : : : ; P� and a des
ription of� 
an be 
omputed in O(h�) time.Proof: Follows immediately from Equation 5.4.2 An Easy Case for Market Predi
tion: Many Traders but Few StrategiesIn Se
tion 4.2.1, we show that if an AS+FI market has far more traders than strategies, then ittakes polynomial time to estimate the probability that the next day's pri
e will rise. In Se
tion4.2.2, we dis
uss why the same analysis te
hnique does not work for an AS+PI market.4.2.1 Predi
ting an AS+FI MarketFor the sake of emphasizing the dependen
e on m, let Prm[E℄ be the probability that event Eo

urs when there are m traders in the market.This se
tion makes the following assumptions:E1 The input to the market predi
tion problem is simply a pri
e history P0; : : : ; Pt�1. The outputis limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄.E2 The market follows the AS+FI model.E3 � is �xed. The values Sij over all i 2 [1; h℄ are 
omputable from the input in total timepolynomial in j.E4 Ea
h of them traders independently 
hooses a random strategy Si from � with �xed probabilitypi > 0, where p1 + � � � + ph = 1.The parameter � is irrelevant.Noti
e that the 
olumn ve
tor X = (X1; : : : ;Xh)> is the sum of m independent identi
ally-distributed ve
tor-valued random variables with a 
enter at p = m�(p1; : : : ; ph)>. We re
enterand res
ale X to Y = (X � m�(p1; : : : ; ph)>)=pm. Then, by the Central Limit Theorem (see,e.g., [3, Theorem 29.5℄), as m ! +1, Y 
onverges weakly to a normal distribution 
entered atthe h-dimensional ve
tor (0; : : : ; 0)>. In Theorem 5 below, we rely on this fa
t to estimate theprobability that the market rises for pri
e histories that o

ur with nonzero probability.8



Theorem 5 Assume that limm!1 Prm[P0; : : : ; Pt�1℄ > 0. Then there is a fully polynomial-timeapproximation s
heme for estimating limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ from P0; : : : ; Pt�1.The time 
omplexity of the s
heme is polynomial in (1) the length t of the pri
e history, (2) theinverse of the relative error bound �, and (3) the inverse of the failure probability �.Remark. We omit the expli
it dependen
y of the running time in h and p1; : : : ; ph in order to
on
entrate on the main point that market predi
tion is easy with this se
tion's four assumptions.The parameters h and p1; : : : ; ph are 
onstant under the assumptions.Proof: We use Lemma 1 to 
onvert the pri
e history P0; : : : ; Pt�1 and the strategy set � intoa system of linear 
onstraints AX > 0 and BX = 0, with the next day's pri
e 
hange Pt � Pt�1determined by sign(
�X 0) for some 
. Sin
e the values Sij are 
omputable in time polynomial in j,this 
onversion takes time polynomial in t.Then, Prm[P0; : : : ; Pt�1℄ = Prm[AX > 0^BX = 0℄. Sin
e limm!1 Prm[AX > 0^BX = 0℄ > 0,the 
onstraints in B must be va
uous; in other words, for ea
h Pi = 0 with i 2 [0; t � 1℄, the
orresponding 
onstraint in B is 0�X1+ � � �+0�Xh = 0. Therefore, Prm[P0; : : : ; Pt�1℄ = Prm[AX >0℄. Furthermore, sin
e both A and 
 are 
onstant with respe
t to m,limm!1Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ = limm!1 Prm[AX > 0 ^ 
�X > 0℄limm!1 Prm[AX > 0℄ : (6)So to 
ompute the desired limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄, we 
ompute limm!1 Prm[AX >0 ^ 
�X > 0℄ and limm!1 Prm[AX > 0℄ as follows.To avoid the degenera
y 
aused by Phi=1Xi = m, we work with X 0 = (X1; : : : ;Xh�1)> insteadof X by repla
ing Xh with m �Ph�1i=1 Xi and making related 
hanges. Let p0 = (p1; : : : ; ph�1)>,whi
h is the 
enter of X 0. As is true for Y , as m ! +1, the ve
tor Y 0 = (X 0 � m�p0)=pm
onverges weakly to a normal distribution 
entered at the (h � 1)-dimensional point (0; : : : ; 0)> .Under the assumption that ea
h pi is nonzero, the distribution of Y 0 is full-dimensional (withinits restri
ted (h � 1)-dimensional spa
e), as in the limit the varian
e of ea
h 
oordinate Y 0i isnonzero 
onditioned on the values of the other 
oordinates, whi
h implies that the smallest subspa
e
ontaining the distribution must 
ontain all h� 1 axes. We 
an 
al
ulate the 
ovarian
e matrix ofY 0 dire
tly from the pi, as it is equal to the 
ovarian
e matrix for a single trader: on the diagonal,Cii = pi � p2i ; and for o�-diagonal elements, Cij = �pipj. Given C, Y 0 has density �(x) = aex>Cxfor some 
onstant a, and we 
an evaluate this density in O(h2) time given x, whi
h is O(1) timeunder our assumption that � is �xed.Let Ai be the i-th 
onstraint of A, i.e., Ai;1X1+ � � �+Ai;hXh > 0. Let A0i denote the 
onstraint(Ai;1 �Ai;h; : : : ; Ai;h�1 �Ai;h). Let 
0 = (
1 � 
h; : : : ; 
h�1 � 
h).We next 
onvert the 
onstraints of A on X into 
onstraints on Y 0. First of all, noti
e thatAiX = pm�(A0iY 0) +m�Aip. So AiX > 0 if and only if A0iY 0 > �pm�Aip. The term �pm�Aipmay not be 
onstant. In su
h a 
ase, as m ! 1, the hyper plane bounding the half spa
eA0iY 0 > �pm�Aip keeps moving away from the origin, whi
h presents some te
hni
al 
ompli
ation.To remove this problem, we analyze the term in three 
ases. If Aip < 0, then sin
e m�p is the
enter of X, as m ! 1, Prm[AiX < 0℄ 
onverges to 1. In other words, Ai is infeasible withprobability 1 in the limit. Then, sin
e limm!1 Prm[P0; : : : ; Pt�1℄ > 0, su
h Ai 
annot exist inA. Similarly, if Aip > 0, then limm!1 Prm[AiX > 0℄ = 1 and Ai is va
uous. The interesting
onstraints are those for whi
h Aip = 0; in this 
ase, by algebra, AiX > 0 if and only if A0iY 0 > 0.Thus, let D be the matrix formed by these 
onstraints; D 
an be 
omputed in O(ht) time. Then,sin
e D is 
onstant with respe
t to m, limm!1Prm[AX > 0℄ = limm!1 Prm[DY 0 > 0℄. Similarly,Prm[AX > 0 ^ 
�X > 0℄ 
onverges to (1) 0, (2) Prm[DY 0 > 0℄, or (3) Prm[DY 0 > 0 ^ 
0�Y 0 > 0℄ for
ase (1) 
�p < 0, 
ase (2) 
�p > 0, or 
ase (3) 
�p = 0, respe
tively.9



Therefore, by Equation 6, limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ equals 0 for 
ase (1) andequals 1 for 
ase (2). Case (3) requires further 
omputation.limm!1Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ = limm!1 Prm[DY 0 > 0 ^ 
0�Y 0 > 0℄limm!1 Prm[DY 0 > 0℄ : (7)The numerator and denominator of the ratio in Equation 7 are both integrals of the distributionof Y 0 in the limit over the bodies of possibly in�nite 
onvex polytopes. To deal with the possiblein�niteness of the 
onvex bodies DY 0 > 0 ^ 
0�Y 0 > 0 and DY 0 > 0, noti
e that the densitydrops exponentially. So we 
an trun
ate the regions of integration to some �nite radius aroundthe (h � 1)-dimensional origin (0; : : : ; 0)> with only exponentially small loss of pre
ision. Finally,sin
e the distribution of Y 0 in the limit is normal, by applying the Applegate-Kannan integrationalgorithm for log-
on
ave distributions [2℄ to the numerator and denominator separately, we 
anapproximate limm!1 Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ within the desired time 
omplexity.4.2.2 Remarks on Predi
ting an AS+PI MarketThe probability estimation te
hnique based on taking m to 1 does not appear to be appli
able tothe AS+PI model for the following reasons.First of all, by Lemma 3, the input pri
e history indu
es a system of linear equations BX = b.If any equation in BX = b is not equivalent to X1 + � � �+Xh = m or 0�X1 + � � �+ 0�Xh = 0, thenlimm!1Prm[P0; : : : ; Pt�1℄ = 0.A natural attempt to over
ome this seemingly te
hni
al diÆ
ulty would be to (1) solve BX = bto 
hoose a maximal set U of independent variables Xi and (2) evaluate Prm[P0; : : : ; Pt�1℄ in theprobability spa
e indu
ed by this set. Still, a single 
onstraint su
h as Bi;1�X1+� � �+Bi;h�Xh = ��m0with Bi;j � 0 for all j 2 [1; h℄ and Bi;j0 > 0 for some Xj0 2 U for
es limm!1 Prm[P0; : : : ; Pt�1℄ = 0in the new probability spa
e. This is due to the fa
t that m0 is 
onstant with respe
t to m.A further attempt would be to evaluate limm!1Prm[Pt > Pt�1 j P0; : : : ; Pt�1℄ by dire
tlyworking with the probability spa
e indu
ed by P0; : : : ; Pt�1. This also does not work be
ause weshow below that the market predi
tion problem 
an be redu
ed to the 
ase where taking a limitin m has no e�e
t on the distribution of the strategy 
ounts. Suppose that we are given a marketwhi
h follows the assumptions E1, E3, and E4 of Se
tion 4.2.1 ex
ept that this market uses the PIrule and has m0 traders. We 
onstru
t a new market with any m � m0 traders with the followingmodi�
ations:1. The pri
e history P0; : : : ; Pt�1 is extended with an extra day into P 00; : : : ; P 0t�1; P 0t , whereP 0j = Pj for 0 � j � t� 1. Ea
h strategy Si is extended into a new strategy S 0i where (1) onday j 2 [1; t � 1℄, S 0i(P0; : : : ; Pj�1) = Si(P0; : : : ; Pj�1), (2) on day t, S 0i always buys, and (3)on day t+ 1, S 0i(P 00; : : : ; P 0t ) = Si(P0; : : : ; Pt�1). Thus, P 0t = P 0t�1 + ��m0.2. Add a passive strategy S 0h+1 that always holds.3. Let p0i = 12pi for 1 � i � h and p0h+1 = 12 .Note that sin
e P 0t � P 0t�1 = ��m0, m �m0 traders 
hoose the passive strategy Sh+1. Also, thenew market and the new pri
e history 
an a

ommodate any m � m0 traders. Note that be
auseof the 
onstraint P 0t � P 0t�1 = ��m0, the probability distribution of (X1; � � � ;Xh)> 
onditionedon P 00; : : : ; P 0t in the new market for ea
h m � m0 is identi
al to the probability distribution of(X1; � � � ;Xh)> 
onditioned on P0; : : : ; Pt�1 in the original market with m = m0. Furthermore,10



Prm[P 0t+1 > P 0t j P 00; : : : ; P 0t ℄ = Prm0 [Pt > Pt�1 j P0; : : : ; Pt�1℄. So we have obtained the desiredredu
tion.Consequently, we are left with a situation where the number of a
tive strategies may be 
om-parable to the number of traders. Su
h a market turns out to be very hard to predi
t, as shownnext in Se
tion 4.3.4.3 A Hard Case for Market Predi
tion: Many StrategiesSe
tion 4.2 shows that predi
ting an AS+FI market is easy (i.e., takes polynomial time) when thenumberm of traders vastly ex
eeds the number h of strategies. In this se
tion, we 
onsider the 
asewhere every trader may have a distin
t strategy, and show that predi
ting an AS+FI or AS+PImarket be
omes very hard indeed.We now de�ne two de
ision-problem versions of market predi
tion. Both versions make thefollowing assumption:� Ea
h Xi is independently either 0 or 1 with equal probability.The bounded market predi
tion problem is:� Input: a set of n passive strategies and a pri
e history spanning n days su
h that the proba-bility that the market rises on day n+1 
onditioned on the pri
e history is either (1) greaterthan 2=3 or (2) less than 1=3.� Question: Whi
h 
ase is it, 
ase (1) or 
ase (2)?The output of boundedmarket predi
tion is not de�ned when the input does not yield a boundedprobability of a rise or fall on the next day. Bounded market predi
tion is thus an example of apromise problem [13, 14℄, de�ned as a pair of predi
ates (Q;R) where Q, the promise, spe
i�eswhi
h inputs are permitted, and R spe
i�es whi
h inputs in Q are 
ontained in the language.The unbounded market predi
tion problem is:� Input: a set of n passive strategies and a pri
e history spanning n days.� Question: Is the probability that the market rises on day n + 1 
onditioned on the pri
ehistory greater than 1/2 (without the usual � term)?The unbounded market predi
tion problem has less �nan
ial payo� than the bounded one dueto di�erent probability thresholds. For ea
h of these two problems, there are in e�e
t two versions,depending on whi
h pri
e in
rement rule is used; however, both versions turn out to be equallyhard. These two problems 
an be analyzed by similar te
hniques, and our dis
ussion below fo
useson the bounded market predi
tion problem with a hardness theorem for the unbounded marketpredi
tion problem in Se
tion 4.3.5.We show in Se
tion 4.3.1 how to 
onstru
t passive strategies and pri
e histories su
h thatsolving bounded market predi
tion is equivalent to estimating the probability that a Boolean
ir
uit outputs 1 on a random input 
onditioned on a se
ond 
ir
uit outputting 1. In Se
tion4.3.2, we show that this problem is hard for PNP[O(logn)℄ and 
omplete for a 
lass that lies betweenPNP[O(log n)℄ and PP. Thus bounded market predi
tion is not merely NP-hard, but 
annot be solvedin the polynomial-time hierar
hy at all unless the hierar
hy 
ollapses to a �nite level.
11



4.3.1 Redu
tions from Cir
uits to MarketsLemma 6 
onverts a 
ir
uit into a system of linear inequalities, while Lemma 7 
onverts a systemof linear inequalities into a system of linear equations. These systems 
an then be 
onverted intoAS+FI and AS+PI market models using Lemmas 2 and 4, respe
tively.Note that the restri
tion in Lemma 6 to 
ir
uits 
onsisting of 2-input NOR gates is not anobsta
le to representing arbitrary 
ombinatorial 
ir
uits (with 
onstant blow-up), as 2-input NORgates are universal.Lemma 6 For any n-input Boolean 
ir
uit C 
onsisting of m 2-input NOR gates, there exists asystem Ax > 0 of 3m+2 linear 
onstraints in n+m+2 unknowns and a length n+m+2 
olumnve
tor 
 with the following properties:1. Both A and 
 have 
oeÆ
ients in f�1; 0;+1g that 
an be 
omputed in time O((n+m)2).2. Any 0-1 ve
tor (x1; : : : ; xn) has a unique 0-1 extension x = (x1; : : : ; xn; xn+1; : : : xn+m+2)satisfying Ax > 0.3. If Ax > 0, then 
x > 0 if and only if C(x1; x2; : : : ; xn) = 1.Proof: Let xn+k represent the output of the k-th NOR gate, where 1 � k � m. Without lossof generality we assume that gate m is the output gate.The variables xn+m+1 and xn+m+2 are dummies to allow for a zero right-hand-side in Ax > 0;our �rst two 
onstraints are xn+m+1 > 0 and xn+m+2 > 0.Suppose gate k has inputs xi and xj . The NOR operation is implemented by the followingthree linear inequalities: xi + xn+k < 2;xj + xn+k < 2;xi + xj + xn+k > 0:The �rst two 
onstraints ensure that the output is never 1 if an input is 1, while the last requires thatthe output is 1 if both inputs are 0; the 
onstraints are thus satis�ed if and only if xn+k = :(xi_xj).Using the dummy variables, the �rst two 
onstraints are written as�xi � xn+k + xn+m+1 + xn+m+2 > 0;�xj � xn+k + xn+m+1 + xn+m+2 > 0:Let Ax > 0 be the system obtained by 
ombining all of these inequalities. Then for ea
h(x1; : : : ; xn), Ax > 0 determines xn+k for all k � 1. The ve
tor 
 is 
hosen so that 
x = xn+m.One might suspe
t that the �xed in
rement rule's ability to hide the exa
t values of the left-handside of ea
h 
onstraint is 
riti
al to disguise the inner workings of the 
ir
uit. However, by addingsla
k variables we 
an translate the inequalities into equations, allowing the use of a proportionalin
rement rule without revealing extra information.Lemma 7 Let Ax > 0 be a system of m linear inequalities in n variables where A has 
oeÆ
ientsin f�1; 0;+1g. Then there is a system By = 1 of mn�m+1 linear equations in 2mn�3m+n+1variables with the following properties:1. B has 
oeÆ
ients in f�1; 0;+1g that 
an be 
omputed in time O((mn)2).2. There is a bije
tion f : x 7! y between the 0-1 solutions x to Ax > 0 and the 0-1 solutions yto By = 1, su
h that xj = yj for 1 � j � n whenever y = f(x).12



Proof: For ea
h 1 � i � m, let Ai be the 
onstraint Pj Aijxj > 0. To turn these inequalitiesinto equations, we add sla
k variables to soak up any ex
ess over 1, with some additional 
are takento ensure that there is a unique assignment to the sla
k variables for ea
h setting of the variablesxj . We will use the following 0-1 variables, whi
h we think of as alternate names for y1 throughy2mn�3m+n+1:Variables Purpose Indi
es Countxj original variables 1 � j � n nu 
onstant 1 none 1sij sla
k variables for Ai 1 � i � m; 1 � j � n� 1 m(n� 1)tij sla
k variables for sij � si;j+1 1 � i � m; 1 � j � n� 2 m(n� 2)Name Equation Purpose Indi
es CountU u = 1 set u none 1Bi Pj Aijxj �Pj sij = 1 represent Ai 1 � i � m mSij sij � si;j+1 � tij + u = 1 require sij � si;j+1 1 � i � m, 1 � j � n� 2 m(n� 2)Observe that for ea
h i, Pj sij 
an take on any integer value �i between 0 and n� 1, and thatfor any �xed value of �i, the Sij 
onstraints uniquely determine the values of sij and tij for all j.So ea
h 
onstraint Bi permits �i = Pj Aijxj to take on pre
isely the same values 1 to n that Aidoes, and ea
h �i uniquely determines �i and thus the assignment of all sij and tij .4.3.2 Conditional Probability Complexity ClassesSuppose that we take a polynomial-time probabilisti
 Turing ma
hine, �x its inputs, and use theusual Cook's Theorem 
onstru
tion to turn it into a 
ir
uit whose inputs are the random bits usedduring its 
omputation. Then, we 
an feed the resulting 
ir
uit to Lemmas 6 and 2 to obtain anAS+FI market model in whi
h there is exa
tly one assignment of population variables for ea
h setof random bits, and the pri
e rises on the last day if and only if the output of the Turing ma
hine is1. By applying Lemma 7 to the intermediate system of linear inequalities, we 
an similarly 
onverta 
ir
uit to an AS+PI model. It follows that bounded market predi
tion is BPP-hard for eithermodel. But with some 
leverness, we 
an exploit the 
onditioning on past history to show thatbounded market predi
tion is in fa
t mu
h harder than this. We do so in Se
tion 4.3.4, after abrief detour through 
omputational 
omplexity in this se
tion.We pro
eed to de�ne some new 
ounting 
lasses based on 
onditional probabilities. One ofthese, BCPP, has the useful feature that bounded market predi
tion solves all problems in BCPP,and is 
omplete for the \promise problem" version of BCPP, whi
h we will write as promise-BCPPand whi
h we de�ne in Se
tion 4.3.3. We will use this fa
t to relate the 
omplexity of boundedmarket predi
tion to more traditional 
omplexity 
lasses.The usual 
ounting 
lasses of 
omplexity theory (PP, BPP, R, ZPP, C=, et
.) are de�nedin terms of 
ounting the relative numbers of a

epting and reje
ting states of a nondeterministi
Turing ma
hine. We will de�ne a new family of 
ounting 
lasses by adding a third de
ision statethat does not 
ount for the purposes of determining a

eptan
e or reje
tion.A non
ommittal Turing ma
hine is a nondeterministi
 Turing ma
hine with three de
isionstates: a

ept, reje
t, and abstain. We represent a non
ommittal Turing ma
hine as a deterministi
Turing ma
hine whi
h takes a polynomial number of random bits in addition to its input; ea
h13



assignment of the random bits gives a distin
t 
omputation path. A 
omputation path is a

ept-ing/reje
ting/abstaining if it ends in an a

ept/reje
t/abstain state, respe
tively. We often write1, 0, or ? as shorthand for the output of an a

epting, reje
ting, or abstaining path.Conditional versions of the usual 
ounting 
lasses are obtained by 
arrying over their de�nitionsfrom standard nondeterministi
 Turing ma
hines to non
ommittal Turing ma
hines, with some 
arein handling the 
ase of no a

epting or reje
ting paths. We 
an still think of these modi�ed 
lassesas 
orresponding to probabilisti
 ma
hines, but now the probabilities we are interested in are
onditioned on not abstaining.De�nition 8 The 
onditional probabilisti
 polynomial-time 
lass (CPP) 
onsists of those languagesL for whi
h there exists a polynomial-time non
ommittal Turing ma
hine M su
h that x 2 L ifand only if the number of a

epting paths when M is run with input x ex
eeds the number ofreje
ting paths.De�nition 9 The bounded 
onditional probabilisti
 polynomial-time 
lass (BCPP) 
onsists of thoselanguages L for whi
h there exists a 
onstant � > 0 and a polynomial-time non
ommittal Turingma
hine M su
h that (1) x 2 L implies that a fra
tion of at least 12 + � of the total number ofa

epting and reje
ting paths are a

epting and (2) x =2 L implies that a fra
tion of at least 12 + �of the total number of a

epting and reje
ting paths are reje
ting.De�nition 10 The 
onditional randomized polynomial-time 
lass (CR) 
onsists of those languagesL for whi
h there exists a 
onstant � > 0 and a polynomial-time non
ommittal Turing ma
hineM su
h that (1) x 2 L implies that a fra
tion of at least � of the total number of a

epting andreje
ting paths are a

epting, and (2) x =2 L implies that there are no a

epting paths.As we show in Theorems 11 and 12, CPP and CR turn out to be the same as the un
onditional
lasses PP and NP, respe
tively.Theorem 11 CPP = PP.Proof: First of all, PP � CPP be
ause a PP ma
hine is a CPP ma
hine that happensnot to have any abstaining paths. For the inverse dire
tion, represent ea
h abstaining path of aCPP ma
hine by a pair 
onsisting of one a

epting and one reje
ting path, and ea
h a

epting orreje
ting path by two a

epting or reje
ting paths. Then the resulting PP ma
hine a

epts if andonly if the CPP ma
hine does.Theorem 12 CR = NP.Proof: To show NP � CR, repla
e ea
h reje
ting path of an NP ma
hine with an abstainingpath in a CR ma
hine. For the inverse dire
tion, repla
e ea
h abstaining path of the CR ma
hinewith a reje
ting path in the NP ma
hine.The 
lass BCPP is more obs
ure; it is equivalent to the threshold version of BPP, BPPpath[17℄.1. The 
lass BPPpath is de�ned as the 
lass of all languages a

epted by a threshold ma
hinewith threshold 12 + � for some � > 0, where a threshold ma
hine a

epts or reje
ts if at least a �xedproportion of its 
omputation paths a

ept or reje
t, with ea
h 
omputation path 
ounted as onewithout regard to its probability.1We are grateful to Lan
e Fortnow[16℄ for pointing out this equivalen
e14



Theorem 13 BCPP = BPPpath.Proof: To show BCPP � BPPpath, repla
e ea
h abstaining path with one a

epting and onereje
ting path. To show BPPpath � BCPP, we must normalize the BPPpath 
omputation so thatall paths in
lude the same number of bran
hes. Suppose that in some BPPpath 
omputation, thenumber of bran
hes on any path is bounded by some polynomial T (n). Extend ea
h path in theBPPpath ma
hine with k < T (n) bran
hes into 2T (n)�k paths in the BCPP ma
hine, of whi
h allbut one are abstaining and the remaining path a

epts or reje
ts depending on the output of the
orresponding BPPpath path.BCPP = BPPpath is a mu
h stronger 
lass than the analogous non-
onditional 
lass BPP. Forexample, if one takes a NP ma
hine and repla
es ea
h a

epting path with exponentially manya

epting paths and ea
h reje
ting path with an equally large family of abstaining paths sprinkledwith a single reje
ting path, the result is a BCPP ma
hine that a

epts the same language as theNP ma
hine. By repeating this sort of ampli�
ation of \good" paths, BCPP 
an in fa
t simulateO(log n) queries of an NP-ora
le. Be
ause of the equivalen
e of BCPP and BPPpath, we 
an showthis formally by using similar results for BPPpath from [17℄.Corollary 14 PNP[O(log n)℄ � BCPP � PP.Proof: The �rst in
lusion is immediate from Theorem 13 and the fa
t that PNP[O(log n)℄ �BPPpath, shown in Corollary 3.4 in [17℄. The se
ond in
lusion follows from Theorem 13 and theobservation that BPPpath � PPpath = PP, also from [17℄.An interesting open question is where exa
tly BCPP = BPPpath lies between PNP[O(logn)℄and PP. It is 
on
eivable that by 
leverly exploiting the power of 
onditioning to amplify low-probability events one 
ould show BCPP = PP. However, we will 
ontent ourselves with the mu
heasier observation that the usual ampli�
ation te
hnique for BPP also applies to BCPP; as withother results in this se
tion, this observation follows from the equivalen
e of BCPP and BPPpath.Corollary 15 If L 2 BCPP, then there exists a non
ommittal Turing ma
hine M su
h that theprobability that M a

epts 
onditioned on not abstaining is at least 1 � f(n) if x 2 L and at mostf(n) if x =2 L, where n = jxj and f(n) is any fun
tion of the form 2�O(n
) for some 
onstant 
 > 0.Proof: Immediate from Theorem 13 and Theorem 3.1 of [17℄.4.3.3 Promise Problems and Promise-BCPPPart of the motivation for de�ning BCPP and CPP was to identify exa
tly the 
omplexity of solvingbounded and unbounded market predi
tion. Unfortunately, while we 
an show that boundedmarket predi
tion is hard for BCPP, in the sense that any problem in BCPP redu
es to boundedmarket predi
tion, it is not 
lear that bounded market predi
tion is a
tually 
ontained in BCPP.The reason is that the de�nition of BCPP does not allow ex
luding bad inputs. Though wedon't 
are what our BCPP ma
hine does when given an instan
e of market predi
tion in whi
hthe next day's pri
e movement is not predi
table, the de�nition of the 
lass still requires that thema
hine produ
e more than 12 + � a

epting or reje
ting paths. The natural solution to boundedmarket predi
tion using a non
ommittal ma
hine does not have this property, and it is not 
learthat we 
an guarantee it in general. Instead, we de�ne a promise-problem version of BCPP, andshow (in Se
tion 4.3.4) that bounded market predi
tion is 
omplete for this 
lass.15



De�nition 16 The 
lass promise-BCPP 
onsists of all pairs of predi
ates (Q;R) for whi
h thereexists a 
onstant � > 0 and a polynomial-time non
ommittal Turing ma
hine M su
h that for allx 2 Q, (1) x 2 R implies that a fra
tion of at least 12 + � of the total number of a

epting andreje
ting paths are a

epting and (2) x =2 R implies that a fra
tion of at least 12 + � of the totalnumber of a

epting and reje
ting paths are reje
ting.A pair of predi
ates (Q;R), in whi
h Q spe
i�es whi
h inputs are valid and R spe
i�es whi
hvalid inputs should be a

epted, is 
alled a promise problem [13, 14℄. Polynomial-time redu
tions,as de�ned for languages, have a natural analog for promise problems: (Q;R) is polynomial-timeredu
ible to (Q0; R0) if and only if there is a polynomial-time fun
tion f su
h that (a) f(Q) � f(Q0),and (b) for all x 2 Q, f(x) 2 R0 if and only if x 2 R.2 Similarly, a parti
ular promise problem ishard for a 
lass of su
h problems if every problem in the 
lass redu
es to it in polynomial-time,and that it is 
omplete for a 
lass if it is both hard for the 
lass and 
ontained in the 
lass.There is also a natural 
orresponden
e between promise problems and standard languages. Asolution to a promise problem (Q;R) is a language L for whi
h L and R agree on inputs in Q;in this way promise problems 
an be turned into languages. In the other dire
tion, any standardlanguage L 
an be through of as a promise problem (true; L).With this 
orresponden
e, we 
an easily see that BCPP = BPPpath is 
ontained in promise-BCPP,in the sense that for any L in BCPP, (true; L) is in promise-BCPP; and that promise-BCPP isin turn 
ontained in CPP, in the sense that any problem (Q;R) in promise-BCPP has a solutionin CPP(we 
an just run the non
ommittal ma
hine that a

epts (Q;R)). We will abuse notationslightly by writing BPPpath � promise-BCPP � CPP, eliding the impli
it 
onversions betweenlanguages and promise problems.4.3.4 Bounded Market Predi
tion is Promise-BCPP-CompleteIn Se
tion 4.3.2, we have de�ned the 
omplexity 
lass BCPP and observed that it is equal toBPPpath, whi
h implies that it 
ontains the powerful 
lass PNP[O(logn)℄. In this se
tion, we showthat solving bounded market predi
tion solves all problems in BCPP.In a sense, this result says that market predi
tion is a universal predi
tion problem: if we 
anpredi
t a market, we 
an predi
t any event 
onditioned on past history as long as we 
an samplefrom an underlying dis
rete probability spa
e whose size is at most exponential.It also says that bounded market predi
tion is very hard. That is, using Corollaries 15 and 14,even if the next day's pri
e is determined with all but an exponentially small probability, it 
annotbe solved in the polynomial-time hierar
hy unless the hierar
hy 
ollapses to a �nite level.Theorem 17 The bounded market predi
tion problem is 
omplete for promise-BCPP, in eitherthe AS+FI or the AS+PI model.Proof: First we show that bounded market predi
tion is a member of promise-BCPP. Givena market, 
onstru
t a non
ommittal Turing ma
hine M whose input is the pri
e history andstrategies, and whose random inputs supply the settings for the population variables Xi. Let Mabstain if the pri
e history is in
onsistent with the input and population variables; depending onthe model, this is either a matter of 
he
king the linear inequalities produ
ed by Lemma 1 orthe equations produ
ed by Lemma 3. Otherwise, M a

epts if the market rises and reje
ts if themarket falls on the next day. The probability that M a

epts thus equals the probability that the2There are many ways to de�ne more 
ompli
ated redu
tions involving promise problems; a detailed dis
ussionof this issue 
an be found in [5℄. 16



market rises: either more than 2=3 or less than 1=3. Sin
e the problem is to distinguish betweenthese two 
ases, M solves the problem within the de�nition of promise-BCPP.In the other dire
tion, we will show how to redu
e from any promise-BCPP-language L tobounded market predi
tion. Suppose (Q;R) is a

epted by some BCPP-ma
hine M for all x 2Q. We will translate M and its input x into a bounded market predi
tion problem. First useCorollary 15 to amplify the 
onditional probability that M a

epts to either more than 2=3 orless than 1=3 as bounded market predi
tion demands. Then 
onvert M into two polynomial-size
ir
uits, one 
omputing C6?(r) = ( 0 if M(x; r) =?;1 if M(x; r) 6=?;and the other 
omputing C1(r) = ( 0 if M(x; r) 6= 1;1 if M(x; r) = 1:Without loss of generality we may assume that C6? and C1 are built from NOR gates. ApplyingLemma 6 to ea
h yields two sets of 
onstraints A 6?y > 0 and A1y > 0 and 
olumn ve
tors 
6?and 
1 su
h that 
 6?y > 0 if and only if C6?y = 1 and 
1x > 0 if and only if C1(x) = 1, where ysatis�es the previous linear 
onstraints and x is the initial pre�x of y 
onsisting of variables notintrodu
ed by the 
onstru
tion of Lemma 6. We also have from Lemma 6 that there is a one-to-one 
orresponden
e between assignments of x and assignments of y satisfying the A 
onstraints, soprobabilities are not a�e
ted by this transformation.Now use Lemma 2 to 
onstru
t a market model in whi
h A 6?y > 0, A1y > 0, and 
6?y > 0 areenfor
ed by the strategies and pri
e history, and sign(
1y) determines the pri
e 
hange on the nextday of trading. Thus the 
onsistent settings of the variables Xi are pre
isely those 
orrespondingto settings of r for whi
h C6?(r) = 1, or, in other words, those yielding 
omputation paths that donot abstain. The market rises when C1(r) = 1, or when M a

epts. So if we 
an predi
t whetherthe market rises or falls with 
onditional probability at least 2=3, we 
an predi
t the likely outputof M . It follows that bounded market predi
tion for the AS+FI model is promise-BCPP-hard.To show the similar result for the AS+PI model, use Lemma 7 to 
onvert the 
onstraintsA6?y > 0, A1y > 0 into a system of linear equations Bz = 1, and then pro
eed as before, usingLemma 4 to 
onvert this system to a pri
e history and letting 
1z determine the pri
e 
hange (andthus the sign of the pri
e 
hange) on the next day of trading.4.3.5 Unbounded Market Predi
tion is CPP-CompleteThe unbounded market predi
tion problem seems harder be
ause the probability threshold inquestion is 12 with no � bound in 
ontrast to the thresholds 23 and 13 for the bounded marketpredi
tion problem. The following theorem re
e
ts this intuition. However, sin
e we do not knowwhether BCPP is distin
t from PP, we do not know whether unbounded predi
tion is stri
tlyharder.Theorem 18 The unbounded market predi
tion problem is 
omplete for CPP = PP, in either theAS+FI or the AS+PI model.Proof: Similar to the proof of Theorem 17.
17



5 Future Resear
h Dire
tionsThere are many problems left open in this paper. Below we brie
y dis
uss some general dire
tionsfor further resear
h.We have reported a number of simulation and theoreti
al results for the AS model. As forempiri
al analysis, it would be of interest to �t a
tual market data to the model. We 
an thenuse the estimated parameters to (1) test whether the model has any predi
ative power and (2)test the e�e
tiveness of new or known trading algorithms. This dire
tion may require 
arefully
hoosing \realisti
" strategies for �. Besides the momentum and 
ontrarian strategies, there aresome popular ones whi
h are worth 
onsidering, su
h as those based on support levels. Investmentnewsletters 
ould be a useful sour
e of su
h strategies.The AS model is an idealized one. We have 
hosen su
h simpli
ity as a matter of resear
hmethodology. It is relatively easy to design highly 
ompli
ated models whi
h 
an generate very
omplex market behavior. A more 
hallenging and interesting task is to design the simplest possiblemodel whi
h 
an generate the desired market 
hara
teristi
s. For instan
e, a signi�
ant resear
hdire
tion would be to �nd the simplest model in whi
h market predi
tion is 
omputationally hard.On the other hand, it would be of great interest to �nd the most general models in whi
h marketpredi
tion takes only polynomial time. For this goal, we 
an 
onsider inje
ting more realism intothe model by introdu
ing resour
e-bounded learning (the generality of � is equivalent to unboundedlearning), variable memory size, transa
tion 
osts, buying power, limit orders, short sell, options,et
.A
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