Fast Randomized Consensus
using Shared Memory

James Aspnes Maurice Herlihy
School of Computer Science School of Computer Science
Carnegie-Mellon University Carnegie-Mellon University

Pittsburgh, PA 15213 Pittsburgh, PA 15213 *

September 17, 1996

Abstract

We give a new randomized algorithm for achieving consensus among
asynchronous processes that communicate by reading and writing shared
registers. The fastest previously known algorithm has exponential ex-
pected running time. Our algorithm is polynomial, requiring an ex-
pected O(n*) operations. Applications of this algorithm include the
elimination of critical sections from concurrent data structures and the
construction of asymptotically unbiased shared coins.

1 Introduction

A consensus protocol is a set of n asynchronous processors that communicate
by applying operations to a shared object. The object may be a message
channel, an array of read/write registers, or something more complex. Each
process starts with an input value, either 0 or 1, and runs until it chooses a
decision value and halts. A consensus protocol is correct if it is consistent:
no two processes choose different decision values, valid: the decision value

*This research was sponsored by the Office of Naval Research (DOD), under contract
N00014-88-K-0699. The work of the first author was supported by a National Science
Foundation Graduate Fellowship. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

was some process’s input value, and wait-free: each process decides after a
finite number of steps.

Consensus protocols are interesting because they are fundamental to syn-
chronization without mutual exclusion. The traditional approach to coordi-
nating concurrent access to shared data objects is to rely on critical sections:
only one process at a time is allowed to operate on the object. Nevertheless,
critical sections are poorly suited for asynchronous, fault-tolerant systems:
if a faulty process is halted or delayed in a critical section, non-faulty pro-
cesses will also be halted or delayed. By contrast, an implementation of
a concurrent data object is wait-free if it guarantees that any process will
complete any operation in a finite number of steps, independent of other
processes’ halting failures or variations in speed. If there exists a consen-
sus protocol for an object X, then one can use X to construct a wait-free
implementation of any concurrent data object whose operations are total
[21].

If the shared object X is an array of registers providing read and write
operations, then consensus is known to be impossible [2, 12, 15, 21, 27]. If
X is an array of registers providing test-and-set or fetch-and-add operations,
then consensus is possible between two processes, but not among three [21,
27]. Nevertheless, in both cases, consensus among an arbitrary number of
processes can still be achieved probabilistically. This paper presents two
new randomized consensus protocols, one in which processes communicate
by reading and writing shared registers, and one in which they communicate
by applying fetch-and-add operations. The protocols are consistent, non-
trivial, and they guarantee that each process decides after a finite expected
number of steps. The only previously known read/write protocol, due to
Abrahamson [1], requires an expected 20(n%) operations. Qurs is significantly
faster, requiring an expected n? writes and n? reads. The fetch-and-add
protocol requires an expected n? fetch-and-add operations.

The basic idea behind our protocols is quite simple. We first describe a
simple protocol that has exponential expected running time if an adversary
scheduler runs the processes in lockstep. Each process flips an unbiased coin
at each round, and the protocol halts when all » processes simultaneously
flip the “right” value. The probability of terminating at any particular round
is 1/2", so the expected number of rounds until termination is 2. A naive
approach to speeding up the protocol is to replace the n independent coin
flips with a single unbiased coin shared by the processes. Unfortunately,
implementing an unbiased shared coin is provably impossible in an asyn-
chronous system (see Section 8 below), so it would appear that no progress

has been made. The key insight, however, is similar to one proposed by
Chor, Merritt, and Shmoys [13]: it suffices to ensure that processes are suf-
ficiently likely to flip the same value, and that an adversary scheduler has
a sufficiently weak influence over which value is chosen. The heart of our
consensus protocol is a weak shared coin protocol that guarantees: (1) pro-
cesses are likely to observe the same outcome, (2) an adversary scheduler has
only a weak influence over that outcome, and (3) the protocol has expected
running time polynomial in the number of processes.

Consensus is often viewed as a game. One side, the processes, tries to
achieve agreement against an adversary scheduler. The processes apply read
and write operations to the shared registers, and the adversary chooses when
the operations actually occur. Our adversary is extremely powerful: it has
complete information about the processes’ protocols, their internal states,
and the state of the shared memory. It is not restricted to polynomial
resources, and thus it cannot be outwitted by encryption schemes. The
adversary cannot, however, predict future coin flips. Against such a powerful
adversary, it may seem surprising that consensus can be achieved by a simple
protocol in polynomial expected time.

2 Related Work

Fischer, Lynch, and Paterson [20] show that there is no consensus proto-
col for two processes that communicate by asynchronous messages. Dolev,
Dwork, and Stockmeyer [15] and Dwork, Lynch, and Stockmeyer [16] give
a comprehensive analysis of the circumstances under which consensus can
be achieved by message-passing. Randomized protocols can achieve consen-
sus when deterministic protocols cannot. Ben-Or [3] proposes a randomized
consensus protocol with exponential expected running time that tolerates
up to n/5 failures, where n is the number of processes. A consensus pro-
tocol due to Bracha and Toueg [7] relies on probabilistic properties of the
message-passing system.

Loui and Abu-Amara [27] give several consensus protocols and impossi-
bility results for processes that communicate through shared registers with
various read-modify-write (“test-and-set”) operations. Chor, Israeli and Li
[12] give two randomized consensus protocols for shared read/write regis-
ters, one for two processes, and one for three processes. ! Their protocols,

!The three-process protocol published in [12] has a bug: the termination condition
must be strengthened to ensure consistency.

however, require a “strong” synchronization primitive: the ability to flip a
coin and write the result in a single atomic step. By contrast, the protocols
presented here, updating a register and changing process state are distinct
transitions. Abrahamson [1] gives consensus protocols for both the “strong”
model used by Chor, Israeli, and Li, and the more demanding “weak” model
used here. As mentioned above, Abrahamson’s consensus protocol for the
weak model has exponential expected running time.

A number of protocols have been proposed for implementing shared coins
in message-passing systems subject to byzantine or halting failures. (An ex-
cellent survey appears in [11].) Some constructions are direct [4, 8, 17], and
others arise as parts of protocols for consensus [13], transaction commitment
[14], or byzantine agreement [6, 13, 18, 33]. The models underlying these
protocols differ from ours by assuming that private channels or encryption
can be used to prevent the adversary from observing certain messages and
processes’ internal states. Chor and Coan [10] give a randomized byzan-
tine agreement protocol that does not assume private communication, but
restricts when the adversary may exploit knowledge of the processes’ states.

3 Model

3.1 I/0O Automata

Formally, we model processes and registers as [/O automata [28, 29]. An
1/0 automaton is a non-deterministic automaton A with the following com-
ponents:

o States(A) is a finite or infinite set of states, including a distinguished
set of starting states.

e In(A)is a set of input events,
o Out(A) is a set of output events,

o Steps(A)is a transition relation given by a set of triples (¢, e, s), where
s and s’ are states and e is an event. Such a triple is called a step,
and it means that an automaton in state s’ can undergo a transition
to state s, and that transition is associated with the event e.

If (&', e,5)is a step, we say that e is enabledin s'. 1/O automata must satisfy
the additional condition that inputs cannot be disabled: for each input event
e and each state s, there exist a state s and a step (¢, ¢, s).

An ezxecution of an automaton A is a finite sequence sg, €1, 81,...,€,,8,
or infinite sequence sg, €1, s1,... of alternating states and events such that
sg is a starting state and each (s;,€;41,5;41) is a step of A. A history of an
automaton is the subsequence of events occurring in one of its executions. 2

A new I/O automaton can be constructed by composing a set of 1/0O
automata with disjoint output events. A state of the composed automaton
S is a tuple of component states, and a starting state is a tuple of compo-
nent starting states. The set of events of 5, Events(.S), is the union of the
components’ sets of events, and the set of output events of 5, Out(.9), is the
union of the components’ sets of output events. The sets of input events
of 5, In(5),is Events(S) — Out(.9), all the events of S that are not output
events for some component. A triple (s',¢e,s) is in Steps(.S) if and only if,
for all component automata A, one of the following holds: (1) e is an event
of A, and the projection of the step onto A is a step of A, or (2) e is not
an event of A, and A’s state components are identical in s’ and s. If H is
a history of a composite automaton and A an automaton, H|A denotes the
subhistory of H consisting of events of A.

3.2 Processes, Registers, and Protocols

A process P is an 1/O automaton with output events WrITE(P, v, R), READ(P, R),
and DECIDE(P,v); input event RETURN(P, v, R); and internal event COIN-
FLIP(P, z), where v is a value, R a register, and z (the value of the coin-flip)
an element of the set {0,1}. The two COIN-FLIP events of a process represent
possible results of a random decision made within the process; if either is
enabled in a particular state, the other must also be enabled. A register R is
an 1/O automaton with input events WRITE(P, v, R) and READ(P, R), and
the output event RETURN(P, v, R), where P is a process and v a value. A
protocol {Py,...,P,;Ry,..., R} is the I/O automaton composed by iden-
tifying in the obvious way the events for processes Py,..., P, and registers
Rl, N Rm

READ and WRITE events are called invocations, and RETURN events are
called a responses. An invocation and response match if their process and
register names agree. An invocation with no matching response is pending,
and complete(H) is the maximal subsequence of H consisting only of invoca-
tions and matching responses. If H is a history, an operation of H is a pair

2To remain consistent with the terminology of [22], we use “event” where Lynch and
Tuttle [29] use “operation” and “history” where they use “schedule.”

consisting of an invocation and the next matching response. H is sequen-
tial if (1) the first event of H is an invocation, (2) each invocation, except
possibly the last, is immediately followed by a matching response, and each
response is immediately preceded by a matching invocation. A history that
is not sequential is concurrent. A protocol history is well-formed if each
H|P; is sequential, and a protocol is well-formed if each of its histories is
well-formed. We assume all protocols are well-formed.

If we restrict our attention to sequential histories, then the behavior of
a register can be specified in a particularly simple way: each value read was
the last value written. We would like to ensure that a protocol’s concurrent
histories are “equivalent,” in some sense, to its sequential histories. For-
mally, we capture this notion as follows. A protocol history H induces a
partial “real-time” order <y on its operations: opy < opy if the response
for opg precedes the invocation for op;. Operations unrelated by <y are
said to be concurrent. If H is sequential, <y is a total order. A proto-
col {Py,...,Py;Ry,..., R} is linearizable [22] if, for each history H, there
exists a sequential protocol history S such that:

e Forall P, H|P; = S|P;.
o <pgC<g

In other words, the history “appears” sequential to each individual process,
and this apparent sequential interleaving respects the real-time precedence
ordering of operations. A protocol is linearizable if all its histories are lin-
earizable. Henceforth, we restrict our attention to linearizable registers,
which are usually called atomic registers [26] in the literature. (A more
general definition of linearizability, including comparisons with related cor-
rectness criteria, appears elsewhere [22].)

3.3 Randomization

The random non-determinism involved in the choice between cOIN- FLIP(P, 0)
and coIiN- FLIP(P, 1) has a different nature from the “ordinary” non-determinism
in the protocol. It is possible to make the distinction formally by placing the
other non-deterministic choices under the control of an adversary, a function
A which maps each of the protocol’s finite executions sg, €1, 81,...,€n, S, t0
a set of events enabled in s,, such that for all finite executions £, A(£) con-
sists either of a single non-COIN-FLIP event or a pair of COIN-FLIP events
representing the two possible outcomes of a COIN-FLIP at some process.

The intent is that the adversary controls which executions are possible.
More formally, we say that an adversary A permits a (possibly infinite) ex-
ecution £ = sg,€1,581,..., if, for every event ¢; in £, ¢; is an element of
A(sg,€1,51,...,5-1). We write =4 for the set of executions that A permits,
and =4 s for the subset of 24 consisting of executions which have s as their
initial state.

Let ¢(£) be the sequence of coin-flip values in £. It is a straightforward
consequence of the constraints on the domain of an adversary function A
that, for each countable sequence C' of 0’s and 1’s, there exists exactly one
€4,5(C) in Z4 5 such that ¢(€4,5(C)) is a prefix of C'. We can think of £4 ;
as a measurable function from the sequence space © on the set {0,1} to the
sequence space = of protocol executions [23]. We can thus use {4 5 to define
a probability measure on = by transforming the probability measure on
as follows:

Pas(X) = P{C€as(C) € X})

(where the probability on the left is defined only when X C = is measurable
Z). An immediate consequence of the definition is that P4 (X) = 0 for any
X which is disjoint from =4 ;.

For now, we leave the probabilities associated with coin flips as an un-
specified parameter of the model.

3.4 Consensus Protocols

A consensus protocol is a protocol whose processes each have two initial
states, corresponding to input values of 0 or 1, respectively, and whose
histories all satisfy the following conditions:

1. Consistency. Every DECIDE event in the history has the same value,
which must be an input value for at least one of the processes.

2. Termination A DECIDE event for P must be the last output event of
P.

3. Validity. 1f s is an input state in which some processes start with
different values, there exist adversaries A, B such that Py 4({{|€ con-
tains DECIDE(P,0) for some P}) and Pp s({{|{ contains DECIDE(P, 1)
for some P}) are both non-zero.

The first condition guarantees that the protocol actually achieves con-
sensus. The second condition is not critical to describing a consensus pro-
tocol, but is necessary for identifying when a protocol is finished. The third

condition excludes protocols which achieve consensus trivially by fixing the
outcome in advance.

The running time r(H) of a protocol history H is the length of the
shortest prefix of H which contains a DECIDE event for every process in the
protocol. The worst-case expected running time of a protocol is given by:

)

max 3P ({€]r(6) =)

which is simply the expected running time of the protocol against the worst
possible adversary. If, for some adversary A and initial state s, the sum
in the above expression does not converge, we say that the protocol has an
infinite worst-case expected running time.

4 An Exponential Consensus Protocol

Each process P has a register with two fields:

e prefer, if distinct from L, is the value P would choose if it were to
complete the protocol executing in isolation,

e round is a counter that keeps track of the number of rounds P has
executed so far.

A process () agrees with P if (1) both prefer fields are equal, and (2)
neither is L. A process is a leader if its rounds field is greater than or equal
to any other process’s rounds field.

The protocol, shown in Figure 1, works as follows. Initially, P’s register
is initialized so that round is 0 and preferis L. Process P starts by setting
round to 1, and prefer to its input value. P then enters the main loop
of the protocol. It reads all processes’ registers. The protocol terminates if
P is a leader, and if all processes whose round fields trail P’s by less than
two agree with P. Otherwise, if the leaders agree, P updates its register to
agree with the leaders, increments its round counter, and resumes the loop.
Otherwise, if its prefer field is not L, P “warns” the other processes that it
may change its preference by setting prefer to L before resuming the loop.
If preferis already L, then P chooses a new preference by an unbiased coin
flip, increments round, and resumes the loop.

Although the rounds field is potentially unbounded, larger values are
reached with lower probabilities, thus the likelihood of overflow can be made
arbitrarily small.

% Initially:
r.prefer := BOTTOM % preferred value
r.round := 0 } racing counter

% The algorithm
r := [prefer: input, round: 1]
while true do
read registers
if all who disagree trail by 2 AND I’m a leader
then decide(r.prefer)
% Agree with unanimous leaders
elseif leaders agree then
r := [prefer: leader.prefer, round: r.round + 1]
% Warn of impending change
elseif r.prefer "= BOTTOM then
r := [prefer: BOTTOM, round: r.round]
% Guess a new value.
else r := [prefer: flip(), round: r.round + 1]
end % if
end hfor

Figure 1: An Exponential Consensus Protocol

4.1 Consistency

Let H be a history (sequence of reads, writes, and flips) permitted by a
particular adversary. For brevity, we say that process P prefers v # L
at round r if P writes [prefer: v, round: r] at some step in H, and
that P is busy at round r if it writes [prefer: 1, round: r]. The first
process to prefer v at round r is the one whose write occurred earliest in H.
We use v and v’ to stand for the two distinct decision values.

Lemma 1 If P prefers v at round r and v' at round r+1, then some @ # P
prefers v’ at round ' > r, and Qs write of v’ precedes P’s write of v'.

Proof: P can change preference from v to v’ in one of two ways: if
it observes that all leaders agree on v’, or if it observes that the leaders
disagree. In either case, some other @ prefers v’ at round ' > r, and since
P read that value, (Q’s write of v' must precede P’s. |

Lemma 2 If every process that completes round v in H prefers v at that
round, then no process prefers a distinct value at any higher round.

Proof: Suppose not. Let P be the first process in H to prefer v’ at
round 7" > r. Lemma 1 implies that some @ prefers v at round " > r.
Since it is given that all processes that completed round r prefer v, it follows
that r” > r, contradicting the hypothesis that P is the first process to switch
its preference after round r.

By similar reasoning:

Lemma 3 If every process that completes round v in H prefers v at that
round, then no process is busy at any higher round.

Lemma 4 If every process that completes round v in H prefers v at that
round, then no process completes round r + 2 without deciding v.

Proof: By contradiction. Any process that decides after round r must
decide v, since Lemma 2 implies it must prefer that value. Let @) be the
first process to fail to decide at round r + 2. Since all earlier processes to
start that round have decided, @) is a leader. If) fails to decide, then it
must disagree with another process P at rounds r or r + 1. Either P prefers
v # v at that round, contradicting Lemma 1, or P is busy at that round,
contradicting Lemma 3.

10

Lemma 5 If P decides v after writing round r in H, then no other process
prefers v’ at round r.

Proof: Suppose not. Let @ be the first process to prefer v" at round r in
H. There are two cases to consider, depending on)’s preference at round
r— 1.

Case 1: @ prefers v at round r — 1. We claim that ¢ can change its
preference only as a result of a coin flip. If () switched preference between
rounds r — 1 and r without flipping, then it must have observed that the
leaders prefer v'. Let H' be the prefix of H strictly preceding @’s write.
Because all processes that completed round r in H' prefer v, these leaders
cannot be at a round greater than r (Lemma 2). Because () is the first
process to prefer v at round r (hypothesis), these leaders cannot be at
round r. But @ itself prefers v at round r — 1, therefore the leaders cannot
agree.

Before) can flip a coin, however, it must set its prefer field to L and
reread the registers.) now observes that P prefers v at round r. No other
process prefers v’ in H' at round r (hypothesis) or higher (Lemma 2). No
process is busy at round r or higher, since the first such process must have
observed another process that prefers v’ at round r or higher. Therefore, ¢
observes that the leaders agree on v, and it resets its register to agree with
the leaders, contradicting the hypothesis.

Case 2: () prefers v" at round r —1. Since P decided v, it must have read
Q’s register at round ' < r — 1. Before () can advance to round r, it must
reread P’s register, observing that P prefers » at round r. By an argument
essentially identical to the one given above, no process disagrees with P at
levels r or above, a contradiction.

Theorem 6 This consensus protocol is consistent.

Proof: If any process decides on v after writing round r, then all pro-
cesses will prefer v at round r (Lemma 5), and hence all processes will
eventually decide v (Lemma 4). N

This protocol can be extended to allow decision values from an arbitrary
domain, not just {0,1}. Before joining the protocol, each process writes
its initial value to a public register. Instead of flipping a coin to change
preference, a process randomly adopts a leader’s preference.

11

4.2 Running Time

A process is deterministic at round r if it does not flip a coin at that round,
and non-deterministic otherwise. Let V' and V' be the sets of processes that
respectively prefer v and v’ at round r.

Lemma 7 The set of non-deterministic processes at round r encompasses
at least one of V and V',

Proof: We show that if P and @) belong to V and V', then at least one
of the two must be non-deterministic.

Let P be the first process to write a preference, say », at round r. If
P is non-deterministic, then it must have observed that the leaders prefer
v. Since P is the first process to enter round r, it must have observed that
all processes at round r — 1 prefer v. Let () be the first process to prefer
v’ at round r. If @ is deterministic, then it must have observed that the
leaders prefer »’. Since all processes at rounds r and higher prefer v, @
must have observed that all processes at round r — 1 prefer v’. Each process,
however, writes out its preference for round r — 1 before reading the other’s
register, thus at least one of the two must have observed a disagreement
before entering round r, and that process must be non-deterministic.

Lemma 7 implies that the deterministic processes at round r have the
same preference. We now show that if the non-deterministic processes choose
the same preference, then the adversary cannot force the determinstic pro-
cesses to disagree.

Lemma 8 Let v be the first value written at round r — 1. If the non-
deterministic processes at round v all choose v, then all processes have the
same preference at round r.

Proof: The result is immediate if there are no deterministic processes.
Suppose P is the first deterministic process to prefer v’ at round r. Since
P is deterministic, it must have observed that the leaders prefer v’. The
leaders could not have been at round r or higher, since all such processes
are non-deterministic, and they prefer » both at round r (by hypothesis)
and at higher rounds (Lemma 2). P observed at least one process at round
r— 1, namely itself. Since P’s write at round r — 1 precedes any of its reads,
P must also have read any values whose writes at that round precede its
own, including the earliest.

12

Notice that the first value written at round r — 1 is fixed before the first
process begins round r, and therefore the adversary cannot force disagree-
ment by allowing the non-deterministic processes to choose their preference,
and then somehow forcing the deterministic processes to disagree.

The running time of the consensus protocol thus depends primarily on
the degree of control the adversary can exercise over the outcomes of coin
flips.

Definition 9 Let H 4, be strict lower bound on the probability that no pro-
cess flips tails at round r when running against adversary A, and let Ty,
be defined symmetrically. The defiance probability 6 is:

d=min(Ha,, Tar,).
Ar
Informally, 6 is the probability that all non-deterministic processes will flip
a given value given that the adversary “wants” at least one process to flip
the other value.

Theorem 10 The consensus protocol has worst-case expected running time

O(1/6) rounds.

Proof: Consider the set of coin flips associated with each round after
the first. If all processes are deterministic, then they have identical pref-
erences (Lemma 7), and the protocol is about to terminate (Lemma 4). If
some processes are non-deterministic, then the protocol terminates if they
all choose the first value written at the previous round (Lemma 8). Since
this value is fixed before any process performs a coin flip at that round, the
protocol terminates at that round with probability greater than or equal to
6. The protocol thus acts like a Bernoulli process, where the probability of
terminating at each round is at least ¢, and the expected running time is at
most 1/6. |

Corollary 11 The consensus protocol has a worst-case expected running
time of O(n?*/§) steps.

Proof: In each round, each process performs at most 2n READ opera-
tions, one COIN-FLIP, and two WRITE operations, for a total of 2n + 3 steps.
Thus the total number of steps taken per round by all processors is O(n?),
giving a maximum total running time of O(n?/é) steps.

13

Corollary 12 If processes flip independent unbiased coins, then & is 1/2™,
and the protocol has a worst-case expected running time of O(2") steps.

This bound is easily seen to be tight. The adversary can run the processes
in lockstep, so that all n processes observe disagreement at each round, and
all flip to choose a preference for the next round.

5 The Weak Shared Coin Protocol

As noted above, the protocol runs for exponential expected time if processes
flip unbiased, independent coins. In this section we transform the exponen-
tial protocol into a protocol in which processes reach agreement after an
expected O(n?) writes and O(n*) reads. The basic idea is to have the pro-
cesses undertake a weak shared coin protocol that, in essence, simulates a
coin shared by all processes. The weak shared coin protocol is parameterized
by a value K > 1. It has the key property that any adversary has only a
weak influence over the protocol’s outcome:

Definition 13 A weak shared coin protocol has defiance probability (K —
1)/2K.

The influence that can be exercised by any adversary is thus independent
of n, and asymptotically approaches zero as K increases. We emphasize that
the protocol does not guarantee that all processes observe the same outcome,
only that they do so with probability at least (K — 1)/2K.

Corollary 14 If processes flip a weak shared coin at each round, then the
consensus protocol terminates in an expected O(1) rounds.

The complexity of achieving consensus in terms of primitive reads and
writes is thus the complexity of implementing the weak shared coin.
5.1 Implementing a Weak Shared Coin

The weak shared coin protocol is implemented using a shared counter ab-
straction, whose implementation in terms of reads and writes is given in
Section 6. The counter is linearizable with the following sequential specifi-
cation:

inc = proc(c: counter)

14

increments the counter,

dec = proc(c: counter)
decrements the counter, and

readCounter = proc(c: counter) returns (int)

returns the counter’s current value.

The weak shared coin protocol is shown in Figure 2. The processes col-
lectively undertake a random walk: each process flips an unbiased coin, and
depending on the outcome, increments or decrements the shared counter.
It then reads the counter. If the observed value is greater than or equal
to Kn, the process decides heads, and if the observed value is less than
or equal to —K'n, it decides tails. Informally, the only way the adversary
can influence the outcome of the protocol is to suspend processes that are
about to move the counter in the undesired direction. After suspending
n — 1 such processes, however, the adversary has “used up” its influence,
and the remaining process is free to wander at random. As K increases, the
importance of this bias decreases.

Let H and T be the respective number of heads and tails generated so
far.

Lemma 15 If H — T < —(K + 1)n then all undecided processes will even-
tually decide tails.

Proof: Since the adversary can suspend at most one write per process,
the counter value read by any process can differ from H — T by at most
n— 1. Once H — T falls below —(K + 1)n, every process that samples the
counter will observe a value less than or equal to —Kn.

By similar reasoning:

Lemma 16 If some process decides heads, then at the time of its last read,
H-T>(K-1)n.

We can combine these two observations to derive a bound on the likeli-
hood the adversary can force disagreement, or a desired outcome.

Theorem 17 The adversary can force some process to flip heads with prob-
ability at most (K +1)/2K.

15

Proof: Lemma 16 implies that no process can decide heads before H —T
reaches (K —1)n for the first time. If, however, H — T falls below —(K +1)n
before reaching (K —1)n, then Lemma 15 implies that no process can decide
heads. If we make the conservative assumption that the adversary can force
some undecided process to choose heads if H — T > (K — 1)n, then the
value of H — T can be viewed as a random walk starting at the origin with
absorbing barriers at —(K + 1)n (all decide tails) and (K — 1)n (some may
decide heads). It is a standard result of random walk theory [19, Ch. XIV]
that the probability of reaching (K — 1)n before —(K + 1)nis (K +1)/2K.
|

One way to make certain that some process flips heads is to force two
processors to disagree.

Corollary 18 The adversary can force processes to disagree with probability
less than or equal to (K — 1)/2K.

Theorem 19 The worst-case expected running time of the weak shared coin
protocol is O(n?) rounds.

Proof: Instead of promoting a particular outcome, suppose the adver-
sary adopts a dilatory strategy, seeking to prolong the protocol for as long
as possible. As noted above, the protocol will terminate whenever the ab-
solute value of the counter exceeds (K + 1)n, thus the protocol behaves like
a random walk starting at the origin with absorbing barriers at (K 4 1)n
and —(K + 1)n. It is a standard result of random walk theory [19] that the
expected running time of such a walk is (K + 1)%n?, i.e. O(n?). H

6 The Counter Abstraction

The counter implementation is a straightforward adaptation of an algorithm
proposed by Lamport [25] for read/write registers. The counter is repre-
sented by an n-element array of registers, one for each process. Each regis-
ter has two fields: a count field incremented whenever that process alters
the register’s value, and a val field representing that process’s contribution
to the current counter value. To increment or decrement the counter, P
overwrites its register with a new value whose count field is incremented,
and whose val field is incremented or decremented. To read the counter it
scans the array twice: if both scans yield identical values, the read returns
the sum of the val fields, otherwise the read is restarted.

16

flip = proc(coin: counter) returns (bool)
while true do
if flip() then inc(coin) else dec(coin) end
state := readCounter(coin)
if state >= K#N then return (heads)
elseif state <= -K*N then return (tails)
end
end
end flip

Figure 2: The Weak Shared Coin Protocol

Theorem 20 The counter implementation is linearizable.

Proof: The update operations, i.e., increments and decrements, are
totally ordered in a natural way: Iy < Iy if Iy writes its array element
first. A readCounter operation observes an update if the former reads an
array element after the latter writes it. A readCounter returns the sum of
the updates it observes. It suffices to show that readCounter implements a
“snapshot” — if Iy | I, and a readCounter operation R observes Iy, then
it also observes Iy. Define R’s first (second) read of Iy be its penultimate
(last) read of the array element written by [y, and similarly for the other
operations. Because Iy < Iy, Iy’s write precedes [I;’s write. Because R
observes [, and the array value doesn’t change between R’s first and second
reads of Iy, Iy’s write precedes R’s first read of I;. Because R starts the
second scan only after finishing the first, R’s first read of I; precedes its
second read of Iy, and therefore R observes Ij.

Note that the inc and dec operations are wait-free, but readCounter can
be starved if it is interrupted by an infinite sequence of writers. The adver-
sary canot exploit this property to force the protocol to run forever: after
enough writes, the next reader will drop out of the protocol, and because
there are only finitely many processes, it will eventually be possible for some
process to complete a read.

Lemma 21 While the weak shared coin protocol is running, the n processes
together cannot execute more than 2n® primitive reads or writes without

17

incrementing or decrementing the shared counter.

Proof: An increment or decrement completes after a single primitive
write. Any readCounter that does not overlap an increment or decrement
completes after 2n primitive reads. Thus, the n processes together can
execute 2n? primitive reads before being forced to increment or decrement
the counter. |l

Theorem 22 If processes flip a weak shared coin at each round, then the
consensus protocol requires an expected O(n?) primitive writes and O(n*)
primitive reads.

Proof: Each inc or dec translates into to a single write, so the O(n?)
expected steps needed to exhaust the random walk translate into an expected
O(n?) primitive write operations. Lemma 21 implies that each increment
or decrement requires O(n?) primitive reads, resulting in an expected O(n?)
primitive reads.

7 Consensus Using Fetch-And-Add

The fetch-and-add operation [24] atomically adds a quantity to a register
and returns the register’s old value. Fetch-and-add solves consensus de-
terministically for two processes, but not for three or more [21]. Figure 4
shows a weak shared coin implementation using fetch-and-add operations.
Not surprisingly, fetch-and-add is more efficient than read and write; it is
straightforward to show that this protocol completes in an expected O(n?)
total operations.

8 Strong Shared Coin Protocols

A strong shared coin protocol is a consistent wait-free algorithm by which n
processes agree on a value in { heads, tails} by applying operations to a shared
object. A shared coin protocol is unbiased if both choices are equally likely;
i.e., the adversary has no control over the outcome. A naive solution might
have each process flip an unbiased local coin to choose its input value, and
then achieve consensus with the others. Such a solution is heavily biased,
however, since an adversary that “wants” an outcome of heads can run
only the processes that prefer heads. Against such an adversary, this naive

18

reg = record[count: int, val: int] % Initially [0,0]

Inc = proc(counter: arraylreg]l)

r: reg := counter[self]
counter[self] := [r.count + 1, r.val + 1]
end Inc

Dec = proc(counter: arraylreg])

r: reg := counter[self]
counter[self] := [r.count + 1, r.val - 1]
end Dec

ReadCounter = proc(counter: arraylreg]) returns (int)
scanl, scan2: arraylint]
while true do
for i: in 1..n do

scani[i] := counter[i]

end
for i: in 1..n do

scan2[i] := counter[i]

end
if scanl = scan2 then return (sum(scanl)) end
end

end ReadCounter

Figure 3: Implementation of Shared Counter

19

flip = proc(coin: register) returns (bool)
while true do
if f1lip()
then state := fetch-and-add(coin, 1)
fetch-and-add(coin, -1)

else state :
end
if state >= K#N then return (heads)
elseif state <= -K*N then return (tails)
end
end
end flip

Figure 4: Weak Shared Coin Protocol using Fetch-And-Add

protocol will decide tails only if all processes initially flip tails, a probability
of 1/2™.

Theorem 23 An unbiased strong shared coin protocol is impossible.

Proof: By contradiction. For any protocol, we construct an adversary
that produce heads with probability greater than 1/2. Assume we have
an unbiased protocol, and let P and () be any two processes. Define a
configuration’s range to be the set of probabilities of eventually deciding
heads for all possible adversaries. Define a process’s current preference as
the probability that it will eventually decide heads if it is run uninterrupted
until deciding. Note that each process’s preference must appear in the range,
as running that process without interruption is a possible behavior of an
adversary. For an unbiased protocol, the initial configuration’s range is
{1/2}, and thus each process’s preference is 1/2.

Consider the following adversary. Run P until it is about to take a
step that changes the current range. Such a step must eventually occur,
because the protocol cannot run forever. Moreover, the step must be a
coin flip internal to P, since all other steps are deterministic and under the
adversary’s control. Before the coin flip, the configuration’s range is {1/2},
and the preference of both P and @ is 1/2. Suppose P’s local flip yields
heads with probability h. Let rp (r;) be the range resulting if P flips heads
(tails). Let A be an adversary corresponding to some element aj, of rj, not

20

equal to 1/2 and let a; be an element of r; yielded by A. Then since the
protocol is unbiased, we have

1/2=h-ap,+(1—h)- a

implying that one of ap, a; is greater than 1/2 and the other less. Assume
ap > 1/2 > ay; the other case is symmetric. Since @) cannot directly observe
P’s coin flip, its preference continues to be 1/2.

If the outcome of P’s flip is heads, then the adversary can ensure an
outcome of heads with probability a; by emulating A. If the outcome of
P’s flip is tails, the adversary can run ¢ uninterruptedly until it decides,
ensuring an outcome of heads with probability 1/2. Taken together, the
adversary can ensure heads with probability:

hean+(1—h)/2

Since ap > 1/2, however, this quantity exceeds 1/2, contradicting the hy-
pothesis that the protocol is unbiased. |

Note that this proof makes no assumptions about how processes com-
municate; they could use read/write registers, fetch-and-add registers, mes-
sages, or other objects.

Although we have shown that the adversary can always introduce some
bias, we have given no indication of how large that bias may be. A shared
coin protocol is asymptotically unbiased if the bias introduced by the adver-
sary can be made arbitrarily small.

Theorem 24 An asymptotically unbiased strong shared coin protocol with
expected running time polynomial in the number of processes is possible using
shared read/write registers.

Proof: Have each process choose heads or tails using a weak shared coin,
and then run the polynomial consensus protocol given above. The adversary
can influence the outcome by biasing the initial preferences. If any process
prefers heads, the adversary can suspend the others, while if all processes
prefer tails, the adversary has no more control. The likelihood the adversary
can force an outcome of heads in the initial round is thus (K +1)/2K, which
approaches 1/2 as K increases. |

21

9 Discussion

Most recent work on wait-free synchronization has focused on the construc-
tion of atomic read/write registers [5, 9, 25, 26, 30, 31, 32, 34]. Starting
with “safe” bits for which overlapping read and write operations have un-
predictable effects, these papers describe a sequence of algorithms for con-
structing wait-free implementations of read /write registers providing succes-
sively stronger guarantees, culminating in algorithms that permit multiple
concurrent readers and writers, an impressive achievement.

Nevertheless, reading and writing to individual registers is not the level of
abstraction at which most programs are written. Wait-free synchronization
will be useful in practice only if it is possible to construct wait-free imple-
mentations of objects with richer semantics than registers, objects such as
test-and-set registers, stacks, queues, file system directories, databases, etc.
It is known, however, that atomic read/write registers have few, if any, in-
teresting applications in this area [21]. Using atomic read/write registers, it
is impossible to construct a wait-free implementation of: (1) common data
types such as sets, queues, stacks, priority queues, or lists, (2) most if not all
the classical synchronization primitives such as test-and-set, compare-and-
swap, and fetch-and-add, and (3) such simple memory-to-memory operations
as move Or memory-to-memory swap.

One way to interpret these impossibility results is that atomic read /write
registers are a computational dead-end, and that wait-free synchronization
is unrealizable by machine architectures in which processes communicate
by reading and writing shared memory locations. The results in this pa-
per suggest an alternative position. If one can achieve consensus, one can
transform a sequential implementation of any object whose operations are
total (i.e., defined in every state) to a wait-free linearizable implementa-
tion [21], where each operation requires at most n rounds of consensus. In
the same way, the randomized consensus protocol presented here can be
used to transform any sequential object implementation into a randomized
wait-free implementation, where each operation has expected running time
polynomial in the number of processes. In short, wait-free synchronization
is indeed realizable under conventional architectures, provided the wait-free
guarantee is probabilistic in nature.

Acknowledgments

Hagit Attiya, Nir Shavit, and the anonymous referees provided many
useful comments.

22

References

[1]

[10]

K. Abrahamson. On achieving consensus using a shared memory.

In Seventh ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, August 1988.

J.H. Anderson and M.G. Gouda. The virtue of patience: Concurrent
programming with and without waiting. Private Communication.

M. Ben-Or. Another advantage of free choice: completely asynchronous
agreement protocols. In Second ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pages 27-30, August 1983.

M. Ben-Or and N. Linial. Collective coin flipping, robust voting
schemes, and minima of banzhaf values. In Twenty-sizth Annual Sym-
posium on Foundations of Computer Science, pages 408-416, October
1985.

B. Bloom. Constructing two-writer atomic registers. In Proceedings
of the Sizth ACM Symposium on Principles of Distributed Computing,
pages 249-259, 1987.

G. Bracha. An o(log n) expected rounds randomized byzantine generals
algorithm. In Seventeenth Annual Symposium on Theory of Computa-
tion, 1985.

G. Bracha and S. Toueg. Resilient consensus protocols. In Second ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pages 12-26, August 1983.

A. Broder and D. Dolev. Flipping coins in many pockets (byzantine
agreement on uniformly random values. In Twenty-Fifth Annual Sym-
posium on Foundations of Computer Science, pages 157-170, October
1984.

J.I. Burns and G.L. Peterson. Constructing multi-reader atomic values
from non-atomic values. In Proceedings of the Sixth ACM Symposium
on Principles of Distributed Computing, pages 222-231, 1987.

B. Chor and B. Coan. A simple and efficient randomized byzantine
agreement algorithm. IFEF Transactions on Software Engineering, SE-
11(6):531-539, June 1985.

23

[11]

[12]

[13]

[16]

[17]

B. Chor and C. Dwork. Randomization in Byzantine Agreement, vol-
ume 4. JAI Press, 1987.

B. Chor, A. Israeli, and M. Li. On processor coordination using asyn-
chronous hardware. In Proceedings of the Sizth ACM Symposium on
Principles of Distributed Computing, pages 86-97, 1987.

B. Chor, M. Merritt, and D.B. Shmoys. Simple constant-time consen-
sus protocols in realistic failure models. In Proceedings of the Fourth
ACM Symposium on Principles of Distributed Computing, pages 152—
160, 1985.

B. Coan and J. Lundelius. Transaction commit in a realistic fault

model. In Fifth ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 40-52, August 1986.

D. Dolev, C. Dwork, and L Stockmeyer. On the minimal synchronism
needed for distributed consensus. Journal of the ACM, 34(1):77-97,
January 1987.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):228-323, April 1988.

C. Dwork, D. Shmoys, and L. Stockmeyer. Flipping persuasively in con-
stant expected time. In Twenty-Seventh Annual Symposium on Foun-
dations of Computer Science, pages 222-232, October 1986.

P. Feldman and S. Micali. Optimal algorithms for byzantine agreement.
In Twentieth Annual ACM Symposium on Theory of Computing, pages
148-161, May 1988.

W. Feller. An Introduction to Probability Theory and its Applications,
volume 1. John Wiley and Sons, 1957.

M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed
commit with one faulty process. Journal of the ACM, 32(2), April 1985.

M.P. Herlihy. Impossibility and universality results for wait-free syn-
chronization. In Seventh ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, August 1988.

M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In 1/th
ACM Symposium on Principles of Programming Languages, pages 13—
26, January 1987.

24

[23]

[24]

[30]

[31]

[32]

J.G. Kemeny, J.L. Snell, and A.W. Kapp. Denumerable Markov Chains.
D. Van Nostrand, 1966.

C.P. Kruskal, I.. Rudolph, and M. Snir. Efficient synchronization on
multiprocessors with shared memory. In Fifth ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, August 1986.

L. Lamport. Concurrent reading and writing. Communications of the
ACM, 20(11):806-811, November 1977.

L. Lamport. On interprocess communication, parts i and ii. Distributed
Computing, 1:77-101, 1986.

M.C. Loui and H.H. Abu-Amara. Memory Requirements for Agreement
Among Unreliable Asynchronous Processes, volume 4, pages 163-183.
JAT Press, 1987.

N.A. Lynch and M. Merritt. Introduction to the theory of nested trans-

actions. Technical Report MIT/LCS/TR-387, M.I.T. Laboratory for
Computer Science, April 1986.

N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. Technical Report MIT/LCS/TR-387, M.I.T. Lab-
oratory for Computer Science, April 1987.

R. Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared
variables. In Proceedings of the Sizth ACM Symposium on Principles
of Distributed Computing, pages 232-249, 1987.

G.L. Peterson. Concurrent reading while writing. ACM Transactions
on Programming Languages and Systems, 5(1):46-55, January 1983.

G.L. Peterson and J.E. Burns. Concurrent reading while writing ii: the
multi-writer case. Technical Report GIT-ICS-86/26, Georgia Institute
of Technology, December 1986.

M. Rabin. Randomized byzantine generals. In Twenty-fourth Annual
Symposium on Foundations of Computer Science, pages 403-409, Oc-
tober 1983.

A K. Singh, J.H. Anderson, and M.G. Gouda. The elusive atomic regis-
ter revisited. In Proceedings of the Sizth ACM Symposium on Principles
of Distributed Computing, pages 206-221, August 1987.

25

