
RANDOMIZED CONSENSUS IN EXPECTED O(N log2N)OPERATIONS PER PROCESSORJAMES ASPNES� AND ORLI WAARTSyAbstract. This paper presents a new randomized algorithm for achieving consensus amongasynchronous processors that communicate by reading and writing shared registers. The fastest pre-viously known algorithm requires a processor to perform an expectedO(n2 logn) read and write op-erations in the worst case. In our algorithm, each processor executes at most an expectedO(n log2 n)read and write operations, which is close to the trivial lower bound of
(n).All previously known polynomial-time consensus algorithms were structured around a sharedcoin protocol [4] in which each processor repeatedly adds random �1 votes to a common pool.Consequently, in all of these protocols, the worst case expected bound on the number of read andwrite operations done by a single processor is asymptotically no better than the bound on thetotal number of read and write operations done by all of the processors together. We succeed inbreaking this tradition by allowing the processors to cast votes of increasing weights. This grants theadversary greater control since he can choose from up to n di�erent weights (one for each processor)when determining the weight of the next vote to be cast. We prove that our shared coin protocol iscorrect nevertheless using martingale arguments.11. Introduction. In the consensus problem, each of n asynchronous processorsstarts with an input value 0 or 1 not known to the others and runs until it chooses adecision value and halts. The protocol must be consistent: no two processors choosedi�erent decision values; valid: the decision value is some processor's input value;and wait-free: each processor decides after a �nite expected number of its own stepsregardless of other processors' halting failures or relative speeds.We consider the consensus problem in the standard model of asynchronous sharedmemory systems. The processors communicate via a set of single-writer, multi-readeratomic registers. Each such register can be written only by one processor, its owner,but all processors can read it. Reads and writes to such a register can be viewed asoccurring at a single instant of time.Consensus is fundamental to synchronization without mutual exclusion and hencelies at the heart of the more general problem of constructing highly concurrent datastructures [20]. It can be used to obtain wait-free implementations of arbitrary ab-stract data types with atomic operations [20, 23]. Consensus is also complete fordistributed decision tasks [11] in the sense that it can be used to solve all suchtasks that have a wait-free solution.Consensus is often viewed as a game played between a set of processors and anadversary scheduler. Using the standard wait-free model of an asynchronous shared-memory system, each processor can execute as an atomic step either a single reador write operation, or a ip of a local fair coin not visible to the other processors.The sequencing of the processors' actions is controlled by a scheduler, de�ned as afunction that at each step selects a processor to run based on the entire prior history ofthe system, including the internal states of the processors. (Concurrency is modeled� Yale University, Department of Computer Science, 51 Prospect Street / P.O. Box 208285, NewHaven, CT 06520-8285. E-mail: aspnes@cs.yale.edu. During the time of this research the �rstauthor was at Carnegie-Mellon University, supported in part by an IBM Graduate Fellowship.y Computer Science Division, University of California, Berkeley, CA 94720. E-mail:waarts@cs.berkeley.edu. During the time of this research the second author was at Stanford,supported in part by an IBM Graduate Fellowship, U.S. Army Research O�ce Grant DAAL-03-91-G-0102, and NSF grant CCR-8814921.1 A preliminary version of this work appeared in the proceedings of the Thirty-Third IEEE Sym-posium on Foundations of Computer Science. 1

by interleaving.) Remarkably, it has been shown that the ability of the schedulerto stop even a single processor is su�cient to prevent consensus from being solvedby a deterministic algorithm [10, 12, 16, 20, 22]. Nevertheless, it can be solved byrandomized protocols in which each processor is guaranteed to decide after a �niteexpected number of steps.Chor, Israeli, and Li [10] provided the �rst solution to the problem, but theirsolution deviated from the standard model by assuming that the processor can ipa coin and write the result in a single atomic step. Abrahamson [1] demonstratedthat consensus is possible even for the standard model, but his protocol requiredan exponential expected number of steps. Since then a number of polynomial-workconsensus protocols have been proposed. Protocols that use unbounded registershave been proposed by Aspnes and Herlihy [4] (the �rst polynomial-time algorithm),by Saks, Shavit, and Woll [24] (optimized for the case where processors run in lockstep), and by Bracha and Rachman [8] (running time O(n2 logn)). Protocols that usebounded registers have been proposed by Attiya, Dolev, and Shavit [5] (running timeO(n3)), by Aspnes [3] (running time O(n2(p2 + n)), where p is the number of activeprocessors), by Bracha and Rachman [7] (running time O(n(p2+n))), and by Dwork,Herlihy, Plotkin and Waarts [13] (immediate application of what they call time-lapsesnapshots and with the same running time as [7]).The main goal of a wait-free algorithm is usually to minimize the worst caseexpected bound on the work done by a single processor. Still, for all of the knownpolynomial-work wait-free consensus protocols, the worst case expected bound on thework done by a single processor is asymptotically no better than the bound on thetotal work done by all of the processors together.Therefore, one of the main contributions of this paper is in showing that wait-free consensus can be solved without requiring the fast processors to perform muchmore than their fair share of the worst case total amount of work executed by allprocessors together. At the same time, we improve signi�cantly on the complexityof all currently known wait-free consensus protocols, obtaining a protocol in which aprocessor executes at most an expected O(n log2 n) read and write operations, whichis close to the trivial lower bound of
(n).2 To do this we introduce a new weakshared coin protocol [4] that is based on a combination of the shared coin protocoldescribed by Bracha and Rachman [8] and a new technique called weighted voting,where votes of faster processors carry more weight.3 We believe that our weightedvoting technique will �nd applications in other wait-free shared memory problemssuch as approximated consensus and resource allocation.The rest of the paper is organized as follows. The next section describes the intu-ition behind our solution while emphasizing the main di�erence between our solutionand that in [3, 4, 5, 7, 8, 13, 24]. Section 3 describes our shared coin protocol. Sec-tion 4 reviews martingales and derives some of their properties. Section 5 contains theproof of correctness of our shared coin protocol. A discussion of the results appearsin Section 6.2. Intuition and relation to previous results. All of the known polynomial-work consensus protocols are based on the same primitive, the weak shared coin.A weak shared coin returns a single bit to each processor; for each possible value2 As discussed in Section 6, this gain in per-processor performance involves a slight increase inthe total work performed by all processors when compared with the Bracha-Rachman protocol.3 The consensus protocol can be constructedaround our shared coin protocol using the establishedtechniques of Aspnes and Herlihy [4]. 2

b 2 f0; 1g the probability that all processors see b must be at least a constant � (theagreement parameter of the coin), regardless of scheduler behavior.4 Aspnes andHerlihy [4] showed that given a weak shared coin with constant agreement parameter itis possible to construct a consensus protocol by executing the coin repeatedly within arounds-based framework which detects agreement. The number of operations executedby each processor in this construction is O ((n+ T (n)) =�), where T (n) is the expectedwork per processor for the weak shared coin protocol. For constant �, and under thereasonable assumption that T (n) dominates n, the work per processor to achieveconsensus becomes simply O (T (n)).So to construct a fast consensus protocol one need only construct a fast weakshared coin. The underlying technique for building a weak shared coin has not changedsubstantially since the protocol described in [4]; each processor repeatedly adds ran-dom �1 votes to a common pool until either the total vote is far from the origin[3, 4, 5, 7, 13] or until a predetermined number of votes have been cast [8, 24]. Anyprocessor that sees a nonnegative total vote decides 1, and those that see a nega-tive total vote decide 0. (The di�erences between the protocols are largely in howtermination is detected and how the counter for the vote is implemented.)There are many advantages to this approach. The processors e�ectively act asanonymous conduits of a stream of unpredictable random increments. If the schedulerstops a particular processor, at worst all it does is keep one vote from being written outto the common pool| the next local coin ip executed by some other processor is nomore or less likely to give the value the scheduler wants than the next one executed bythe processor it has just stopped. Intuitively, the scheduler's power over the outcomeof the shared coin is limited to �ltering out up to n � 1 local coin ips from thisstream of independent random variables. But the e�ect of this �ltering is at worstequivalent to adjusting the �nal tally of votes by up to n�1. If a constant multiple ofn2 votes are cast, the total variance will be
(n2), and using a normal approximationthe protocol can guarantee that with constant probability the total vote is more thann away from the origin, rendering the scheduler's adjustment ine�ective.Alas, the very anonymity of the processors that is the strength of the votingtechnique is also its greatest weakness. To overcome the scheduler's power to withholdvotes, it is necessary that a total of
(n2) votes are cast| but the scheduler might alsochoose to stop all but one of the processors, leaving that lone processor to generate all
(n2) votes by itself. Consequently, for all of the polynomial-work wait-free consensusprotocols currently known, the worst-case expected bound on the work done by asingle processor is asymptotically no better than the bound on the total work doneby all of the processors together.We overcome this problem by modifying the O(n2 logn) protocol of Bracha andRachman [8] to allow the processor to cast votes of increasing weight. Thus a fastprocessor or a processor running in isolation can quickly generate votes of su�cienttotal variance to �nish the protocol, at the cost of giving the scheduler greater controlby allowing it both to withhold votes with larger impact and to choose among up ton di�erent weights (one for each processor) when determining the weight of the nextvote to be cast.There are two main di�culties that this approach entails; the �rst is that careful4 The term agreement parameter was �rst used by Saks et al [24] in place of the more melodramaticbut less descriptive term de�ance probability of Aspnes and Herlihy [4]. Aspnes [3] used a biasparameter, equal to 1=2 minus the agreement parameter; however, this quantity is not as useful asthe agreement parameter in the context of a multi-round consensus protocol.3

1 procedure shared coin()2 begin3 my reg(variance; vote) (0; 0)4 t 15 repeat6 for i = 1 to c do7 vote local ip() � w(t)8 my reg (my reg.variance +w(t)2;my reg.vote + vote)9 t t+ 110 end11 read all the registers, summing the variance �elds into the localvariable total variance12 until total variance > K13 read all the registers, summing the vote �elds into the local variabletotal vote14 if total vote > 015 then output 116 else output 017 end Fig. 1. Shared coin protocol.adjustment of the weight function and other parameters of the protocol is necessary tomake sure that it performs correctly. More importantly, correctness proofs for previousshared coins based on random walks or voting [3, 4, 5, 7, 8, 13, 24] considered onlyequally weighted votes, and have therefore been able to treat the sequence of votes asa sequence of independent random variables using a substitution argument. Becauseour protocol allows the weight of the i-th vote to depend on which processor thescheduler chooses to run, which may depend on the outcomes of previous votes, wecannot assume independence.However, the sign of each vote is determined by a fair coin ip that the schedulercannot predict in advance, and so despite all the scheduler's powers, the expectedvalue of each vote before it is cast is always 0. This is the primary requirement of amartingale process [6, 15, 21]. Under the right conditions, martingales have manysimilarities to sequences of sums of independent random variables. In particular,martingale analogues of the Central Limit Theorem and Cherno� bounds will be usedin the proof of correctness.3. The Shared Coin Protocol. Figure 1 gives pseudocode for each processor'sbehavior during the shared coin protocol. Each processor repeatedly ips a local cointhat returns the values +1 and �1 with equal probability. The weighted value ofeach ip is w(t) or �w(t) respectively, where t is the number of coins ipped by theprocessor up to and including its current ip. Each weighted ip represents a votefor either the output value 1 (if positive) or 0 (if non-positive). After each ip, theprocessor updates its register to hold the sum of the weighted ips it has performed,and the sum of the squares of their values. After every c ips, the processor reads theregisters of all the other processors, and computes the sum of all the weighted ips(the total vote) and the sum of the squares of their values (the total variance). If thetotal variance is greater than the quorum K, it stops, and outputs 1 if the total vote4

is positive, and 0 otherwise. Alternatively, if the total variance has not yet reachedthe quorum K, it continues to ip its local coin.The function local ip returns the values 1 and �1 randomly with equal proba-bility. The values K and c are parameters of the protocol which will be set dependingon the number of processors n to give the desired bounds on the agreement parameterand running time. The weight function w(t) is used to make later local coin ips havemore e�ect than earlier ones, so that a processor running in isolation will be able toachieve the quorum K quickly. The weight function will be assumed to be of the formw(t) = ta where a is a nonnegative parameter depending on n; though other weightfunctions are possible, this choice simpli�es the analysis.We will demonstrate that for suitable choice of K, c and a all processors return1 with constant probability; the case of all processors returning 0 will follow by sym-metry. The structure of the argument follows the proof of correctness of the lesssophisticated protocol of Bracha and Rachman [8], which corresponds to Figure 1when w(t) is the constant 1, K = �(n2), and c = �(n= logn). Votes cast before thequorumK is reached will form a pool of common votes that all processors see.5 Wewill show that with constant probability (i) the total of the common votes is far fromthe origin and (ii) the sum of the extra votes cast between the time the quorum isreached and the time some processor does its �nal read in line 13 is small, so that thetotal vote read by each processor will have the same sign as the total common vote.This simple overview of the proof hides many tricky details. To simplify theanalysis we will concentrate not on the votes actually written to the registers but onthe votes whose values have been decided by the processors' execution of the localcoin ip in line 7; conversion back to the values actually in the registers will be doneby showing a bound on the di�erence between the total decided vote and the totalof the register values. In e�ect, we are treating a vote as having been \cast" themoment that its value is determined, instead of when it becomes visible to the otherprocessors.Some care is also needed to correctly model the sequence of votes. Most impor-tantly, as pointed out above, allowing the weight of the i-th vote to depend on whichprocessor the scheduler chooses to run means the votes are not independent. So thestraightforward proof techniques used for protocols based on a stream of identically-distributed random votes no longer apply, and it is necessary to bring in the theoryof martingales to describe the execution of the protocol.4. Martingales. A martingale is a sequence of random variables S1; S2; : : :,which informally may be thought of as representing the changes in the fortune of agambler playing in a fair casino. Because the gambler can choose how much to betor which game to play at each instant, each random variable Si may depend on allprevious events. But because the casino is fair and the gambler cannot predict thefuture, the expected change in the gambler's fortune at any play is always 0.We will need to use a very general de�nition of a martingale [6, 15, 21]. The sim-plest de�nition of a martingale says that the expected value of Si+1 given S1; S2; : : : ; Siis just Si. To use a gambling analogy, this de�nition says that a gambler who knowsonly the previous values of her fortune cannot predict its expected future value anybetter than by simply using its current value. But what if the gambler knows moreinformation than just the changing size of her bankroll? For example, imagine that5 The de�nitions of the common and extra votes we will use di�er slightly from those used in [8];the formal de�nitions appear in Section 5. 5

she is placing bets on a fair version of roulette, and always bets on either red or black.Knowing that her fortune increased after betting red will tell her only that one ofeighteen red numbers came up; but a real gambler will see precisely which of the eigh-teen numbers it was. Still, we would like to claim that this additional knowledge doesnot a�ect her ability to predict the future. To do so, the de�nition of a martingalemust be extended to allow additional information to be represented explicitly.The tool used to represent the information known at any point in time will be aconcept from measure theory, a �-algebra.6 The description given here is informal;more complete de�nitions can be found in [15, Sections IV.3, IV.4, and V.11] or [6].4.1. Knowledge, �-algebras, and measurability. Recall that any probabilis-tic statement is always made in the context of some (possibly implicit) sample space.The elements of the sample space (called sample points) represent all possible resultsof some set of experiments, such as ipping a sequence of coins or choosing a point atrandom from the unit interval. Intuitively, all randomness is reduced to selecting asingle point from the sample space. An event, such as a particular coin-ip comingup heads or a random variable taking on the value 0, is simply a subset of the samplespace that \occurs" if one of the sample points it contains is selected.If we are omniscient, we can see which sample point is chosen and thus can tell foreach event whether it occurs or not. However, if we have only partial information, wewill not be able to determine whether some events occurred or not. We can representthe extent of our knowledge by making a list of all events we do know about. Thislist will have to satisfy certain closure properties; for example, if we know whether ornot A occurred, and whether or not B occurred, then we should know whether or notthe event \A or B" occurred.We will require that the set of known events be a �-algebra. A �-algebra Fis a family of subsets of a sample space
 that (i) contains the empty set; (ii) isclosed under complement: if F contains A, it contains
nA (the complement of A);and (iii) is closed under countable union: if F contains all of A1; A2; : : :, it containsS1i=1Ai.7 An event A is said to be F-measurable if it is contained in F . In ourcontext, the term \measurable," which comes from the original measure-theoreticuse of �-algebras to represent families of sets on which a probability distribution iswell-de�ned, simply means \known."We \know" about an event if we can determine whether or not it occurred. Whatabout random variables? A random variable X is de�ned to be F-measurable ifevery event of the form X � c is F-measurable. (The closure properties of F thenimply that such events as a � X < b, X = d, and so forth are also F-measurable.)Looking at the situation in reverse, given random variablesX1; X2; : : :we can considerthe minimum �-algebra F for which each of the random variables is F-measurable;this �-algebra, written hXii, is called the �-algebra generated by X1; X2; : : :, andrepresents all information that can be inferred from knowing the values of the gener-ators.A �-algebra gives us a rigorous way to de�ne \knowledge" in a probabilisticcontext. Measurability and generated �-algebras give us a way to move back andforth between the abstract concept of a �-algebra and concrete statements aboutwhich random variables are completely known. To analyze random variables that areonly partially known, we need one more de�nition. We need to extend conditional6 Sometimes called a �-�eld.7 Additional properties, such as being closed under �nite union or intersection, follow immediatelyfrom this de�nition. 6

expectations so that the condition can be a �-algebra rather than just a collection ofrandom variables.For each event A let IA be the indicator variable that is 1 if A occurs and 0otherwise. Let U = E [X j F] be a random variable such that (i) U is F-measurableand (ii) E [UIA] = E [XIA] for all A in F . The random variable E [X j F] is called theconditional expectation of X with respect to F [15, Section V.11]. Intuitively, the�rst condition on E [X j F] says that it reveals no information not already found inF . The second condition says that just knowing that some event in F occurred doesnot allow one to distinguish between X and E [X j F]; this fact ultimately impliesthat E [X j F] uses all information that is found in F and is relevant to X.If F is generated by random variables X1; X2; : : :, the conditional expectationE [X j F] reduces to the simpler version E [X j X1; X2; : : :]. Some other facts aboutconditional expectation that we will use (but not prove): if X is F-measurable,then E [XY j F] = X E [Y j F] (which implies E [X j F] = X); and if F 0 � F , thenE [E [X j F] j F 0] = E [X j F 0]. See [15, Section V.11].4.2. De�nition of a martingale. We now have the tools to de�ne a martingalewhen the information available at each point in time is not limited to just the valuesof earlier random variables. Amartingale fSi;Fig ; 1 � i � n; is a stochastic processwhere each Si is a random variable representing the state of the process at time i andFi is a �-algebra representing the knowledge of the underlying probability distributionavailable at time i. Martingales are required to satisfy three axioms, for all i:1. Fi � Fi+1. (The past is never forgotten.)2. Si is Fi-measurable. (The present is always known.)3. E [Si+1 j Fi] = Si. (The future cannot be foreseen.)Often Fi will simply be the �-algebra hS1; : : :Sii generated by the variables S1through Si; in this case axioms 1 and 2 will hold automatically.To avoid special cases let F0 denote the trivial �-algebra consisting of the emptyset and the entire probability space. The di�erence sequence of a martingale is thesequence X1; X2; : : :Xn where X1 = S1 and Xi = Si � Si�1 for i > 1. A zero-meanmartingale is a martingale for which E [Si] = 0.4.3. Gambling systems. A remarkably useful theorem, which has its origins inthe study of gambling systems, is due to Halmos [18]. We restate his theorem belowin modern notation:Theorem 4.1. Let fSi;Fig ; 1 � i � n be a martingale with di�erence sequencefXig. Let f�ig ; 1 � i � n be random variables taking on the values 0 and 1 such thateach �i is Fi�1-measurable. Then the sequence of random variables S0i = Pij=1 �jXjis a martingale relative to Fi. (That is, fS0i;Fig is a martingale.)Proof. The �rst two properties are easily veri�ed. Because �i is Fi�1-measurable,E [�iXi j Fi�1] = �iE [Xi j Fi�1] = 0, and the third property also follows.4.4. Limit theorems. Many results that hold for sums of independent randomvariables carry over in modi�ed form to martingales. For example, the followingtheorem of Hall and Heyde [17, Theorem 3.9] is a martingale version of the classicalCentral Limit Theorem:Theorem 4.2 ([17]). Let fSi;Fig be a zero-mean martingale. Let V 2n =Pni=1 E �X2i j Fi�1�and let 0 < � � 1. De�ne Ln =Pni=1 E �jXij2+2��+E �jV 2n � 1j1+��. Then there existsa constant C depending only on � such that whenever Ln � 1,jPr [Sn � x]��(x)j � CL1=(3+2�)n � 11 + jxj4(1+�)2=(3+2�) � ;(1) 7

where � is the standard unit normal distribution with mean 0 and variance 1.For our purposes we will need only the case where x and � are both set to 1. Thisallows the statement of the theorem to be simpli�ed considerably. Furthermore, therather complicated fraction containing x is never more than 1 and so can disappearinto the constant. The result is:Theorem 4.3. Let fSi;Fig be a zero-mean martingale. Let V 2n =Pni=1E �X2i j Fi�1�.De�ne Ln =Pni=1 E �jXij4�+E �jV 2n � 1j2�. Then there exists a constant C such thatwhenever Ln � 1, jPr [Sn � 1]� �(1)j � CL1=5n ;(2)where � is the standard unit normal distribution with mean 0 and variance 1.If we are interested only in the tails of the distribution of Sn, we can get a tighterbound using Azuma's inequality, a martingale analogue of the standard Cherno�bound [9] for sums of independent random variables. The usual form of this bound(see [2, 25]) assumes that the di�erence variables Xi satisfy jXij � 1. This restrictionis too severe for our purposes, so below we prove a generalization of the inequality.In order to do so we will need the following technical lemma.Lemma 4.4. Let fSi;Fig ; 1 � i � n be a zero-mean martingale with di�er-ence sequence fXig. Let F0 � F1 be a (not necessarily trivial) �-algebra such thatE [S1 j F0] = 0. If there exists a sequence of random variables w1; w2; : : :wn, and arandom variable W , such that1. W is F0-measurable,2. Each wi is Fi�1-measurable,3. For all i, jXij � wi with probability 1, and4. Pni=1w2i �W with probability 1,then for any � > 0, E �e�Sn j F0� � e�2W=2(3) Proof. The proof is by induction on n. First, notice that since e�X1 is convex wehave e�X1 � �w1 �X12w1 � e��w1 +�1� w1 �X12w1 � e�w1 ;and thusE �e�X1 j F0� � E ��w1 �X12w1 � e��w1 +�1� w1 �X12w1 � e�w1 j F0�= 12e��w1 + 12e�w1 ��e��w1 � e�w12w1 �E [X1 j F0]= 12e��w1 + 12e�w1since E [X1 j F0] is zero.But then E �e�X1 j F0� � 12 �e��w1 + e�w1� = cosh�w1 � e�2w21=2:8

If n = 1 we are done, since w21 � W . If n is greater than 1, for each i � n � 1let S0i = Si+1 � X1 and F 0i = Fi+1. Then fS0i;F 0ig ; 1 � i � n � 1 satis�es theconditions of the lemma with F 00 = F1, w0i = wi+1 and W 0 = W � w21, so by theinduction hypothesis E he�S0n�1 j F 00i � e�2(W�w21)=2. But then, using the fact thatE [X j F] = E [E [X j F 0] j F] when F � F 0, we can compute:E �e�Sn j F0� = E hE he�X1e�(Sn�X1) j F1i j F0i= E he�X1 E he�S0n�1 j F 00i j F0i� E he�X1e�2(W�w21)=2 j F0i= e�2(W�w21)=2E �e�X1 j F0�� e�2(W�w21)=2e�2w21=2= e�2W=2:Theorem 4.5. Let fSi;Fig ; 1 � i � n be a zero-mean martingale with di�erencesequence fXig. If there exists a sequence of random variables w1; w2; : : :wn, and aconstant W , such that1. Each wi is Fi�1-measurable.2. For all i, jXij � wi with probability 1, and3. Pni=1w2i �W with probability 1,then for any � > 0, Pr [Sn � �] � e��2=2W :(4) Proof. By Lemma 4.4, for any � > 0, E �e�Sn� � e�2W=2. Thus by Markov'sinequality Pr [Sn � �] = Pr �e�Sn � e��� � e�2W=2e���:Setting � = �=W gives (4).Symmetry immediately gives us:Corollary 4.6. For any martingale fSi;Fig satisfying the premises of Theorem4.5, and any � > 0 Pr [Sn � ��] � e��2=2W :(5) Proof. Replace each Si by �Si and apply Theorem 4.5.5. Proof of correctness. For this section we will �x a particular scheduler. Wemay assume without loss of generality that the scheduler is deterministic, because anyrandom inputs the scheduler might use cannot depend on the history of the executionand therefore may also be �xed in advance.Consider the sequence of random variables X1; X2; : : : where Xi represents thei-th vote that is decided by some processor executing line 7, or 0 if fewer than i localcoin ips occur. Note that the notion of the i-th vote is well-de�ned since we modelconcurrency by interleaving; it is assumed that the scheduler advances processors one9

at a time. For each i let Fi be hX1 : : :Xii, the �-algebra generated by X1 throughXi. Because the scheduler is deterministic, all of the random events in the systempreceding the i-th vote are captured in the variables X1 through Xi�1, and the �-algebra Fi�1 thus determines the entire history of the system up to but not includingthe i-th vote. Furthermore, since the scheduler's behavior depends only on the historyof the system, Fi�1 in fact determines the scheduler's choice of which processor willcast the i-th vote. Thus conditioned on Fi�1, Xi is just a random variable whichtakes on the values �w with equal probability for some weight w determined bythe scheduler's choice of which processor to run. Hence E [Xi j Fi�1] = 0, and thesequence of partial sums Si =Pij=1Xi is a martingale relative to fFig.We are not going to analyze fSi;Fig directly. Instead, it will be used as a baseon which other martingales will be built using Theorem 4.1.Let �i = 1 if Pij=1X2j � K and 0 otherwise. Votes for which �i = 1 will becalled common votes. For each processor P let �Pi = 1 if the vote Xi occurs beforeP reads, during its �nal read in line 13, the register of the processor that determinesthe value of Xi, and let �Pi = 0 otherwise. In e�ect, �Pi is the indicator variable forwhether P would see Xi if it were written out immediately. Observe that for a �xedscheduler the values of both �i and �Pi can be determined by examining the historyof the system up to but not including the time when the vote Xi is cast, and thusboth �i and �Pi are Fi�1-measurable. Consequently the sequences nPij=1 �jXjo andnPij=1 �Pj Xjo are martingales relative to fFig by Theorem 4.1. Votes for which�Pi = 1 but �i = 0 will be referred to as the extra votes for processor P . (Observethat �Pi � �i since P could not have started its �nal read until the total variance wasat least K.) The sequence nPij=1(�Pi � �i)Xio of the partial sums of these extravotes is a di�erence of martingales and is thus also a martingale relative to fFig.The structure of the proof of correctness is as follows. First, we observe that thedistribution of the total common vote,P�iXi, is close to a normal distribution withmean 0 and variance K for suitable choices of a and K; in particular, we show thatfor n su�ciently large, the probability thatP�iXi > pK will be at least a constant.Next, we complete the proof by showing that if the total common vote is far from theorigin the chances that any processor will read a total vote whose sign di�ers from thecommon vote is small. This fact is itself shown in two steps. First, it is shown that,for suitable choice of c, the total of the extra votes for a processor P ,P(�Pi � �i)Xi,will be small with high probability. Second, a bound � is derived on the di�erencebetween P �Pi Xi and the total vote actually read by P .It will be necessary to select values for a, K, and c that give the correct boundson the probabilities. However, we will be in a better position to justify our choicefor these parameters after we have developed more of the analysis, so the choice ofparameters will be deferred until Section 5.5.5.1. Phases of the protocol. We begin by de�ning the phases of the protocolmore carefully. Let ti be the value of the i-th processor's internal variable t at anygiven step of the protocol. Let Ui be the random variable representing the maximumvalue of ti during the entire execution of the protocol. Let Ti be the random variablerepresenting the maximumvalue of ti during the part of the execution of the protocolwhere � = 1.In the proof of correctness we will encounter many quantities of the formPni=1 �(Ti)or Pni=1 �(Ui) for various functions �. We will want to get bounds on these quanti-10

ties without having to look too closely at the particular values of each Ti or Ui. Thissection proves several very general inequalities about quantities of this form, all ofwhich are ultimately based on the following constraint:K �Xi TiXj=1 j2a �Xi Z Ti0 j2a dj =Xi Ti2a+12a+ 1 :(6)The constant 2a + 1 will reappear often; for convenience we will write it as A. Asnoted above, a � 0, and hence A � 1.De�ne TK = �AKn �1=A, so that K = nTAKA . The constant TK represents themaximum value of each Ti if they are set to be equal while satisfying inequality (6).Note that TK need not be an integer. Now we can show:Lemma 5.1. Let (x) = xA=A and let � be any strictly increasing function suchthat � �1 is concave. Then for any non-negative fxig, if Pni=1 (xi) � K, thenPni=1 �(xi) � n�(TK).Proof. Since � �1 is concave, we have��1�X �(xi)n � � �1�X (xi)n �[19, Theorem 92]. Simple algebraic manipulation yieldsX�(xi) � n�� �1�X (xi)n ��But �1�X (xi)n � = �1�1nX xiAA � � �1�Kn � = TK :Hence P�(xi) � n�(TK).Letting � be the identity function we have � �1(x) = (Ax)1=A, which is concavefor A � 1. Hence:Corollary 5.2. nXi=1 Ti � nTK :(7) In the case where � �1 is convex, the following lemma applies instead:Lemma 5.3. Let (x) = xA=A and let � be any strictly increasing functionsuch that � �1 is convex. Then for any non-negative fxig, if Pni=1 (xi) � K, thenPni=1 �(xi) � (n� 1)�(0) + �(n1=ATK).Proof. Let Y =P (xi). Now �(xi) = � �1 (xi) or� �1��1� (xi)Y �0 + (xi)Y Y�which is at most �1� (xi)Y �� �1(0) + (xi)Y � �1(Y)11

given the convexity of � �1. HencenXi=1 �(xi) � n� �1(0) � nXi=1 (xi)Y !� �1(0) + nXi=1 (xi)Y !� �1(Y)= (n � 1)� �1(0) + � �1 nXi=1 (xi)!� (n � 1)� �1(0) + � �1(K)which is just (n� 1)�(0) + � �n1=ATK�.The quantity n1=ATK is the maximum value that any xi can take on withoutviolating the constraint onPxi. So what Lemma 5.3 says is that if � �1 is convex,P�(xi) is maximized by maximizing one of the xi while setting the rest to zero.For the variables Ui we can show:Lemma 5.4. Let (x) = xA=A and let � be any strictly increasing function suchthat �(�1(x) + c+ 1) is concave in x. Then,nXi=1 �(Ui) � n�(TK + c+ 1)(8) Proof. Let Wi be the number of votes written to the registers during the partof the execution where the total of the register variance �elds is less than or equalto K. The set of variables fWig satis�es the inequality PWAi =A � K using thesame argument as gives (6). Furthermore Ui � Wi + 1 + c, because after the i-thprocessor's next vote the total variance in the registers must exceed K and it can castat most c more votes before noticing this fact. De�ne �0(x) = �(x + c + 1). Then�(Ui) � �(Wi+ c+1) = �0(Wi). But ; �0;Wi satisfy the premises of Lemma 5.1 andthus Pni=1 �(Ui) �Pni=1 �0(Wi) � n�0(TK) = n�(TK + c+ 1):Setting � to be the identity function givesCorollary 5.5. nXi=1 Ui � n(TK + c+ 1)(9) Proof. �(�1(x) + c+ 1) = Ax1=A + c+ 1, which is concave since A � 1.De�ne g = 1+ c+3TK ; then gTK = TK + c+3 will be an upper bound for TK + c+1as well as a number of closely related constants involving c that will appear later.5.2. Common votes. The purpose of this section is to show that for n su�-ciently large, the total common vote is far from the origin with constant probability.We do so by showing that under the right conditions the total common vote will benearly normally distributed.Let SKi = Pij=1 �jXj . As pointed out above, nSKi =Pij=1 �jXj ;Fio is a mar-tingale. Let N = dnTKe. It follows from Corollary 5.2 that �i = 0 for i > N andthus SKN = limi!1 SKi is the sum of all the common votes. The distribution of SKN ischaracterized in the following lemma.Lemma 5.6. If 4A2n1=ATK � 1;(10) 12

then ���Pr hSKN � pKi��(1)��� � C1� A2n1=ATK�1=5(11)where C1 is an absolute constant.Proof. The proof uses Theorem 4.3, which requires that the martingale be nor-malized so that the total conditional variance V 2N is close to 1. So let Yi = �iXipK andconsider the martingale nPij=1 Yj;Fio. To apply the theorem we need to compute abound on the value LN .We begin by getting a bound on the �rst termPE �jYij4�. We haveNXi=1 E �jYij4� = E" NXi=1 jYij4# = 1K2 E" NXi=1 j�iXij4# = 1K2 E24 nXi=1 TiXj=1 j4a35(12)Now, TiXj=1 j4a � Z Ti0 j4a dj + T 4ai = T 4a+1i4a+ 1 + T 4ai :Consider the two parts of this bound separately. De�ne (x) = xA=A; �(x) =x4a+14a+1 , then � �1(y) = (Ay)(4a+1)=A4a+1 is convex, �(0) = 0, and hence Pni=1 T4a+1i4a+1 is atmost (n1=ATK)4a+14a+1 using Lemma 5.3.Similarly, let �0(x) = x4a. Here the convexity of �0 �1 depends on the value ofa. If a � 12 then �0 �1(y) = (Ay)4a=A is convex (since 4a=A = 4a=(2a + 1) � 1),and thus (again by Lemma 5.3)Pni=1 T 4ai � (n1=ATK)4a = n4a=AT 4aK � n(4a+1)=AT 4aK .If a � 12 then �0 �1(y) is concave (since now 4a=A � 1), and thus by Lemma 5.1Pni=1 T 4ai � nT 4aK � n(4a+1=A)T 4aK .Plugging everything back into (12) givesNXi=1 E �jYij4� � n(4a+1)=AT 4aKK2 + (n1=ATK)4a+1K2(4a+ 1) :(13)For the second term E �jV 2N � 1j2�, observe thatV 2N = NXi=1 E �Y 2i j Fi�1� = 1K NXi=1 E �(�iXi)2 j Fi�1� ;which is just 1=K times the sum of the squares of the weights jXij of the commonvotes. But the total variance of the common votes can di�er from K by at most thevariance of the �rst vote Xi for which �i = 0. Since the processor that casts this votecan have cast at most n1=ATK votes beforehand, the variance of this vote is at most�n1=ATK + 1�2a ; giving the boundjV 2N � 1j2 � 1K2 �n1=ATK + 1�4a :(14) 13

Combining (13) and (14) givesLN � n(4a+1)=AT 4aKK2 + (n1=ATK)4a+1K2(4a+ 1) + �n1=ATK + 1�4aK2= n(4a+1)=AT 4aKK2 + n(4a+1)=AT 4a+1KK2(4a+ 1) + n4a=AT 4aK (1 + n�1=AT�1K)4aK2� A2n�1=AT�2K + A2n�1=AT�1K4a+ 1 +A2n�2=AT�2K exp(4an�1=AT�1K)� 2A2n�1=AT�1K + e1=2A2n�1=AT�1K< 4A2n1=ATKThe third-to-last step uses the approximation (1 + x)b � ebx for non-negative b andx. The resulting exponential term is serendipitously bounded by e1=2 if (10) holds,since 2a < A � A2 implies 4an�1=AT�1K < 2A2(n1=ATK)�1 � 2=4.A more direct application of (10) shows that LN � 1, and thus Theorem 4.3applies. Hence���Pr hX�iXi � pKi��(1)��� = �����Pr " NXi=1 Yi � 1#� �(1)������ C � 4A2n1=ATK�1=5� C1� A2n1=ATK�1=5 :5.3. Extra votes. In this section we examine the extra votes from the point ofview of a particular processor P .Recall that �Pi is de�ned to be 1 if the vote Xi is cast by some processor Q beforeP 's �nal read of Q's register and 0 otherwise. Clearly, �Pi � �i since P could not havestarted its �nal read until the total variance exceeded K. As discussed above, both�Pi and �i are Fi�1-measurable. Thus �i = �Pi � �i is a 0� 1 random variable that isFi�1-measurable, and nSPi =Pij=1 �jXj ;Fio is a martingale by Theorem 4.1.De�ne � = n(gTK)a. The following lemma shows a bound on the tails ofP �iXi.Lemma 5.7. If ga � 12rTKnA;(15)and gA � 1 + 18 log(10n) ; 8(16)then for each processor P ,Pr hX(�Pi � �i)Xi � ��pKi � 110n:(17)8 By log(x) we will always mean the natural logarithm of x.14

Proof. The proof uses Corollary 4.6, so we proceed by showing that its premises(stated in Theorem 4.5) are satis�ed for fP �iXi;Fig.By Corollary 5.5, Xi and thus �iXi is zero for i > n(TK+c+1). SoP �iXi = SPMwhere M = n(TK + c+ 1).Set wi = j�iXij. Then the �rst premise of Corollary 4.6 follows from the fact thatfor each i, �i and jXij are both Fi-measurable. The second premise is immediate. Forthe third premise, notice thatX(j�iXij)2 =X �iX2i =X �Pi X2i �X�iX2i �XX2i �X�iX2i :The �rst term is XX2i = nXi=1 UiXj=1 j2a:The second term is X�iX2i � K � t2afor some t which is at most Ui for some i. ThusX(j�iXij)2 � �K + t2a + nXi=1 UiXj=1 j2a< �K + nXi=1 Ui+1Xj=1 j2a� �K + nXi=1(Ui + 2)A=A:(18)Let �(x) = (x+ 2)A=A. Then� � �1 (y) + c+ 1� = �(Ay)1=A + c+ 3�AA(19)We can treat this function as an instance of a class of functions of the form(xp + C)q, where x, p, q, C are all non-negative, whose concavity (or lack thereof)can be determined by �nding the sign of the second derivative:sgn � d2dx2 (xp + C)q� = sgn � ddxq(xp +C)q�1pxp�1�= sgn �q(q � 1)(xp +C)q�2p2x2p�2 + q(xp + C)q�1p(p� 1)xp�2�= sgn �q(xp +C)q�2pxp�2 [(q � 1)pxp + (xp + C)(p� 1)]�= sgn [(q � 1)pxp + (xp + C)(p� 1)]= sgn [(pq � 1)xp +C(p� 1)]In the particular case we are interested in, p = 1=A, q = A, and C = c+ 3. Sincepq�1 = 0 the �rst term vanishes and the sign is equal to the sign of 1=A�1, which is15

less than or equal to zero since A � 1. Thus the function �x1=A + c+ 3�A is concave,and since concavity is preserved by linear transformations ((Ay)1=A+c+3)AA is concaveas well.Lemma 5.4 now givesnXi=1 (Ui + 2)AA � n�(TK + c+ 1) = n(TK + c+ 3)AA � n(gTK)AA :(20)It follows from (18) and (20) thatX(j�iXij)2 � n(gTK)AA �K = K(gA � 1)Applying (5) from Corollary 4.6 now yields, for all � > 0,Pr �SPM � ��� � e��2=(2K(gA�1)):(21)If (15) holds, then � � pK2 . SoPr hX �iXi � ��pKi � Pr "SPM � �pK2 #� e�K=(8K(gA�1))= e�1=(8(gA�1)):But if (16) holds then gA � 1 � 18 log(10n)and, since log(10n) > 0 and g > 1,� 18(gA � 1) � � log(10n)from which it follows that e�1=8(gA�1) � e� log(10n) = 110n:5.4. Written votes vs. decided votes. In this section we show that the dif-ference between P �Pi Xi and the total vote actually read by P is bounded by � =n(gTK)a.Lemma 5.8. Let RP be the sum of the votes read during P 's �nal read. Then���X �Pi Xi �RP ��� � n(Tk + c+ 1)a � n(gTK)a = �(22)Proof. Suppose �Pi = 1, and suppose Xi is decided by processor Pj. If the voteXi is not included in the value read by P , it must have been decided before P 'sread of Pj's register but written afterwards. Because each vote is written out before16

the next vote is decided there can be at most one vote from Pj which is included inP �Pi Xi but is not actually read by P . This vote has weight at most Uaj . So we have��P �Pi Xi �RP �� �Pni=1Uai :Now let �(x) = xa. Then � � �1(y) + c + 1� = �(Ay)1=A + c + 1�a. The concav-ity of this function can be shown using the argument applied to (19) in Lemma 5.7:the sign of its second derivative will be equal to the sign of (pq�1)xp+C(p�1) wherex = Ay, p = 1=A, q = a, and C = c + 1. Since Ay and c + 1 are both non-negativeand a=A and 1=A are both less than or equal to 1, both terms are non-positive andthus �(Ay)1=A + c+ 1�a is concave. The rest follows from Lemma 5.4.5.5. Choice of parameters. Let us summarize the proof of correctness in asingle theorem:Theorem 5.9. De�ne A = 2a+ 1TK = �AKn �1=Ag = 1 + c+ 3TKand suppose that all of the following hold:ga � 12rTKnA(23) gA � 1 + 18 log(10n)(24) 4A2n1=ATK � 1(25)Then the protocol implements a shared coin with agreement parameter at least1� "�(1) + C1� A2n1=ATK �1=5 + 1=10#(26)where C1 is the constant from Lemma 5.6.Proof. To show that the agreement parameter is at least (26) we must show thatfor each z 2 f0; 1g the probability that all processors decide z is at least (26). Withoutloss of generality let us consider only the probability that all processors decide 1; thecase of all processors deciding 0 follows by symmetry.The essential idea of the proof is as follows. With at least a constant probability,the total common vote is at least pK (Lemma 5.6). The \drift" added to this totalby the extra votes for any single processor P is small with high probability (Lemma5.7). Thus even after adding in the extra votes for P , the total will be large enoughthat the o�set � = n(gTK)a caused by votes that are generated but not written outin time for P 's �nal read will not push it over the line (Lemma 5.8).More formally, we wish to show that the event� P�iXi > pK, and� For each P ,P(�Pi � �i)Xi > ��pKoccurs with probability at least (26). Since this event implies that for all P ,P �Pi Xi >�, by Lemma 5.8 we have that each P reads a value greater than 0 during its �nalread and thus decides 1. 17

It will be easiest to compute an upper bound on the probability that this eventdoes not occur. For the event not to occur, we must have either P�iXi � pK orP(�Pi � �i)Xi � � � pK for some P . But as the probability of a union of eventsnever exceeds the sum of the probabilities of the events, the probability of failing inany of these ways is at mostPr hX�iXi � pKi+XP Pr hX(�Pi � �i)Xi � ��pKi� "�(1) +C1� A2n1=ATK�1=5# + n 110n(27)by Lemmas 5.6 and 5.7. So the probability that some processor decides 0 is at most(27), and thus the probability that all processors decide 1 is at least 1 minus (27).The running time of the protocol is more easily shown:Theorem 5.10. No processor executes more than (AK)1=A(2 + n=c) + 2c + 2nregister operations during an execution of the shared coin protocol.Proof. First consider the maximum number of votes a processor can cast. After(AK)1=A votes the total variance of the processor's votes will be(AK)1=AXx=1 x2a > Z (AK)1=A0 x2a dx = �(AK)1=A�AA = K;so after at most an additional c votes the processor will execute line 11 of Figure 1 andsee a total variance greater than K. Thus each processor casts at most (AK)1=A + cvotes. But each vote costs 1 write operation in line 8, and every c votes costs nreads in line 11, to which must be added a one-time cost of n reads in line 13.The total number of operations is thus at most �(AK)1=A + c� (1 + dn=ce) + n �((AK)1=A + c)(2 + n=c) + n = (AK)1=A(2 + n=c) + 2c+ 2n.It remains only to �nd values for a,K, and c which give both a constant agreementparameter and a reasonable running time. As a warm-up, let us consider what happensif we emulate the protocol of Bracha and Rachman [8]:Theorem 5.11. If a = 0, K = 4n2, and c = n4 logn � 3, then for n su�cientlylarge the protocol implements a shared coin with agreement parameter at least 0:05 inwhich each processor executes at most O(n2 logn) operations.Proof. For the agreement parameter, we have A = 1, TK = 4n, and g = 1 +1=(16 logn). Then (23) holds since ga = 1 � 12pTK=nA = 1. Furthermore,�1 + 18 log(10n)�1=A = 1 + 18(logn+ log 10)� 1 + 116 lognwhen n � 10. Thus (24) holds. The remaining inequality (25) holds for n � 1, so byTheorem 5.9 we have a probability of failure of at most�(1) + C1� 14n2�1=5 + 1=10� 0:842 + O� 1n2=5�+ 0:118

which is not more than 0:942 + � for n su�ciently large. In particular for n greaterthan some n0 this quantity is at most 0:95, and the agreement parameter is thus atleast 1� 0:95.The running time is immediate from Theorem 5.10.Now consider what happens if a is not restricted to be a constant 0.Theorem 5.12. If a = (logn� 1)=2, K = (16n logn)logn(n= logn), and c =(n= logn)� 3, then for n su�ciently large the protocol implements a shared coin withconstant agreement parameter in which each processor executes at most O(n log2 n)operations.Proof. We have A = logn, TK = 16n logn, and g = 1 + 116 log2 n .We want to apply Theorem 5.9, so �rst we verify that its premises are satis�ed.To show (23), computega = �1 + 116 log2 n�(logn�1)=2 � e(logn�1)=(32log2 n) � e1=(32 logn)which for n � 2 will be less than 12pTK=nA = 2. To show (24), note thatgA = �1 + 116 log2 n�logn � e1=(16 logn)and thus log(gA) � 1=(16 logn). Butlog�1 + 18 log(10n)� � 18 log(10n) � 1128 log2(10n)= 18(logn+ log 10) � 1128(logn+ log10)2(using the approximation log(1+x) � x� 12x2). For su�ciently large n this quantityexceeds 1=(16 logn) and (24) holds. The remaining constraint (25) is easily veri�ed,and thus Theorem 5.9 applies and the agreement parameter is at least1� "�(1) +C1� log2 nn1= logn(16n logn)�1=5 + 1=10#� 1� 0:842 +O � lognn �1=5!+ 0:10!which is at least 0:05 for su�ciently large n. Thus the protocol gives a constantagreement parameter.Now by Theorem 5.10, the number of operations executed by any single processoris at most (AK)1=A(2 + n=c) + 2c+ 2n, or(logn)1= logn(16n logn)(n= logn)1= lognO(logn) +O(n)which is O(n log2 n).6. Discussion. This paper presents the �rst randomized consensus algorithmwhich achieves a nearly optimal worst-case bound on the expected number of op-erations a processor needs to execute. To achieve this we construct a weak sharedcoin protocol based on random voting where the weight of votes cast by a processor19

increases with the number of votes it has already cast. The consensus protocol canthen be constructed around it using the established techniques of Aspnes and Herlihy[4] with only a constant-factor increase in the number of operations done by eachprocessor.9This work leads to several interesting questions. First, our voting scheme implic-itly gives higher priority to operations done by processors that have already performedmany operations. Such implicit priority granting may yield faster algorithms for othershared memory problems, such as approximate agreement or randomized resource al-location.Also, although our solution improves signi�cantly on the worst-case expectedbound on the number of operations a single processor is required to perform in orderto achieve consensus, the total number of operations done by all of the processorstogether is slightly larger (by a factor of logn) than in the unweighted-voting protocolof Bracha and Rachman [8]. It is of theoretical interest whether there is an inherenttrade-o� here.7. Acknowledgments. We would like to thank Serge Plotkin and David Ap-plegate for their many useful suggestions.REFERENCES[1] K. Abrahamson, On achieving consensus using a shared memory, in Proceedings of the Sev-enth ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Aug.1988, pp. 291{302.[2] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley and Sons, 1992.[3] J. Aspnes, Time- and space-e�cient randomized consensus, Journal of Algorithms, 14 (1993),pp. 414{431.[4] J. Aspnes and M. Herlihy, Fast randomized consensus using shared memory, Journal ofAlgorithms, 11 (1990), pp. 441{461.[5] H. Attiya, D. Dolev, and N. Shavit, Bounded polynomial randomized consensus, in Pro-ceedings of the Eighth ACM Symposium on Principles of Distributed Computing, Aug.1989, pp. 281{294.[6] P. Billingsley, Probability and Measure, John Wiley and Sons, second ed., 1986.[7] G. Bracha and O. Rachman, Approximated counters and randomized consensus, Tech. Report662, Technion, 1990.[8] , Randomized consensus in expected O(n2 logn) operations, in Proceedings of the FifthInternational Workshop on Distributed Algorithms, Springer-Verlag, 1991.[9] H. Chernoff, A measure of asymptotic e�ciency for tests of a hypothesis based on the sumof observations, Annals of Mathematical Statistics, 23 (1952), pp. 493{407.[10] B. Chor, A. Israeli, and M. Li, Wait{free consensus using asynchronous hardware., SIAMJournal on Computing, 23 (1994), pp. 701{712. Preliminary version appears in Proceedingsof the 6th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,pages 86-97, 1987.[11] B. Chor and L. Moscovici, Solvability in asynchronous environments, in 30th Annual Sym-posium on Foundations of Computer Science, Oct. 1989, pp. 422{427.[12] D. Dolev, C. Dwork, and L. Stockmeyer, On the minimal synchronism needed for dis-tributed consensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77{97.[13] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts, Time-lapse snapshots, in Proceedingsof Israel Symposium on the Theory of Computing and Systems, 1992.[14] C. Dwork, M. Herlihy, and O. Waarts, Bounded round numbers, in Proceedings of the 12thACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Aug. 1993,pp. 53{64.9 Due to the unbounded round structure of [4], the resulting consensus protocol assumes un-bounded registers. We believe these unbounded registers can be eliminated using the bounded roundnumbers construction of Dwork, Herlihy and Waarts [14].20

[15] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, John Wileyand Sons, second ed., 1971.[16] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed commit withone faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374{382.[17] P. Hall and C. Heyde, Martingale Limit Theory and Its Application, Academic Press, 1980.[18] P. R. Halmos, Invariants of certain stochastic transformations: The mathematical theory ofgambling systems, Duke Mathematical Journal, 5 (1939), pp. 461{478.[19] G. Hardy, J. Littlewood, and G. P�olya, Inequalities, Cambridge University Press, sec-ond ed., 1952.[20] M. Herlihy, Wait-free synchronization, ACM Trans. Prog. Lang. Syst., 13 (1991), pp. 124{149.[21] P. Kopp, Martingales and Stochastic Integrals, Cambridge University Press, 1984.[22] M. C. Loui and H. H. Abu-Amara, Memory requirements for agreement among unreliableasynchronous processes, in Advances in Computing Research, F. P. Preparata, ed., vol. 4,JAI Press, 1987.[23] S. A. Plotkin, Sticky bits and universality of consensus, in Proceedings of the Eighth ACMSymposium on Principles of Distributed Computing, Aug. 1989, pp. 159{176.[24] M. Saks, N. Shavit, and H. Woll, Optimal time randomized consensus | making resilientalgorithms fast in practice, in Proceedings of the Second Annual ACM-SIAM Symposiumon Discrete Algorithms, 1991, pp. 351{362.[25] J. Spencer, Ten Lectures on the Probabilistic Method, Society for Industrial and AppliedMathematics, 1987.

21

