
Consensus with max registers

James Aspnes and He Yang Er

DISC 2019



Main result

0

2

1

1

1
Consensus

1

We will solve randomized, wait-free
I consensus for an
I oblivious adversary using
I max registers in
I O(log∗ n) expected steps per process.



Consensus

0

2

1

1

1
Consensus

1

I Termination: All non-faulty processes terminate (with
probability 1).

I Validity: Every output value is somebody’s input.
I Agreement: All output values are equal.

No deterministic solutions in message passing (Fischer, Lynch, and
Paterson 1985) or shared memory (Loui and Abu-Amara 1987).



Model

⊥

3

1 1 3

Wait-free shared memory:
I Processes communicate by applying operations to shared

objects.
I Each operation is one step.
I No fairness: adversary can choose any process to take the next

step.
I Cost measure: Worst-case expected steps taken by a single

process.



Randomization and the adversary

€

€

I Each process can flip local coins.
I Adversary chooses which process takes the next step.

I Adaptive adversary: Sees coins and process actions.
I Oblivious adversary: Doesn’t see anything.

Adaptive adversary make consensus much harder (Attiya and Censor
2010), so we will assume oblivious.



Randomization and the adversary

€

€

I Each process can flip local coins.
I Adversary chooses which process takes the next step.

I Adaptive adversary: Sees coins and process actions.
I Oblivious adversary: Doesn’t see anything.

Adaptive adversary make consensus much harder (Attiya and Censor
2010), so we will assume oblivious.



Max registers

51 3 3

51 3 3

Register

51 5 5

551 3

Max register

I Atomic registers: return last value written.
I Multi-writer atomic registers allow anybody to write.
I Single-writer atomic registers only allow owner to write.

I Max registers: return largest value written.
I (Always multi-writer.)

Like atomic registers, max registers have consensus number 1:
can’t solve consensus without randomization.



Previous bounds

I O(log log n) expected steps for multi-writer registers (Aspnes
2015).

I O(n log2 n) expected steps for single-writer registers (Aspnes
and Waarts 1996).

We will get:
I O(log∗ n) expected steps for multi-writer max registers.
I O(n log n) expected steps for single-writer atomic registers.

Note: No known non-trivial bounds on expected steps with oblivious
adversary.



How to build a consensus protocol

0

2

1

1

1
Conciliator

0

Adopt-commit

adopt(1)

adopt(0)

adopt(0)

I Conciliator produces agreement (Aspnes 2012)
I Inputs equal ⇒ all outputs equal common input.
I Inputs not equal ⇒ outputs equal with probability > δ.

I Adopt-commit detects agreement (Gafni 1998)
I adopt(v) ⇒ choose v as your new value.
I commit(v) ⇒ everybody else will choose v .
I Inputs equal ⇒ everybody commits to common input.

I Together, solve consensus after O(1/δ) expected phases.



How to build a consensus protocol

0

2

1

1

1
Conciliator

0

commit(1)

Adopt-commit

adopt(1)

adopt(1)

I Conciliator produces agreement (Aspnes 2012)
I Inputs equal ⇒ all outputs equal common input.
I Inputs not equal ⇒ outputs equal with probability > δ.

I Adopt-commit detects agreement (Gafni 1998)
I adopt(v) ⇒ choose v as your new value.
I commit(v) ⇒ everybody else will choose v .
I Inputs equal ⇒ everybody commits to common input.

I Together, solve consensus after O(1/δ) expected phases.



How to build a consensus protocol

0

2

1

1

1

1

Conciliator

commit(1)

commit(1)

commit(1)

Adopt-commit

I Conciliator produces agreement (Aspnes 2012)
I Inputs equal ⇒ all outputs equal common input.
I Inputs not equal ⇒ outputs equal with probability > δ.

I Adopt-commit detects agreement (Gafni 1998)
I adopt(v) ⇒ choose v as your new value.
I commit(v) ⇒ everybody else will choose v .
I Inputs equal ⇒ everybody commits to common input.

I Together, solve consensus after O(1/δ) expected phases.



Conciliators with max registers

33 33

33

12

12

12 4

33

3325 25

25

Do for O(log∗ n) rounds:
I Assign a random priority to each value.
I Write (priority, value) to max register.
I Read new value from max register.

The idea:
I Only left-to-right maxima survive.
I So i-th value survives with probability 1/i .
I Expected total survivors = ∑ 1

i = Hn = O(log n).



What happens after the first round?

17 17 17 17179 36 36 36 36369 369

17 17 17 36 36 36 36

Problem:
I Same value appears in multiple processes.
I ⇒ multiple chances to survive!

Use personae (Aspnes 2015):
I Generate priorities for all rounds in advance.
I Propagate priorities with values.
I v survives only if first copy of v survives.
I This gives n→ O(log n)→ O(log log n)→ . . . expected

survivors.
I One survivor with constant probability δ after O(log∗ n) rounds.



Constant-time adopt-commit with max registers

3 3

3

min max

proposal

I Rules:
I I get commit(v) ⇒ you get commit(v) or adopt(v ‘)
I All inputs v ⇒ I get commit(v)

I Algorithm:
I Write v to min and max
I If proposal is not empty, v ← proposal; else proposal← v
I If min = v and max = v , commit(v); else adopt(v)

Commit ⇒ I wrote proposal before conflicting processes read it.



Constant-time adopt-commit with max registers

2 3

3

min max

proposal

I Rules:
I I get commit(v) ⇒ you get commit(v) or adopt(v ‘)
I All inputs v ⇒ I get commit(v)

I Algorithm:
I Write v to min and max
I If proposal is not empty, v ← proposal; else proposal← v
I If min = v and max = v , commit(v); else adopt(v)

Commit ⇒ I wrote proposal before conflicting processes read it.



Full result

0

2

1

1

1

1

Conciliator

commit(1)

commit(1)

commit(1)

Adopt-commit

I 1/δ phases on average until conciliator succeeds.
I Conciliator takes O(log∗ n) steps.
I Adopt-commit takes O(1) steps.

So O(log∗ n) expected steps until agreement.



Max registers from single-writer registers

12 6 17 33 27 8

26 19 17 33 27 11

33

I For conciliator, use double collect snapshot.
I Collect reads all n registers.
I Repeat until max value doesn’t change.
I Repeated max value = max value between collects.

I Each new max value ⇒ one extra collect.
I New max values = O(log n + log log n + . . . ) = O(log n).
I Total cost = O(n log n) register operations.

I Beats previous O(n log2 n) bound for (adaptive adversary)
single-writer consensus.



Open problems

17 17 17 17179 36 36 36 36369 369

17 17 17 36 36 36 36

I Max registers give randomized consensus in O(log∗ n) expected
steps against an oblivious adversary.

I But still no lower bounds other than Ω(1).
I Can we do better with max registers?
I Can we do as well or better with ordinary registers?

I Translating to single-writer registers gives O(n log n) expected
steps.

I Also no lower bounds other than Ω(n).
I Can we reduce overhead of the translation?


