
Mutation Systems?

Dana Angluin, James Aspnes, and Raonne Barbosa Vargas

Department of Computer Science, Yale University

Abstract. We propose Mutation Systems as a model of the evolution of a string
subject to the effects of mutations and a fitness function. One fundamental ques-
tion about such a system is whether knowing the rules for mutations and fitness,
we can predict whether it is possible for one string to evolve into another. To
explore this issue we define a specific kind of mutation system with point muta-
tions and a fitness function based on conserved strongly k-testable string patterns.
We show that for k ≥ 2, such systems can simulate computation by both finite
state machines and asynchronous cellular automata. The cellular automaton sim-
ulation shows that in this framework, universal computation is possible and the
question of whether one string can evolve into another is undecidable. We also
analyze the efficiency of the finite state machine simulation assuming random
point mutations.

1 Introduction

Biological evolution proceeds by variation and selection. Efforts to determine the evo-
lutionary relationships of different organisms often involve comparing the DNA se-
quences of their genomes to find similar subsequences that have been conserved during
evolution, on the assumption that the conserved subsequences affect the fitness of the
organisms. In this work we propose mutation systems as a simple model of variation
and selection acting on strings of symbols, with the goal of exploring the properties of
such systems, specifically what we can predict and learn about their behavior. Variation
is modeled as a mutation function that maps a string to the set of possible mutations
of that string. Selection is modeled as a fitness function that determines whether each
string is fit or not. The main relation we consider in this paper is whether one fit string
can evolve to another fit string through a sequence of fit strings, each of which is a
possible mutation of its predecessor.

2 Preliminaries

An alphabet Σ is a finite nonempty set of symbols. Σ∗ denotes the set of all finite
strings of symbols from Σ. The empty string is denoted λ. A language is any subset of
Σ∗. Σk denotes those elements of Σ∗ of length k. The symbols in a string s of length
n are indexed from 1 to n and s[i] denotes the ith symbol of s.

We consider non-deterministic finite state machines with no accepting states, de-
fined as follows. A finite state machine (FSM) is a quadrupleM = (Σ,Q, q0, δ), where

? Research supported by the National Science Foundation under Grant CCF-0916389.

2 D. Angluin and J. Aspnes, and R. Barbosa Vargas

Σ is the alphabet of input symbols, Q is the set of states, q0 is the initial state, and δ is
the transition function, which maps Q×Σ to subsets of Q. If every δ(q, a) contains ex-
actly one state, then M is deterministic. In this case we may write δ(q, a) = q′ instead
of δ(q, a) = {q′}.

3 Mutation Systems

We propose a model of the evolution of a string subject to the effects of mutations and
a fitness function. A single step consists of a mutation of the current string followed by
an application of the fitness function. If the fitness function determines that the mutated
string is fit, the mutated string replaces the current string; otherwise the mutated string
is discarded and the current string is kept.

Definition 1 A mutation system S = (Σ,µ, f) is composed of an alphabet Σ, a mu-
tator µ that maps Σ∗ to subsets of Σ∗ and a fitness function f : Σ∗ → {0, 1}. The
mutator µ specifies the set of strings to which a given string can mutate in one step.
The fitness function f determines whether a given string s is fit (f(s) = 1) or not
(f(s) = 0).

Given a mutation system S and two fit strings s1 and s2, we are interested in the
question of whether s1 can evolve to s2 through a sequence of steps permitted by S.

Definition 2 Let a mutation system S = (Σ,µ, f) and two strings s1, s2 ∈ Σ∗ be
given. We say that s1 can mutate to s2 in one step, denoted s1 →µ s2, if s2 ∈ µ(s1).
We say that s1 can evolve to s2 in one step, denoted s1 →S s2, if f(s1) = f(s2) = 1
and s1 can mutate to s2 in one step.

As is usual, we denote the reflexive transitive closure of these relations by a super-
scripted ∗ on the arrow. We say that s1 can mutate to s2 if s1 →∗µ s2, that is, there
is a finite sequence of zero or more mutation steps that carries s1 to s2. Similarly, we
say that s1 can evolve to s2 if s1 →∗S s2, that is, there is a finite sequence of zero or
more evolution steps that carries s1 to s2. Note that in the latter case, s1, s2 and any
intermediate strings in some evolution must be fit.

3.1 Point mutations

A point mutation of a string is obtained by deleting or inserting a single occurrence of
a symbol or by replacing a single occurrence of a symbol by any symbol.

Definition 3 Let s be any string. The mutators µd, µi, µr, and µp are defined as follows.

1. µd(s) is the set of strings that can be obtained by deleting exactly one occurrence
of a symbol from s.

2. µi(s) is the set of strings that can be obtained from s by inserting exactly one
occurrence of a symbol from Σ into s.

3. µr(s) is the set of strings that can be obtained from s by replacing exactly one
occurrence of a symbol in s by any symbol from Σ.

Mutation Systems 3

4. µp(s) = µd(s) ∪ µi(s) ∪ µr(s).

The mutator µp permits any single point mutation of a string. Reversibility is a
relevant property of mutators and mutation systems.

Definition 4 A mutator µ is stepwise reversible if for all strings s1 and s2,

s2 ∈ µ(s1)⇔ s1 ∈ µ(s2).

That is, if s1 can mutate to s2 in one step, then s2 can mutate back to s1 in one step. A
mutation system S = (Σ,µ, f) is reversible if for all strings s1 and s2,

(s1 →∗S s2)⇔ (s2 →∗S s1).

That is, if s1 can evolve to s2, then s2 can evolve to s1.

The point mutator µp is stepwise reversible: an insertion can be reversed by a dele-
tion, a deletion by an insertion, and a replacement by the opposite replacement. The
following lemma is immediate.

Lemma 1 If µ is stepwise reversible then S = (Σ,µ, f) is reversible.

3.2 Conservation of strictly k-testable patterns

We consider fitness functions defined by very local properties of a string, namely prop-
erties characterized by strictly k-testable languages [3, 7, 10]. Head [5] and Yokomori
and Kobayashi [13] describe applications of k-testable languages to modeling biologi-
cal phenomena.

Definition 5 LetΣ be an alphabet. A strictly k-testable pattern P = (PRE,MID, SUF)
is composed of three sets of strings with PRE ⊆ Σk−1, MID ⊆ Σk, and SUF ⊆ Σk−1.
The language of P , denoted LP , is the set of all strings s of length at least k such that
the prefix of s of length k − 1 is in PRE, every substring of s of length k is in MID, and
the suffix of s of length k − 1 is in SUF.

A fitness function f is defined to be strictly k-testable if there exists a strictly k-
testable pattern P such that for every string s, f(s) = 1 iff s ∈ LP . A k-simple
mutation system is is a mutation system with mutation operator µp and a strictly k-
testable fitness function. In what follows we focus on 2-simple mutation systems.

The technique of symbol duplication is useful in preventing unwanted point muta-
tions in a 2-simple mutation system. If the alphabet is Σ, then the duplicated alphabet
D(Σ) consists of two copies of each symbol a ∈ Σ, one with index 1, denoted a1,
and one with index 2, denoted a2. We define the duplication map d fromΣ∗ toD(Σ)∗

such that d(s) is obtained from s by replacing every occurrence of a symbol a in s by the
string a1a2. We define a projection map h1 fromD(Σ)∗ toΣ∗ such that h1(s) replaces
every index 1 symbol a1 by a and every index 2 symbol a2 by the empty string. For
example, d(abb) = a1a2b1b2b1b2 and h1(a1b1b2a2a1) = aba. Clearly h1(d(s)) = s.

4 D. Angluin and J. Aspnes, and R. Barbosa Vargas

Example: Symbol Duplication. Let Σ = {a, b}. We define a 2-simple mutation system
S2 = (Σ2, µp, f2) that protects strings against point mutations. The alphabet Σ2 is
D(Σ) = {a1, a2, b1, b2} and the strictly 2-testable fitness function f2 is defined by the
prefix strings {a1, b1}, the suffix strings {a2, b2}, and the middle strings

{a1a2, a2a1, a2b1, b1b2, b2a1, b2b2}.

The set of strings that are fit with respect to f2 are exactly those of the form d(s) for
some nonempty s ∈ Σ∗, for example, a1a2b1b2b1b2. If a fit string undergoes any non-
identity point mutation, the resulting string is not fit with respect to f2.

4 Simulating FSM Computation

To represent FSM computation using a reversible mutation system, we choose a re-
versible representation: FSM computation histories, analogous to Bennett’s construc-
tion to make Turing machines reversible [1]. Let M = (Σ,Q, q0, δ) be a finite state
machine. Choose an element x 6∈ Q and define the state-annotated alphabet ΣQ as
the set of all symbols aq such that a ∈ Σ and q ∈ Q ∪ {x}. The symbol aq represents
the state q of M after reading the symbol a, with x indicating that the symbol is unread.
The main symbol component of aq is a and the state component is q.

Given a string s ∈ Σ∗ of length n, a computation history ofM on s is a string s′ ∈
(ΣQ)

∗ of length n such that the string of main symbol components of s′ is s, and the
sequence of state components consists of q1, q2, . . . , qi ∈ Q followed by (n− i) x’s for
some 0 ≤ i ≤ n, where for each 1 ≤ j < i, qj+1 ∈ δ(qj , s[j]). In this case, s′ represents
the computation in which M has read the first i symbols of s and for each j gives the
state reached after reading the jth input symbol. The initial computation history of
M on s, denoted Ix(s), is obtained from s by replacing each a by ax, signifying that
all the input symbols of s are unread.

Example: M1. Define a deterministic finite state machine M1 = ({a, b}, {0, 1}, 0, δ1)
with transition function δ1 given by δ1(0, a) = 1, δ1(0, b) = 0, δ1(1, a) = 0, and
δ1(1, b) = 1. The state ofM1 indicates whether it has read an odd (1) or even (0) number
of a’s. The computation histories of M1 on the input string abaa are the following:
axbxaxax, a1bxaxax, a1b1axax, a1b1a0ax, a1b1a0a1.

4.1 From FSMs to mutation systems

Given a FSM M = (Σ,Q, q0, δ), we describe how to construct a 2-simple mutation
system S = (Σ′, µp, f) such that for any non-empty input string s for M , the compu-
tation histories of M on input s are represented by the strings that d(Ix(s)) may evolve
to in S. The alphabet Σ′ is D(ΣQ). In the symbol aiq , the main symbol component is
a, the state component is q and the index is i. For the example FSM M1,

Σ′ = {a1x, a2x, a10, a20, a11, a21, b1x, b2x, b10, b20, b11, b21}.

Mutation Systems 5

Corresponding to the initial computation history Ix(s) of M on input s is the initial
string d(Ix(s)) with every symbol replaced by its duplicates indexed 1 and 2. For the
FSM M1, we have

d(Ix(abaa)) = a1xa
2
xb

1
xb

2
xa

1
xa

2
xa

1
xa

2
x.

The strictly 2-testable pattern P = (PRE,MID,SUF) that determines the fitness
function f is defined as follows. The set PRE contains all symbols of the form a1x and
a1q such that a ∈ Σ and q ∈ δ(q0, a). The set SUF contains all symbols of the form a2x
and a2q such that a ∈ Σ and q ∈ Q. The set MID contains several types of strings of
length 2, as follows.

1. Initial duplicate: a1xa
2
x for all a ∈ Σ.

2. Initial boundary: a2xb
1
x for all a, b ∈ Σ.

3. Duplicate update needed: a1qa
2
x for all a ∈ Σ and q ∈ Q.

4. Updated duplicate: a1qa
2
q for all a ∈ Σ and q ∈ Q.

5. Updated boundary: a2qb
1
x for all a, b ∈ Σ and q ∈ Q.

6. State transition: a2qb
1
q′ for all a, b ∈ Σ, q ∈ Q, and q′ ∈ δ(q, b).

For example, the sequence of steps of M1 on input abaa can be achieved by the
mutation steps shown in Figure 1. Each FSM step requires two mutations.

a1
x a2

x b1x b2x a1
x a2

x a1
x a2

x

a1
1 a2

x b1x b2x a1
x a2

x a1
x a2

x

a1
1 a2

1 b1x b2x a1
x a2

x a1
x a2

x

a1
1 a2

1 b11 b2x a1
x a2

x a1
x a2

x

a1
1 a2

1 b11 b21 a1
x a2

x a1
x a2

x

a1
1 a2

1 b11 b21 a1
0 a2

x a1
x a2

x

a1
1 a2

1 b11 b21 a1
0 a2

0 a1
x a2

x

a1
1 a2

1 b11 b21 a1
0 a2

0 a1
1 a2

x

a1
1 a2

1 b11 b21 a1
0 a2

0 a1
1 a2

1

Fig. 1. Sequence of mutations for computation of M1 on input abaa.

4.2 Correctness of the FSM simulation

To see that S correctly represents computation by M , we establish certain properties of
evolvability in S. Note that for every a, b ∈ Σ, a1x ∈ PRE, a2x ∈ SUF, a1xa

2
x ∈ MID

and a2xb
1
x ∈ MID, and therefore for every nonempty s ∈ Σ∗ we have f(d(Ix(s))) = 1,

that is, d(Ix(s)) is fit in S. The following lemmas prove Theorem 1; their proofs are
omitted for lack of space.

Lemma 2 Let s′ ∈ (Σ′)∗ be any nonempty string such that f(s′) = 1. Then s′ has the
following properties.

1. The indices of s′ alternate between 1 and 2, beginning with 1 and ending with 2.

6 D. Angluin and J. Aspnes, and R. Barbosa Vargas

2. If two consecutive symbols of s′ are indexed 1 and 2, they must be a1xa
2
x or a1qa

2
x or

a1qa
2
q for some a ∈ Σ and q ∈ Q.

3. If two consecutive symbols of s′ are indexed 2 and 1, they must be a2xb
1
x or a2qb

1
x or

a2qb
1
q′ for some a, b ∈ Σ and q, q′ ∈ Q such that q′ ∈ δ(q, b).

4. The state components of s′ consist of a sequence of elements of Q followed by a
sequence of x’s.

5. The string h1(s′) is a computation history of M on the input s composed of the
sequence of main symbol components of h1(s′).

Lemma 3 Let s be a nonempty input string for M . Let s′ be any string evolvable from
d(Ix(s)) in S. Then h1(s′) is a computation history of M on input s.

Lemma 4 Let s be a nonempty input string for M . If t is any computation history of
M on input s, then d(t) is evolvable in S from d(Ix(s)).

Theorem 1 Let a finite state machine M = (Σ,Q, q0, δ) be given, and let S =
(Σ′, µp, f) be the 2-simple mutation system constructed from M according to the
method described above. Let s ∈ Σ∗ be a nonempty input string for M . For every
string s′ evolvable in S from d(Ix(s)), h1(s′) is a computation history of M on input
s. For every computation history t of M on input s, d(t) is evolvable from d(Ix(s)).

In case M is nondeterministic, the strings evolvable from d(Ix(s)) in S give all
possible computation histories of M on input s because S is a reversible mutation
system and may evolve backward to the initial string from any string it reaches. In case
M is deterministic, the strings evolvable from d(Ix(s)) form a line graph of 2n vertices,
with d(Ix(s)) at one end and the history in which all symbols have state components in
Q at the other end.

We consider random point mutations, in which each type of mutation (deletion,
insertion, replacement) is selected with some probability, and for each type, a string
position to apply it is selected equiprobably, and a symbol is selected equiprobably
from the alphabet for an insertion or a replacement. For a deterministic machine M ,
the result is a Markov chain of 2n vertices that moves forward when a mutation causes
another symbol to have state component q ∈ Q and backward when a mutation causes
another symbol to have state component x.

In the construction described above, the probability of a forward mutation and a
backward mutation is the same, namely pr/(2n|Σ′|) where pr is the probability of
choosing replacement. By standard results on random walks, this implies that the ex-
pected number of attempted mutations for the simulation to reach the final string is
O(|Σ′|n3/pr). However, by biasing the random walk in the forward direction, this can
be reduced to O(|Σ′|n2/pr), as suggested by Bennett [2]. For example, if we make an
additional copy of every symbol aiq such that q ∈ Q, and treat them as equivalent in
the simulation, then the probability of a forward mutation is twice that of a backward
mutation.

5 Simulating Cellular Automata

Cellular automata are a well known model of computation introduced by Von Neu-
mann [12], motivated by physical and biological problems. In a recent survey paper,

Mutation Systems 7

Kari [6] notes that cellular automata have several fundamental properties of the phys-
ical world: they are massively parallel, homogeneous, and reversible, have only lo-
cal interactions, and facilitate formulation of conservation laws based on local update
rules. These properties match well with the features of our mutation system model, and
a detailed comparison sheds light on the power and expressiveness of our new model.
We consider one-dimensional asynchronous reversible cellular automata with insertions
and deletions because they support universal computation [9].

A cellular automaton C = (Σ, δ) is composed of an alphabet of symbols Σ and
a set δ transition rules of the form axb ↔ ayb for substitutions or ab ↔ axb for
insertions and deletions, where a, b, x, y ∈ Σ. The idea is that the value of a given cell
of the automaton may change only when both its neighbors have specific values.

For s1, s2 ∈ Σ∗, s1 can reach s2 in one step of C, denoted s1 →C s2, if applying
one transition rule to s1 yields s2. And s1 can reach s2 in C if s1 →∗C s2. Given an in-
put string s ∈ Σ∗, a snapshot ofC on input s is any string s′ such that s can reach s′ in
C. For example if we have the rules {abc↔ adc, dce↔ dfe, fe↔ fge}, and an input
abce, the snapshots of the computation on this input are {abce, adce, adfe, adfge}.

5.1 From cellular automata to mutation systems

Given a cellular automaton C = (Σ, δ), we describe how to construct a 2-simple mu-
tation system S = (Σ′, µp, f) such that for every nonempty input string s ∈ Σ∗, the
snapshots of C on input s are represented by the strings evolvable from d(s) in S.

The simulation of a cellular automaton is more complex than the simulation of
a FSM; one step of the cellular automaton may require fourteen point mutations. To
ensure the correct coordination of these mutations, we duplicate the symbols and also
allow them to store information about one or two symbols to the left or right. The idea
is that before performing a transition of the cellular automaton, the system “locks” the
left and right neighbors of the symbol to be changed. The additional symbol (−) marks
the left and right edges of the transition. To permit insertions and deletions in the string,
there is an extra index (∗) besides 1 and 2. As an example, the following string

a1 · a2 · −b1 · bb2 · bbc1 · c2dd · d1d · d2− · e1 · e2

represents the string abcde where c has locked its left and right neighbors preparing for
a transition. The explicit concatenation operator (·) separates individual symbols above.
After a transition has been performed, symbols may unlock their neighbors and return
to having empty neighbor information.

Let J = {1, 2, ∗} be the set of indices and N = {λ} ∪ {−} ∪Σ ∪Σ2 be the set of
possible neighbor strings. Define the alphabet Σ′ for the mutation system as follows.

Σ′ = {uaiv : a ∈ Σ, i ∈ J, u ∈ N, v ∈ N}.

In the symbol ua
i
v , a is the main symbol component, i is the index, u (resp. v) is the

left (resp. right) neighbor information. Let Σ1 denote the set of symbols of the form ai

with empty neighbor information and index i ∈ {1, 2}.
The symbol duplication map d maps Σ∗ to (Σ1)

∗ by replacing each occurrence of
a symbol a by the string a1 · a2. We define a projection h1 from (Σ′)∗ to Σ∗ that maps

8 D. Angluin and J. Aspnes, and R. Barbosa Vargas

each symbol with index 1 to its main symbol component, and maps all others to the
empty string. Thus h1(d(s)) = s for all s ∈ Σ∗. Also, for example,
h1(−a

1 · aa2 · aad1 · b2cc · c1c · c2−) = adc.

5.2 Defining the fitness function

We describe the strictly 2-testable pattern P = (PRE,MID,SUF) that determines the
fitness function f of the mutation system. PRE consists of all symbols a1 and −a

1

such that a ∈ Σ. SUF consists of all symbols a2 and a2− such that a ∈ Σ. The set
MID contains strings of length two to deal with the situations: (1) empty neighbor
information, (2) substitution rules, and (3) insertion/deletion rules.

Empty neighbor information. To permit duplicated symbols we have a1 · a2 for all
a ∈ Σ. To permit a boundary between symbols we have a2 · b1 for all a, b ∈ Σ.
Together with PRE and SUF, these cases ensure that f(d(s)) = 1 for every nonempty
string s ∈ Σ∗.

Substitution rules. For each substitution rule axb ↔ ayb we add strings to MID that
permit d(axb) and d(ayb) to mutate to each other as follows.

To add left neighbor information − to a1 we have c2 · −a1 and c2− · −a1 for all
c ∈ Σ, as well as −a

1 · a2. To add right neighbor information − to b2 we have b2− · d1
and b2− · −d1 for all d ∈ Σ, as well as b1 · b2−.

To add left neighbor information a to the symbol a2 we have −a
1 · aa2, as well as

aa
2 · x1 and aa

2 · y1. To add right neighbor information b to the symbol b1 we have
b1b · b2−, as well as x2 · b1b and y2 · b1b .

To add left neighbor information aa to the symbol x1 or y1 we have aa
2 · aax1 and

aax
1 ·x2, as well as aa

2 ·aay1 and aay
1 ·y2. To add right neighbor information bb to the

symbol x2 or y2 we have x2bb · b1b and x1 ·x2bb, as well as y2bb · b1b and y1 · y2bb. The strings
that permit both left neighbor information of aa on x1 and right neighbor information
bb on x2 (and similarly for y1 and y2) are aax

1 · x2bb and aay
1 · y2bb.

The above strings permit consecutive symbols indexed 1 and 2 only if they have the
same main symbol. However, we need to permit x to be replaced by y and vice versa.
The strings that permit this are aax

1 · y2bb and aay
1 · x2bb. Figure 2 shows the strings

added to MID for the substitution rule axb ↔ ayb. Each line connects two symbols
forming a string in MID.

Insertion/deletion rules. For each insertion/deletion transition rule ac ↔ abc we add
the following strings to MID. To add left neighbor information− to a1 we have d2 ·−a1
and d2− ·−a1 for all d ∈ Σ, as well as −a

1 · a2. To add right neighbor information − to
c2 we have c2− · e1 and c2− · −e1 for all e ∈ Σ, as well as c1 · c2−.

To add left neighbor information a to a2 we have −a
1 · aa2 as well as aa

2 · b1 and
aa

2 · c1. To add right neighbor information c to c1 we have c1c · c2− as well as b2 · c1c
and a2 · c11. The string that permits both left neighbor information of a on a2 and right
neighbor information of c on c1 when a2 and c1 are adjacent is aa

2 · c1c .
To add left neighbor information aa to b1 when a2 is adjacent to b1, we have aa

2 ·
aab

1 and aab
1 · b2.

Mutation Systems 9

To allow b to be deleted or inserted, we add strings using the ∗ index that permit
b2 to become aab

∗
cc and vice versa, namely aab

1 · aab∗cc and aab
∗
cc · c1c . Finally we add

a string that permits the insertion/deletion of b1 and aab
∗
cc, namely aa

2 · aab∗cc. Figure
3 shows the strings in MID for the insertion/deletion rule ac ↔ abc. Again each line
connecting two symbols indicates a string in MID.

Fig. 2. MID strings allowing substitutions
for the rule axb↔ ayb.

Fig. 3. MID strings allowing insertions and
deletions for the rule ac↔ abc.

This completes the construction of MID and the mutation system S. To see that f
permits the transitions of C to be simulated, we prove the following.

Lemma 5 If s ∈ Σ∗ is nonempty and s→C t then d(s)→∗S d(t).

Proof. If t is obtained from s by using a substitution rule to substitute ayb for axb in
s, then the sequence of point mutations in Figure 4 applied to the relevant portion of
d(s) shows that d(t) is evolvable from d(s). Symbols (if any) to the left and right of
this portion of d(s) are unchanged.

If t is obtained from s by using an insertion/deletion rule to replace abc in s by ac,
then the sequence of point mutations in Figure 5 applied to the relevant portion of d(s)
shows that d(t) is evolvable from d(s). Symbols (if any) to the left and right of this
portion of d(s) are unchanged. Because point mutations are reversible, the reverse of
this sequence indicates how ac can be replaced by abc. ut

5.3 Correctness of the cellular automaton simulation

Theorem 2 Let C = (Σ, δ) be a cellular automaton and let S = (Σ′, µp, f) be the
2-simple mutation system constructed from C as described above. Let s ∈ Σ∗ be a
nonempty string. For any string t reachable from s in C, the string d(t) is evolvable
from d(s). Conversely, for any string s′ evolvable in S from d(s), h1(s′) is reachable
from s in C.

Proof. The first part follows by induction on the number of transitions to reach t from
s in C, using Lemma 5.

For the converse, it suffices to show that if d(s) →∗S s′ and s →∗C h1(s
′) and

s′ →S t then h1(s′)→∗C h1(t).

10 D. Angluin and J. Aspnes, and R. Barbosa Vargas

a1 · a2 · x1 · x2 · b1 · b2

−a
1 · a2 · x1 · x2 · b1 · b2

−a
1 · a2 · x1 · x2 · b1 · b2−

−a
1 · aa2 · x1 · x2 · b1 · b2−

−a
1 · aa2 · x1 · x2 · b1b · b2−

−a
1 · aa2 · aax1 · x2 · b1b · b2−

−a
1 · aa2 · aax1 · x2

bb · b1b · b2−
−a

1 · aa2 · aay1 · x2
bb · b1b · b2−

−a
1 · aa2 · aay1 · y2

bb · b1b · b2−
−a

1 · aa2 · aay1 · y2 · b1b · b2−
−a

1 · aa2 · y1 · y2 · b1b · b2−
−a

1 · aa2 · y1 · y2 · b1 · b2−
−a

1 · a2 · y1 · y2 · b1 · b2−
−a

1 · a2 · y1 · y2 · b1 · b2
a1 · a2 · y1 · y2 · b1 · b2

Fig. 4. Sequence of mutations to achieve
d(axb)↔∗

S d(ayb).

a1 · a2 · b1 · b2 · c1 · c2

−a
1 · a2 · b1 · b2 · c1 · c2

−a
1 · a2 · b1 · b2 · c1 · c2−

−a
1 · aa2 · b1 · b2 · c1 · c2−

−a
1 · aa2 · b1 · b2 · c1c · c2−

−a
1 · aa2 · aab1 · b2 · c1c · c2−

−a
1 · aa2 · aab1 · aab∗cc · c1c · c2−

−a
1 · aa2 · aab

∗
cc · c1c · c2−

−a
1 · aa2 · c1c · c2−

−a
1 · aa2 · c1 · c2−

−a
1 · a2 · c1 · c2−

−a
1 · a2 · c1 · c2

a1 · a2 · c1 · c2

Fig. 5. Sequence of mutations to achieve
d(abc)↔∗

S d(ac).

Suppose a1 is the first symbol and b2 is the last symbol of d(s). To maintain fitness,
these symbols cannot be deleted, and no symbol can be inserted before the first or after
the last. The only changes they can undergo that result in fit strings is that a1 can be
replaced by −a

1 and vice versa, and b2 can be replaced by b2− and vice versa. Thus we
need only consider changes to interior symbols.

Let s′ ∈ (Σ′)∗ be any nonempty fit string. The indices of any three consecutive
symbols in s′ must be one of the seven possibilities: (1, 2, 1), (2, 1, 2), (1, 2, ∗), (2, 1, ∗),
(1, ∗, 1), (2, ∗, 1), and (∗, 1, 2).

If the deletion of a symbol from the interior of s′ yields another fit string t, then
the symbol deleted must be the middle symbol in one of the index sequences: (1, 2, ∗),
(2, 1, ∗) or (2, ∗, 1). In the first and third cases the symbols of index 1 are unchanged
and h1(t) = h1(s

′). In the case of (2, 1, ∗), the three symbols in s′ must be

aa
2 · aab1 · aab∗cc,

which implies that abc ↔ ac is a rule in C. Moreover, the symbol before this triple
must be −a

1 and the symbol after it must be c1c , which means that h(t) is obtained from
h1(s

′) by replacing abc by ac, and h1(s′)→C h1(t).
Analogously, if an insertion of a symbol in the interior of s′ yields another fit string

t, then only an insertion into (2, ∗) (yielding (2, 1, ∗)) results in h1(t) 6= h1(s
′). This

implies that the inserted symbol and its two neighbors to the left and right in t are as
follows:

−a
1 · aa2 · aab1 · aab∗cc · c1c .

Thus, abc↔ ac is a rule of C and h1(t) is obtained from h1(s
′) by replacing ac by abc

and h1(s′)→C h1(t).
If a replacement of one interior symbol of s′ by another yields a fit string t, then

either the replacement changes the index of the symbol or not. The only possible kinds

Mutation Systems 11

of replacements that change the index of the symbol are of the form (1, 2, 1)↔ (1, ∗, 1).
This leaves the symbols of index 1 unchanged, and h1(t) = h1(s

′).
Thus only replacements that we must consider are replacements of symbols of index

1 by symbols of index 1 with a different main symbol, so that h1(t) 6= h1(s
′). The

indices of the replaced symbol and its two neighbors must be either (2, 1, ∗) or (2, 1, 2).
In the first case, the three symbols of s′ are of the form

aa
2 · aab1 · aab∗cc,

and there is no other symbol that can replace aab
1 and yield a fit string t. In the case of

(2, 1, 2) the possibilities for the symbol of index 1 are a1, −a
1, a1a, and bba

1. When the
symbol to its right is one of a2, a2−, or aa

2, replacing the symbol of index 1 in s′ by a
symbol of index 1 and main symbol other than a does not yield a fit string. Thus, the
only possibilities in s′ for the symbol of index 1 and its right neighbor are the following:
(1) a1 · a2bb, (2) bba

1 · a2cc, (3) bba
1 · c2dd.

In case (1) the only replacement for a1 that changes the main symbol component is
of the form ddc

1 and yields

−d
1 · dd2 · ddc1 · a2bb · b1b

in t. Then dcb↔ dab is a rule in C and h1(t) is obtained from h1(s
′) by replacing dab

by dcb, so that h1(s′)→C h1(t).
In cases (2) and (3) the symbols to the left of bba

1 must be −b
1 · bb2. The only

possible replacement for bba
1 that changes the main symbol component is of the form

bbe
1.
In case (2), the result in t is

−b
1 · bb2 · bbe1 · a2cc · c1c .

Thus bec ↔ bac is a rule in C and h1(t) is obtained from h1(s
′) by replacing bac by

bec, so that h1(s′)→C h1(t).
In case (3), the result in t is

−b
1 · bb2 · bbe1 · c2dd · d1d.

Thus both bed ↔ bcd and bad ↔ bcd are rules in C, and h1(t) is obtained from
h1(s

′) by replacing bad by bed. Though this is not necessarily a single step of C, it is
accomplished by two steps: bad →C bcd →C bed, so that h1(s′) →∗C h1(t), which
concludes the proof of Theorem 2. ut

6 Discussion

We have introduced mutation systems to model the evolution of a string subject to
the effects of mutations and a fitness function. Some possible generalizations of our
definition may be fruitful to explore: a population of evolving strings, a probabilistic or
time-varying fitness function, or a fitness function that depends on comparing strings in
the current population.

12 D. Angluin and J. Aspnes, and R. Barbosa Vargas

Comparing our mutation systems to Valiant’s concept of evolvability [11] we note
that his model is designed to explore the question of what functions can be efficiently
approximated through a polynomial-time evolution process, while our model does not
have a final ideal target, but instead has a variety of evolution pathways and outcomes
defined by the mutation operator and the fitness function.

We have shown that mutation systems with point mutations and strictly 2-testable
fitness functions can represent general computation, and therefore it is in general unde-
cidable to predict whether one string can evolve into another in such systems. By con-
trast, for any k the class of strictly k-testable languages, and even the class of concate-
nations of strictly k-testable languages, are learnable in the limit from positive data [4,
8]. A promising future direction is to explore the learnability of fitness functions given
positive data derived from the evolution of one or more strings in a mutation system.

Acknowledgements. Raonne Barbosa Vargas is now employed by Microsoft Corpora-
tion. The authors thank David Eisenstat and Sarah Eisenstat for help with aspects of
this paper.

References

1. Bennett, C.: Logical reversibility of computation. IBM J. RES. DEVELOP. (November
1973) 525–532

2. Bennett, C.H.: The thermodynamics of computation – a review. International Journal of
Theoretical Physics 21 (1982) 905–940

3. Brzozowski, J., Simon, I.: Characterizations of locally testable events. Discrete Mathematics
4 (1973) 243–271

4. Garcı́a, P., Vidal, E.: Inference of k-testable languages in the strict sense and application to
syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 920–925

5. Head, T.: Splicing representations of strictly locally testable languages. Discrete Appl. Math.
87 (1998) 139–147

6. Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334(1–3)
(April 2005) 3–33

7. Kim, S.M., McNaughton, R., McCloskey, R.: A polynomial time algorithm for the local
testability problem of deterministic finite automata. Algorithms and Data Structures 382
(1989) 420–436

8. Kobayashi, S., Yokomori, T.: Learning concatenations of locally testable languages from
positive data. In Arikawa, S., Jantke, K., eds.: Algorithmic Learning Theory. Volume 872 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (1994) 407–422

9. Lindgren, K., Nordahl, M.: Universal computation in simple one-dimensional cellular au-
tomata. Complex Systems 4 (1990) 299–318

10. McNaughton, R.: Algebraic decision procedures for local testability. Theory of Computing
Systems 8(1) (March 1974) 60–76

11. Valiant, L.G.: Evolvability. J. ACM 56 (2009) 3:1–3:21
12. Von Neumann, J.: Theory of self-reproducing automata. Editor A.W. Burks, University of

Illinois Press (1966)
13. Yokomori, T., Kobayashi, S.: Learning local languages and their application to DNA se-

quence analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 1067–1079

