
Fast Randomized Consensususing Shared MemoryJames AspnesSchool of Computer ScienceCarnegie-Mellon UniversityPittsburgh, PA 15213 Maurice HerlihySchool of Computer ScienceCarnegie-Mellon UniversityPittsburgh, PA 15213 �September 17, 1996AbstractWe give a new randomized algorithm for achieving consensus amongasynchronous processes that communicate by reading and writing sharedregisters. The fastest previously known algorithm has exponential ex-pected running time. Our algorithm is polynomial, requiring an ex-pected O(n4) operations. Applications of this algorithm include theelimination of critical sections from concurrent data structures and theconstruction of asymptotically unbiased shared coins.1 IntroductionA consensus protocol is a set of n asynchronous processors that communicateby applying operations to a shared object. The object may be a messagechannel, an array of read/write registers, or something more complex. Eachprocess starts with an input value, either 0 or 1, and runs until it chooses adecision value and halts. A consensus protocol is correct if it is consistent:no two processes choose di�erent decision values, valid: the decision value�This research was sponsored by the O�ce of Naval Research (DOD), under contractN00014-88-K-0699. The work of the �rst author was supported by a National ScienceFoundation Graduate Fellowship. The views and conclusions contained in this documentare those of the authors and should not be interpreted as representing the o�cial policies,either expressed or implied, of the Defense Advanced Research Projects Agency or the USGovernment. 1



was some process's input value, and wait-free: each process decides after a�nite number of steps.Consensus protocols are interesting because they are fundamental to syn-chronization without mutual exclusion. The traditional approach to coordi-nating concurrent access to shared data objects is to rely on critical sections:only one process at a time is allowed to operate on the object. Nevertheless,critical sections are poorly suited for asynchronous, fault-tolerant systems:if a faulty process is halted or delayed in a critical section, non-faulty pro-cesses will also be halted or delayed. By contrast, an implementation ofa concurrent data object is wait-free if it guarantees that any process willcomplete any operation in a �nite number of steps, independent of otherprocesses' halting failures or variations in speed. If there exists a consen-sus protocol for an object X , then one can use X to construct a wait-freeimplementation of any concurrent data object whose operations are total[21].If the shared object X is an array of registers providing read and writeoperations, then consensus is known to be impossible [2, 12, 15, 21, 27]. IfX is an array of registers providing test-and-set or fetch-and-add operations,then consensus is possible between two processes, but not among three [21,27]. Nevertheless, in both cases, consensus among an arbitrary number ofprocesses can still be achieved probabilistically. This paper presents twonew randomized consensus protocols, one in which processes communicateby reading and writing shared registers, and one in which they communicateby applying fetch-and-add operations. The protocols are consistent, non-trivial, and they guarantee that each process decides after a �nite expectednumber of steps. The only previously known read/write protocol, due toAbrahamson [1], requires an expected 2O(n2) operations. Ours is signi�cantlyfaster, requiring an expected n2 writes and n4 reads. The fetch-and-addprotocol requires an expected n2 fetch-and-add operations.The basic idea behind our protocols is quite simple. We �rst describe asimple protocol that has exponential expected running time if an adversaryscheduler runs the processes in lockstep. Each process 
ips an unbiased coinat each round, and the protocol halts when all n processes simultaneously
ip the \right" value. The probability of terminating at any particular roundis 1=2n, so the expected number of rounds until termination is 2n. A naiveapproach to speeding up the protocol is to replace the n independent coin
ips with a single unbiased coin shared by the processes. Unfortunately,implementing an unbiased shared coin is provably impossible in an asyn-chronous system (see Section 8 below), so it would appear that no progress2



has been made. The key insight, however, is similar to one proposed byChor, Merritt, and Shmoys [13]: it su�ces to ensure that processes are suf-�ciently likely to 
ip the same value, and that an adversary scheduler hasa su�ciently weak in
uence over which value is chosen. The heart of ourconsensus protocol is a weak shared coin protocol that guarantees: (1) pro-cesses are likely to observe the same outcome, (2) an adversary scheduler hasonly a weak in
uence over that outcome, and (3) the protocol has expectedrunning time polynomial in the number of processes.Consensus is often viewed as a game. One side, the processes, tries toachieve agreement against an adversary scheduler. The processes apply readand write operations to the shared registers, and the adversary chooses whenthe operations actually occur. Our adversary is extremely powerful: it hascomplete information about the processes' protocols, their internal states,and the state of the shared memory. It is not restricted to polynomialresources, and thus it cannot be outwitted by encryption schemes. Theadversary cannot, however, predict future coin 
ips. Against such a powerfuladversary, it may seem surprising that consensus can be achieved by a simpleprotocol in polynomial expected time.2 Related WorkFischer, Lynch, and Paterson [20] show that there is no consensus proto-col for two processes that communicate by asynchronous messages. Dolev,Dwork, and Stockmeyer [15] and Dwork, Lynch, and Stockmeyer [16] givea comprehensive analysis of the circumstances under which consensus canbe achieved by message-passing. Randomized protocols can achieve consen-sus when deterministic protocols cannot. Ben-Or [3] proposes a randomizedconsensus protocol with exponential expected running time that toleratesup to n=5 failures, where n is the number of processes. A consensus pro-tocol due to Bracha and Toueg [7] relies on probabilistic properties of themessage-passing system.Loui and Abu-Amara [27] give several consensus protocols and impossi-bility results for processes that communicate through shared registers withvarious read-modify-write (\test-and-set") operations. Chor, Israeli and Li[12] give two randomized consensus protocols for shared read/write regis-ters, one for two processes, and one for three processes. 1 Their protocols,1The three-process protocol published in [12] has a bug: the termination conditionmust be strengthened to ensure consistency.3



however, require a \strong" synchronization primitive: the ability to 
ip acoin and write the result in a single atomic step. By contrast, the protocolspresented here, updating a register and changing process state are distincttransitions. Abrahamson [1] gives consensus protocols for both the \strong"model used by Chor, Israeli, and Li, and the more demanding \weak" modelused here. As mentioned above, Abrahamson's consensus protocol for theweak model has exponential expected running time.A number of protocols have been proposed for implementing shared coinsin message-passing systems subject to byzantine or halting failures. (An ex-cellent survey appears in [11].) Some constructions are direct [4, 8, 17], andothers arise as parts of protocols for consensus [13], transaction commitment[14], or byzantine agreement [6, 13, 18, 33]. The models underlying theseprotocols di�er from ours by assuming that private channels or encryptioncan be used to prevent the adversary from observing certain messages andprocesses' internal states. Chor and Coan [10] give a randomized byzan-tine agreement protocol that does not assume private communication, butrestricts when the adversary may exploit knowledge of the processes' states.3 Model3.1 I/O AutomataFormally, we model processes and registers as I/O automata [28, 29]. AnI/O automaton is a non-deterministic automaton A with the following com-ponents:� States(A) is a �nite or in�nite set of states, including a distinguishedset of starting states.� In(A) is a set of input events,� Out(A) is a set of output events,� Steps(A) is a transition relation given by a set of triples (s0; e; s), wheres and s0 are states and e is an event. Such a triple is called a step,and it means that an automaton in state s0 can undergo a transitionto state s, and that transition is associated with the event e.If (s0; e; s) is a step, we say that e is enabled in s0. I/O automata must satisfythe additional condition that inputs cannot be disabled: for each input evente and each state s0, there exist a state s and a step (s0; e; s).4



An execution of an automaton A is a �nite sequence s0; e1; s1; : : : ; en; snor in�nite sequence s0; e1; s1; : : : of alternating states and events such thats0 is a starting state and each (si; ei+1; si+1) is a step of A. A history of anautomaton is the subsequence of events occurring in one of its executions. 2A new I/O automaton can be constructed by composing a set of I/Oautomata with disjoint output events. A state of the composed automatonS is a tuple of component states, and a starting state is a tuple of compo-nent starting states. The set of events of S, Events(S), is the union of thecomponents' sets of events, and the set of output events of S, Out(S), is theunion of the components' sets of output events. The sets of input eventsof S, In(S), is Events(S) � Out(S), all the events of S that are not outputevents for some component. A triple (s0; e; s) is in Steps(S) if and only if,for all component automata A, one of the following holds: (1) e is an eventof A, and the projection of the step onto A is a step of A, or (2) e is notan event of A, and A's state components are identical in s0 and s. If H isa history of a composite automaton and A an automaton, H jA denotes thesubhistory of H consisting of events of A.3.2 Processes, Registers, and ProtocolsA process P is an I/O automaton with output eventswrite(P; v; R), read(P;R),and decide(P; v); input event return(P; v; R); and internal event coin-flip(P; x), where v is a value, R a register, and x (the value of the coin-
ip)an element of the set f0,1g. The two coin-flip events of a process representpossible results of a random decision made within the process; if either isenabled in a particular state, the other must also be enabled. A register R isan I/O automaton with input events write(P; v; R) and read(P;R), andthe output event return(P; v; R), where P is a process and v a value. Aprotocol fP1; : : : ; Pn;R1; : : : ; Rmg is the I/O automaton composed by iden-tifying in the obvious way the events for processes P1; : : : ; Pn and registersR1; : : : ; Rm.read and write events are called invocations, and return events arecalled a responses. An invocation and response match if their process andregister names agree. An invocation with no matching response is pending,and complete(H) is the maximal subsequence ofH consisting only of invoca-tions and matching responses. If H is a history, an operation of H is a pair2To remain consistent with the terminology of [22], we use \event" where Lynch andTuttle [29] use \operation" and \history" where they use \schedule."5



consisting of an invocation and the next matching response. H is sequen-tial if (1) the �rst event of H is an invocation, (2) each invocation, exceptpossibly the last, is immediately followed by a matching response, and eachresponse is immediately preceded by a matching invocation. A history thatis not sequential is concurrent. A protocol history is well-formed if eachH jPi is sequential, and a protocol is well-formed if each of its histories iswell-formed. We assume all protocols are well-formed.If we restrict our attention to sequential histories, then the behavior ofa register can be speci�ed in a particularly simple way: each value read wasthe last value written. We would like to ensure that a protocol's concurrenthistories are \equivalent," in some sense, to its sequential histories. For-mally, we capture this notion as follows. A protocol history H induces apartial \real-time" order �H on its operations: op0 �H op1 if the responsefor op0 precedes the invocation for op1. Operations unrelated by �H aresaid to be concurrent. If H is sequential, �H is a total order. A proto-col fP1; : : : ; Pn;R1; : : : ; Rmg is linearizable [22] if, for each history H , thereexists a sequential protocol history S such that:� For all Pi; H jPi = SjPi.� �H��SIn other words, the history \appears" sequential to each individual process,and this apparent sequential interleaving respects the real-time precedenceordering of operations. A protocol is linearizable if all its histories are lin-earizable. Henceforth, we restrict our attention to linearizable registers,which are usually called atomic registers [26] in the literature. (A moregeneral de�nition of linearizability, including comparisons with related cor-rectness criteria, appears elsewhere [22].)3.3 RandomizationThe random non-determinism involved in the choice between coin- flip(P; 0)and coin- flip(P; 1) has a di�erent nature from the \ordinary" non-determinismin the protocol. It is possible to make the distinction formally by placing theother non-deterministic choices under the control of an adversary, a functionA which maps each of the protocol's �nite executions s0; e1; s1; : : : ; en; sn toa set of events enabled in sn, such that for all �nite executions �, A(�) con-sists either of a single non-coin-flip event or a pair of coin-flip eventsrepresenting the two possible outcomes of a coin-flip at some process.6



The intent is that the adversary controls which executions are possible.More formally, we say that an adversary A permits a (possibly in�nite) ex-ecution � = s0; e1; s1; : : : ; if, for every event ei in �, ei is an element ofA(s0; e1; s1; : : : ; si�1). We write �A for the set of executions that A permits,and �A;s for the subset of �A consisting of executions which have s as theirinitial state.Let c(�) be the sequence of coin-
ip values in �. It is a straightforwardconsequence of the constraints on the domain of an adversary function Athat, for each countable sequence C of 0's and 1's, there exists exactly one�A;s(C) in �A;s such that c(�A;s(C)) is a pre�x of C. We can think of �A;sas a measurable function from the sequence space 
 on the set f0,1g to thesequence space � of protocol executions [23]. We can thus use �A;s to de�nea probability measure on � by transforming the probability measure on 
as follows: PA;s(X) = P (fCj�A;s(C) 2 Xg)(where the probability on the left is de�ned only when X � � is measurable�). An immediate consequence of the de�nition is that PA;s(X) = 0 for anyX which is disjoint from �A;s.For now, we leave the probabilities associated with coin 
ips as an un-speci�ed parameter of the model.3.4 Consensus ProtocolsA consensus protocol is a protocol whose processes each have two initialstates, corresponding to input values of 0 or 1, respectively, and whosehistories all satisfy the following conditions:1. Consistency. Every decide event in the history has the same value,which must be an input value for at least one of the processes.2. Termination A decide event for P must be the last output event ofP .3. Validity. If s is an input state in which some processes start withdi�erent values, there exist adversaries A, B such that PA;s(f�j� con-tains decide(P; 0) for some Pg) and PB;s(f�j� contains decide(P; 1)for some Pg) are both non-zero.The �rst condition guarantees that the protocol actually achieves con-sensus. The second condition is not critical to describing a consensus pro-tocol, but is necessary for identifying when a protocol is �nished. The third7



condition excludes protocols which achieve consensus trivially by �xing theoutcome in advance.The running time r(H) of a protocol history H is the length of theshortest pre�x of H which contains a decide event for every process in theprotocol. The worst-case expected running time of a protocol is given by:maxA;s 1Xi=0 iPA;s(f�jr(�) = ig)which is simply the expected running time of the protocol against the worstpossible adversary. If, for some adversary A and initial state s, the sumin the above expression does not converge, we say that the protocol has anin�nite worst-case expected running time.4 An Exponential Consensus ProtocolEach process P has a register with two �elds:� prefer, if distinct from ?, is the value P would choose if it were tocomplete the protocol executing in isolation,� round is a counter that keeps track of the number of rounds P hasexecuted so far.A process Q agrees with P if (1) both prefer �elds are equal, and (2)neither is ?. A process is a leader if its rounds �eld is greater than or equalto any other process's rounds �eld.The protocol, shown in Figure 1, works as follows. Initially, P 's registeris initialized so that round is 0 and prefer is ?. Process P starts by settinground to 1, and prefer to its input value. P then enters the main loopof the protocol. It reads all processes' registers. The protocol terminates ifP is a leader, and if all processes whose round �elds trail P 's by less thantwo agree with P . Otherwise, if the leaders agree, P updates its register toagree with the leaders, increments its round counter, and resumes the loop.Otherwise, if its prefer �eld is not ?, P \warns" the other processes that itmay change its preference by setting prefer to ? before resuming the loop.If prefer is already ?, then P chooses a new preference by an unbiased coin
ip, increments round, and resumes the loop.Although the rounds �eld is potentially unbounded, larger values arereached with lower probabilities, thus the likelihood of over
ow can be madearbitrarily small. 8



% Initially:r.prefer := BOTTOM % preferred valuer.round := 0 % racing counter% The algorithmr := [prefer: input, round: 1]while true doread registersif all who disagree trail by 2 AND I'm a leaderthen decide(r.prefer)% Agree with unanimous leaders ...elseif leaders agree thenr := [prefer: leader.prefer, round: r.round + 1]% Warn of impending changeelseif r.prefer ~= BOTTOM thenr := [prefer: BOTTOM, round: r.round]% Guess a new value.else r := [prefer: flip(), round: r.round + 1]end % ifend %for Figure 1: An Exponential Consensus Protocol
9



4.1 ConsistencyLet H be a history (sequence of reads, writes, and 
ips) permitted by aparticular adversary. For brevity, we say that process P prefers v 6= ?at round r if P writes [prefer: v, round: r] at some step in H , andthat P is busy at round r if it writes [prefer: ?, round: r]. The �rstprocess to prefer v at round r is the one whose write occurred earliest in H .We use v and v0 to stand for the two distinct decision values.Lemma 1 If P prefers v at round r and v0 at round r+1, then some Q 6= Pprefers v0 at round r0 � r, and Q's write of v0 precedes P 's write of v0.Proof: P can change preference from v to v0 in one of two ways: ifit observes that all leaders agree on v0, or if it observes that the leadersdisagree. In either case, some other Q prefers v0 at round r0 � r, and sinceP read that value, Q's write of v0 must precede P 's.Lemma 2 If every process that completes round r in H prefers v at thatround, then no process prefers a distinct value at any higher round.Proof: Suppose not. Let P be the �rst process in H to prefer v0 atround r0 > r. Lemma 1 implies that some Q prefers v0 at round r00 � r.Since it is given that all processes that completed round r prefer v, it followsthat r00 > r, contradicting the hypothesis that P is the �rst process to switchits preference after round r.By similar reasoning:Lemma 3 If every process that completes round r in H prefers v at thatround, then no process is busy at any higher round.Lemma 4 If every process that completes round r in H prefers v at thatround, then no process completes round r + 2 without deciding v.Proof: By contradiction. Any process that decides after round r mustdecide v, since Lemma 2 implies it must prefer that value. Let Q be the�rst process to fail to decide at round r + 2. Since all earlier processes tostart that round have decided, Q is a leader. If Q fails to decide, then itmust disagree with another process P at rounds r or r+1. Either P prefersv0 6= v at that round, contradicting Lemma 1, or P is busy at that round,contradicting Lemma 3. 10



Lemma 5 If P decides v after writing round r in H, then no other processprefers v0 at round r.Proof: Suppose not. Let Q be the �rst process to prefer v0 at round r inH . There are two cases to consider, depending on Q's preference at roundr � 1.Case 1: Q prefers v at round r � 1. We claim that Q can change itspreference only as a result of a coin 
ip. If Q switched preference betweenrounds r � 1 and r without 
ipping, then it must have observed that theleaders prefer v0. Let H 0 be the pre�x of H strictly preceding Q's write.Because all processes that completed round r in H 0 prefer v, these leaderscannot be at a round greater than r (Lemma 2). Because Q is the �rstprocess to prefer v0 at round r (hypothesis), these leaders cannot be atround r. But Q itself prefers v at round r � 1, therefore the leaders cannotagree.Before Q can 
ip a coin, however, it must set its prefer �eld to ? andreread the registers. Q now observes that P prefers v at round r. No otherprocess prefers v0 in H 0 at round r (hypothesis) or higher (Lemma 2). Noprocess is busy at round r or higher, since the �rst such process must haveobserved another process that prefers v0 at round r or higher. Therefore, Qobserves that the leaders agree on v, and it resets its register to agree withthe leaders, contradicting the hypothesis.Case 2: Q prefers v0 at round r�1. Since P decided v, it must have readQ's register at round r0 < r � 1. Before Q can advance to round r, it mustreread P 's register, observing that P prefers v at round r. By an argumentessentially identical to the one given above, no process disagrees with P atlevels r or above, a contradiction.Theorem 6 This consensus protocol is consistent.Proof: If any process decides on v after writing round r, then all pro-cesses will prefer v at round r (Lemma 5), and hence all processes willeventually decide v (Lemma 4).This protocol can be extended to allow decision values from an arbitrarydomain, not just f0,1g. Before joining the protocol, each process writesits initial value to a public register. Instead of 
ipping a coin to changepreference, a process randomly adopts a leader's preference.11



4.2 Running TimeA process is deterministic at round r if it does not 
ip a coin at that round,and non-deterministic otherwise. Let V and V 0 be the sets of processes thatrespectively prefer v and v0 at round r.Lemma 7 The set of non-deterministic processes at round r encompassesat least one of V and V 0.Proof: We show that if P and Q belong to V and V 0, then at least oneof the two must be non-deterministic.Let P be the �rst process to write a preference, say v, at round r. IfP is non-deterministic, then it must have observed that the leaders preferv. Since P is the �rst process to enter round r, it must have observed thatall processes at round r � 1 prefer v. Let Q be the �rst process to preferv0 at round r. If Q is deterministic, then it must have observed that theleaders prefer v0. Since all processes at rounds r and higher prefer v, Qmust have observed that all processes at round r�1 prefer v0. Each process,however, writes out its preference for round r� 1 before reading the other'sregister, thus at least one of the two must have observed a disagreementbefore entering round r, and that process must be non-deterministic.Lemma 7 implies that the deterministic processes at round r have thesame preference. We now show that if the non-deterministic processes choosethe same preference, then the adversary cannot force the determinstic pro-cesses to disagree.Lemma 8 Let v be the �rst value written at round r � 1. If the non-deterministic processes at round r all choose v, then all processes have thesame preference at round r.Proof: The result is immediate if there are no deterministic processes.Suppose P is the �rst deterministic process to prefer v0 at round r. SinceP is deterministic, it must have observed that the leaders prefer v0. Theleaders could not have been at round r or higher, since all such processesare non-deterministic, and they prefer v both at round r (by hypothesis)and at higher rounds (Lemma 2). P observed at least one process at roundr�1, namely itself. Since P 's write at round r�1 precedes any of its reads,P must also have read any values whose writes at that round precede itsown, including the earliest. 12



Notice that the �rst value written at round r� 1 is �xed before the �rstprocess begins round r, and therefore the adversary cannot force disagree-ment by allowing the non-deterministic processes to choose their preference,and then somehow forcing the deterministic processes to disagree.The running time of the consensus protocol thus depends primarily onthe degree of control the adversary can exercise over the outcomes of coin
ips.De�nition 9 Let HA;r be strict lower bound on the probability that no pro-cess 
ips tails at round r when running against adversary A, and let TA;rbe de�ned symmetrically. The de�ance probability � is:� = minA;r (HA;r; TA;r):Informally, � is the probability that all non-deterministic processes will 
ipa given value given that the adversary \wants" at least one process to 
ipthe other value.Theorem 10 The consensus protocol has worst-case expected running timeO(1=�) rounds.Proof: Consider the set of coin 
ips associated with each round afterthe �rst. If all processes are deterministic, then they have identical pref-erences (Lemma 7), and the protocol is about to terminate (Lemma 4). Ifsome processes are non-deterministic, then the protocol terminates if theyall choose the �rst value written at the previous round (Lemma 8). Sincethis value is �xed before any process performs a coin 
ip at that round, theprotocol terminates at that round with probability greater than or equal to�. The protocol thus acts like a Bernoulli process, where the probability ofterminating at each round is at least �, and the expected running time is atmost 1=�.Corollary 11 The consensus protocol has a worst-case expected runningtime of O(n2=�) steps.Proof: In each round, each process performs at most 2n read opera-tions, one coin-flip, and two write operations, for a total of 2n+3 steps.Thus the total number of steps taken per round by all processors is O(n2),giving a maximum total running time of O(n2=�) steps.13



Corollary 12 If processes 
ip independent unbiased coins, then � is 1=2n,and the protocol has a worst-case expected running time of O(2n) steps.This bound is easily seen to be tight. The adversary can run the processesin lockstep, so that all n processes observe disagreement at each round, andall 
ip to choose a preference for the next round.5 The Weak Shared Coin ProtocolAs noted above, the protocol runs for exponential expected time if processes
ip unbiased, independent coins. In this section we transform the exponen-tial protocol into a protocol in which processes reach agreement after anexpected O(n2) writes and O(n4) reads. The basic idea is to have the pro-cesses undertake a weak shared coin protocol that, in essence, simulates acoin shared by all processes. The weak shared coin protocol is parameterizedby a value K > 1. It has the key property that any adversary has only aweak in
uence over the protocol's outcome:De�nition 13 A weak shared coin protocol has de�ance probability (K �1)=2K.The in
uence that can be exercised by any adversary is thus independentof n, and asymptotically approaches zero as K increases. We emphasize thatthe protocol does not guarantee that all processes observe the same outcome,only that they do so with probability at least (K � 1)=2K.Corollary 14 If processes 
ip a weak shared coin at each round, then theconsensus protocol terminates in an expected O(1) rounds.The complexity of achieving consensus in terms of primitive reads andwrites is thus the complexity of implementing the weak shared coin.5.1 Implementing a Weak Shared CoinThe weak shared coin protocol is implemented using a shared counter ab-straction, whose implementation in terms of reads and writes is given inSection 6. The counter is linearizable with the following sequential speci�-cation:inc = proc(c: counter) 14



increments the counter,dec = proc(c: counter)decrements the counter, andreadCounter = proc(c: counter) returns (int)returns the counter's current value.The weak shared coin protocol is shown in Figure 2. The processes col-lectively undertake a random walk: each process 
ips an unbiased coin, anddepending on the outcome, increments or decrements the shared counter.It then reads the counter. If the observed value is greater than or equalto Kn, the process decides heads, and if the observed value is less thanor equal to �Kn, it decides tails. Informally, the only way the adversarycan in
uence the outcome of the protocol is to suspend processes that areabout to move the counter in the undesired direction. After suspendingn � 1 such processes, however, the adversary has \used up" its in
uence,and the remaining process is free to wander at random. As K increases, theimportance of this bias decreases.Let H and T be the respective number of heads and tails generated sofar.Lemma 15 If H � T < �(K + 1)n then all undecided processes will even-tually decide tails.Proof: Since the adversary can suspend at most one write per process,the counter value read by any process can di�er from H � T by at mostn � 1. Once H � T falls below �(K + 1)n, every process that samples thecounter will observe a value less than or equal to �Kn.By similar reasoning:Lemma 16 If some process decides heads, then at the time of its last read,H � T > (K � 1)n.We can combine these two observations to derive a bound on the likeli-hood the adversary can force disagreement, or a desired outcome.Theorem 17 The adversary can force some process to 
ip heads with prob-ability at most (K + 1)=2K. 15



Proof: Lemma 16 implies that no process can decide heads before H�Treaches (K�1)n for the �rst time. If, however, H�T falls below �(K+1)nbefore reaching (K�1)n, then Lemma 15 implies that no process can decideheads. If we make the conservative assumption that the adversary can forcesome undecided process to choose heads if H � T � (K � 1)n, then thevalue of H � T can be viewed as a random walk starting at the origin withabsorbing barriers at �(K + 1)n (all decide tails) and (K � 1)n (some maydecide heads). It is a standard result of random walk theory [19, Ch. XIV]that the probability of reaching (K � 1)n before �(K + 1)n is (K + 1)=2K.One way to make certain that some process 
ips heads is to force twoprocessors to disagree.Corollary 18 The adversary can force processes to disagree with probabilityless than or equal to (K � 1)=2K.Theorem 19 The worst-case expected running time of the weak shared coinprotocol is O(n2) rounds.Proof: Instead of promoting a particular outcome, suppose the adver-sary adopts a dilatory strategy, seeking to prolong the protocol for as longas possible. As noted above, the protocol will terminate whenever the ab-solute value of the counter exceeds (K +1)n, thus the protocol behaves likea random walk starting at the origin with absorbing barriers at (K + 1)nand �(K + 1)n. It is a standard result of random walk theory [19] that theexpected running time of such a walk is (K + 1)2n2, i.e. O(n2).6 The Counter AbstractionThe counter implementation is a straightforward adaptation of an algorithmproposed by Lamport [25] for read/write registers. The counter is repre-sented by an n-element array of registers, one for each process. Each regis-ter has two �elds: a count �eld incremented whenever that process altersthe register's value, and a val �eld representing that process's contributionto the current counter value. To increment or decrement the counter, Poverwrites its register with a new value whose count �eld is incremented,and whose val �eld is incremented or decremented. To read the counter itscans the array twice: if both scans yield identical values, the read returnsthe sum of the val �elds, otherwise the read is restarted.16



flip = proc(coin: counter) returns (bool)while true doif flip() then inc(coin) else dec(coin) endstate := readCounter(coin)if state >= K*N then return (heads)elseif state <= -K*N then return (tails)endendend flip Figure 2: The Weak Shared Coin ProtocolTheorem 20 The counter implementation is linearizable.Proof: The update operations, i.e., increments and decrements, aretotally ordered in a natural way: I0 < I1 if I0 writes its array element�rst. A readCounter operation observes an update if the former reads anarray element after the latter writes it. A readCounter returns the sum ofthe updates it observes. It su�ces to show that readCounter implements a\snapshot" | if I0 < I1, and a readCounter operation R observes I1, thenit also observes I0. De�ne R's �rst (second) read of I0 be its penultimate(last) read of the array element written by I0, and similarly for the otheroperations. Because I0 < I1, I0's write precedes I1's write. Because Robserves I1, and the array value doesn't change between R's �rst and secondreads of I1, I1's write precedes R's �rst read of I1. Because R starts thesecond scan only after �nishing the �rst, R's �rst read of I1 precedes itssecond read of I0, and therefore R observes I0.Note that the inc and dec operations are wait-free, but readCounter canbe starved if it is interrupted by an in�nite sequence of writers. The adver-sary canot exploit this property to force the protocol to run forever: afterenough writes, the next reader will drop out of the protocol, and becausethere are only �nitely many processes, it will eventually be possible for someprocess to complete a read.Lemma 21 While the weak shared coin protocol is running, the n processestogether cannot execute more than 2n2 primitive reads or writes without17



incrementing or decrementing the shared counter.Proof: An increment or decrement completes after a single primitivewrite. Any readCounter that does not overlap an increment or decrementcompletes after 2n primitive reads. Thus, the n processes together canexecute 2n2 primitive reads before being forced to increment or decrementthe counter.Theorem 22 If processes 
ip a weak shared coin at each round, then theconsensus protocol requires an expected O(n2) primitive writes and O(n4)primitive reads.Proof: Each inc or dec translates into to a single write, so the O(n2)expected steps needed to exhaust the random walk translate into an expectedO(n2) primitive write operations. Lemma 21 implies that each incrementor decrement requires O(n2) primitive reads, resulting in an expected O(n4)primitive reads.7 Consensus Using Fetch-And-AddThe fetch-and-add operation [24] atomically adds a quantity to a registerand returns the register's old value. Fetch-and-add solves consensus de-terministically for two processes, but not for three or more [21]. Figure 4shows a weak shared coin implementation using fetch-and-add operations.Not surprisingly, fetch-and-add is more e�cient than read and write; it isstraightforward to show that this protocol completes in an expected O(n2)total operations.8 Strong Shared Coin ProtocolsA strong shared coin protocol is a consistent wait-free algorithm by which nprocesses agree on a value in fheads, tailsg by applying operations to a sharedobject. A shared coin protocol is unbiased if both choices are equally likely;i.e., the adversary has no control over the outcome. A naive solution mighthave each process 
ip an unbiased local coin to choose its input value, andthen achieve consensus with the others. Such a solution is heavily biased,however, since an adversary that \wants" an outcome of heads can runonly the processes that prefer heads. Against such an adversary, this naive18



reg = record[count: int, val: int] % Initially [0,0]Inc = proc(counter: array[reg])r: reg := counter[self]counter[self] := [r.count + 1, r.val + 1]end IncDec = proc(counter: array[reg])r: reg := counter[self]counter[self] := [r.count + 1, r.val - 1]end DecReadCounter = proc(counter: array[reg]) returns (int)scan1, scan2: array[int]while true dofor i: in 1..n doscan1[i] := counter[i]endfor i: in 1..n doscan2[i] := counter[i]endif scan1 = scan2 then return (sum(scan1)) endendend ReadCounterFigure 3: Implementation of Shared Counter19



flip = proc(coin: register) returns (bool)while true doif flip()then state := fetch-and-add(coin, 1)else state := fetch-and-add(coin, -1)endif state >= K*N then return (heads)elseif state <= -K*N then return (tails)endendend flipFigure 4: Weak Shared Coin Protocol using Fetch-And-Addprotocol will decide tails only if all processes initially 
ip tails, a probabilityof 1=2n.Theorem 23 An unbiased strong shared coin protocol is impossible.Proof: By contradiction. For any protocol, we construct an adversarythat produce heads with probability greater than 1=2. Assume we havean unbiased protocol, and let P and Q be any two processes. De�ne acon�guration's range to be the set of probabilities of eventually decidingheads for all possible adversaries. De�ne a process's current preference asthe probability that it will eventually decide heads if it is run uninterrupteduntil deciding. Note that each process's preference must appear in the range,as running that process without interruption is a possible behavior of anadversary. For an unbiased protocol, the initial con�guration's range isf1=2g, and thus each process's preference is 1=2.Consider the following adversary. Run P until it is about to take astep that changes the current range. Such a step must eventually occur,because the protocol cannot run forever. Moreover, the step must be acoin 
ip internal to P , since all other steps are deterministic and under theadversary's control. Before the coin 
ip, the con�guration's range is f1=2g,and the preference of both P and Q is 1=2. Suppose P 's local 
ip yieldsheads with probability h. Let rh (rt) be the range resulting if P 
ips heads(tails). Let A be an adversary corresponding to some element ah of rh not20



equal to 1=2 and let at be an element of rt yielded by A. Then since theprotocol is unbiased, we have1=2 = h � ah + (1� h) � atimplying that one of ah; at is greater than 1=2 and the other less. Assumeah > 1=2 > at; the other case is symmetric. Since Q cannot directly observeP 's coin 
ip, its preference continues to be 1=2.If the outcome of P 's 
ip is heads, then the adversary can ensure anoutcome of heads with probability ah by emulating A. If the outcome ofP 's 
ip is tails, the adversary can run Q uninterruptedly until it decides,ensuring an outcome of heads with probability 1=2. Taken together, theadversary can ensure heads with probability:h � ah + (1� h)=2Since ah > 1=2, however, this quantity exceeds 1=2, contradicting the hy-pothesis that the protocol is unbiased.Note that this proof makes no assumptions about how processes com-municate; they could use read/write registers, fetch-and-add registers, mes-sages, or other objects.Although we have shown that the adversary can always introduce somebias, we have given no indication of how large that bias may be. A sharedcoin protocol is asymptotically unbiased if the bias introduced by the adver-sary can be made arbitrarily small.Theorem 24 An asymptotically unbiased strong shared coin protocol withexpected running time polynomial in the number of processes is possible usingshared read/write registers.Proof: Have each process choose heads or tails using a weak shared coin,and then run the polynomial consensus protocol given above. The adversarycan in
uence the outcome by biasing the initial preferences. If any processprefers heads, the adversary can suspend the others, while if all processesprefer tails, the adversary has no more control. The likelihood the adversarycan force an outcome of heads in the initial round is thus (K+1)=2K, whichapproaches 1=2 as K increases. 21



9 DiscussionMost recent work on wait-free synchronization has focused on the construc-tion of atomic read/write registers [5, 9, 25, 26, 30, 31, 32, 34]. Startingwith \safe" bits for which overlapping read and write operations have un-predictable e�ects, these papers describe a sequence of algorithms for con-structing wait-free implementations of read/write registers providing succes-sively stronger guarantees, culminating in algorithms that permit multipleconcurrent readers and writers, an impressive achievement.Nevertheless, reading and writing to individual registers is not the level ofabstraction at which most programs are written. Wait-free synchronizationwill be useful in practice only if it is possible to construct wait-free imple-mentations of objects with richer semantics than registers, objects such astest-and-set registers, stacks, queues, �le system directories, databases, etc.It is known, however, that atomic read/write registers have few, if any, in-teresting applications in this area [21]. Using atomic read/write registers, itis impossible to construct a wait-free implementation of: (1) common datatypes such as sets, queues, stacks, priority queues, or lists, (2) most if not allthe classical synchronization primitives such as test-and-set, compare-and-swap, and fetch-and-add, and (3) such simple memory-to-memory operationsas move or memory-to-memory swap.One way to interpret these impossibility results is that atomic read/writeregisters are a computational dead-end, and that wait-free synchronizationis unrealizable by machine architectures in which processes communicateby reading and writing shared memory locations. The results in this pa-per suggest an alternative position. If one can achieve consensus, one cantransform a sequential implementation of any object whose operations aretotal (i.e., de�ned in every state) to a wait-free linearizable implementa-tion [21], where each operation requires at most n rounds of consensus. Inthe same way, the randomized consensus protocol presented here can beused to transform any sequential object implementation into a randomizedwait-free implementation, where each operation has expected running timepolynomial in the number of processes. In short, wait-free synchronizationis indeed realizable under conventional architectures, provided the wait-freeguarantee is probabilistic in nature.AcknowledgmentsHagit Attiya, Nir Shavit, and the anonymous referees provided manyuseful comments. 22



References[1] K. Abrahamson. On achieving consensus using a shared memory.In Seventh ACM SIGACT-SIGOPS Symposium on Principles of Dis-tributed Computing, August 1988.[2] J.H. Anderson and M.G. Gouda. The virtue of patience: Concurrentprogramming with and without waiting. Private Communication.[3] M. Ben-Or. Another advantage of free choice: completely asynchronousagreement protocols. In Second ACM SIGACT-SIGOPS Symposium onPrinciples of Distributed Computing, pages 27{30, August 1983.[4] M. Ben-Or and N. Linial. Collective coin 
ipping, robust votingschemes, and minima of banzhaf values. In Twenty-sixth Annual Sym-posium on Foundations of Computer Science, pages 408{416, October1985.[5] B. Bloom. Constructing two-writer atomic registers. In Proceedingsof the Sixth ACM Symposium on Principles of Distributed Computing,pages 249{259, 1987.[6] G. Bracha. An o(log n) expected rounds randomized byzantine generalsalgorithm. In Seventeenth Annual Symposium on Theory of Computa-tion, 1985.[7] G. Bracha and S. Toueg. Resilient consensus protocols. In Second ACMSIGACT-SIGOPS Symposium on Principles of Distributed Computing,pages 12{26, August 1983.[8] A. Broder and D. Dolev. Flipping coins in many pockets (byzantineagreement on uniformly random values. In Twenty-Fifth Annual Sym-posium on Foundations of Computer Science, pages 157{170, October1984.[9] J.E. Burns and G.L. Peterson. Constructing multi-reader atomic valuesfrom non-atomic values. In Proceedings of the Sixth ACM Symposiumon Principles of Distributed Computing, pages 222{231, 1987.[10] B. Chor and B. Coan. A simple and e�cient randomized byzantineagreement algorithm. IEEE Transactions on Software Engineering, SE-11(6):531{539, June 1985. 23



[11] B. Chor and C. Dwork. Randomization in Byzantine Agreement, vol-ume 4. JAI Press, 1987.[12] B. Chor, A. Israeli, and M. Li. On processor coordination using asyn-chronous hardware. In Proceedings of the Sixth ACM Symposium onPrinciples of Distributed Computing, pages 86{97, 1987.[13] B. Chor, M. Merritt, and D.B. Shmoys. Simple constant-time consen-sus protocols in realistic failure models. In Proceedings of the FourthACM Symposium on Principles of Distributed Computing, pages 152{160, 1985.[14] B. Coan and J. Lundelius. Transaction commit in a realistic faultmodel. In Fifth ACM SIGACT-SIGOPS Symposium on Principles ofDistributed Computing, pages 40{52, August 1986.[15] D. Dolev, C. Dwork, and L Stockmeyer. On the minimal synchronismneeded for distributed consensus. Journal of the ACM, 34(1):77{97,January 1987.[16] C. Dwork, N. Lynch, and L Stockmeyer. Consensus in the presence ofpartial synchrony. Journal of the ACM, 35(2):228{323, April 1988.[17] C. Dwork, D. Shmoys, and L. Stockmeyer. Flipping persuasively in con-stant expected time. In Twenty-Seventh Annual Symposium on Foun-dations of Computer Science, pages 222{232, October 1986.[18] P. Feldman and S. Micali. Optimal algorithms for byzantine agreement.In Twentieth Annual ACM Symposium on Theory of Computing, pages148{161, May 1988.[19] W. Feller. An Introduction to Probability Theory and its Applications,volume 1. John Wiley and Sons, 1957.[20] M. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributedcommit with one faulty process. Journal of the ACM, 32(2), April 1985.[21] M.P. Herlihy. Impossibility and universality results for wait-free syn-chronization. In Seventh ACM SIGACT-SIGOPS Symposium on Prin-ciples of Distributed Computing, August 1988.[22] M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In 14thACM Symposium on Principles of Programming Languages, pages 13{26, January 1987. 24



[23] J.G. Kemeny, J.L. Snell, and A.W. Kapp. Denumerable Markov Chains.D. Van Nostrand, 1966.[24] C.P. Kruskal, L. Rudolph, and M. Snir. E�cient synchronization onmultiprocessors with shared memory. In Fifth ACM SIGACT-SIGOPSSymposium on Principles of Distributed Computing, August 1986.[25] L. Lamport. Concurrent reading and writing. Communications of theACM, 20(11):806{811, November 1977.[26] L. Lamport. On interprocess communication, parts i and ii. DistributedComputing, 1:77{101, 1986.[27] M.C. Loui and H.H. Abu-Amara. Memory Requirements for AgreementAmong Unreliable Asynchronous Processes, volume 4, pages 163{183.JAI Press, 1987.[28] N.A. Lynch and M. Merritt. Introduction to the theory of nested trans-actions. Technical Report MIT/LCS/TR-387, M.I.T. Laboratory forComputer Science, April 1986.[29] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for dis-tributed algorithms. Technical Report MIT/LCS/TR-387, M.I.T. Lab-oratory for Computer Science, April 1987.[30] R. Newman-Wolfe. A protocol for wait-free, atomic, multi-reader sharedvariables. In Proceedings of the Sixth ACM Symposium on Principlesof Distributed Computing, pages 232{249, 1987.[31] G.L. Peterson. Concurrent reading while writing. ACM Transactionson Programming Languages and Systems, 5(1):46{55, January 1983.[32] G.L. Peterson and J.E. Burns. Concurrent reading while writing ii: themulti-writer case. Technical Report GIT-ICS-86/26, Georgia Instituteof Technology, December 1986.[33] M. Rabin. Randomized byzantine generals. In Twenty-fourth AnnualSymposium on Foundations of Computer Science, pages 403{409, Oc-tober 1983.[34] A.K. Singh, J.H. Anderson, and M.G. Gouda. The elusive atomic regis-ter revisited. In Proceedings of the Sixth ACM Symposium on Principlesof Distributed Computing, pages 206{221, August 1987.25


