Allocate-On-Use Space Complexity of Shared-Memory Algorithms

James Aspnes Bernhard Haeupler
Alexander Tong Philipp Woelfel

DISC 2018
Asynchronous shared memory model

Processes: $p_1, p_2, p_3, \ldots, p_n$

Objects: $O_1, O_2, O_3, O_4, O_5, \ldots, O_m$

Processes apply atomic operations to objects, scheduled by an adversary.
Many popular time measures:

- **Total step complexity**: how many operations did we do?
- **Per-process step complexity**: how many operations did I do?
- **RMR complexity**: how many times did I see a register change?

All of these measures are **per execution**:

- **Expected** step complexity,
- **High probability** step complexity,
- **Adaptive** step complexity,
- etc.
Space complexity (traditional version)

- Space complexity = number of objects m.
- Does not change from one execution to the next.
- Linear lower bounds for mutex (Burns-Lynch), perturbable objects (Jayanti-Tan-Toueg), consensus (Zhu).
- Trouble for both theory and practice:
 - Theory: hides effect of randomness.
 - Practice: hides effect of memory management.
- Real systems don’t charge you for pages you don’t touch.
Space complexity (improved version)

▶ Space complexity = number of objects used in some execution.
▶ An object is used when an operation is applied to it.
▶ Represents an allocate-on-use policy.
▶ Gives a per-execution measure.
Example: RatRace (Alistarh et al., DISC 2010)

Adaptive test-and-set on a binary tree of depth $3 \log_2 n$.

- **Splitters** allow descending processes to claim nodes.
- Three-process **consensus objects** allow ascending processes to escape subtrees.
- Process that escapes the whole tree wins test-and-set.

Requires $\Theta(n^3)$ objects but only $\Theta(k)$ are used w.h.p.
A hidden trade-off for randomized test-and-set?

Two algorithms for **randomized test-and-set** with an **oblivious adversary**:

- (Alistarh-Aspnes, DISC 2011) \(\Theta(\log \log n) \) \(\Theta(\log \log n) \)
- (Giakkoupis-Woelfel, PODC 2012) \(\Theta(\log^* n) \) \(\Theta(\log n) \)

- Both use **sifter** objects to get rid of losing processes quickly.
- Both use \(\Theta(n^3) \) worst-case space for backup RatRace.
- Not clear if space-time trade-off is necessary, but without allocate-on-use space complexity it’s not even visible.
Mutual exclusion

- **Mutual exclusion**: at most one process at a time in critical section.
- **Deadlock freedom**: some process reaches critical section eventually.
- *(Burns-Lynch, 1993)*: \(n\) registers needed in worst case, by constructing a single bad execution for any given algorithm.

We want to beat this bound for expected space complexity.
Monte Carlo mutual exclusion

- Processes climb a slippery ladder of one-bit register rungs to reach the critical section (CS).
- Process flips a coin at each rung:
 - Heads: Write 1 and climb.
 - Tails: Read:
 - 0 ⇒ stay at same rung.
 - 1 ⇒ fall to holding pen.
- About half fall from each rung.
- $O(\log n)$ rungs leave one process in CS with high probability.
- After finishing CS, winner resets rungs and increments gate.
Monte Carlo mutual exclusion: Analysis

- Deadlock freedom: some process is first to write 1.
- Mutual exclusion:
 - Potential function Φ sums
 - 2^{height} for processes.
 - $-w^{\text{height}}$ for 1 registers.
 - Plus a few extra terms.
 - Φ increases slowly on average.
 - Φ is big when two processes in CS.
 - whp have mutual exclusion in polynomially-long executions.
- $O(n)$ amortized RMRs per CS.
Mutual exclusion in $O(\log n)$ expected space

- **Splitter** detects when Monte Carlo algorithm violates mutex.
- In this case, switch to $O(n)$-space **backup mutex**.
- Gives mutex always, $O(\log n)$ space whp, $O(n)$ amortized RMRs per critical section.
Many systems allocate pages only on write.
Analogous notion is **allocate-on-update**.
 - **Reading** an object is free!
 - **Changing** an object is not.
How does this compare to allocate-on-use?
Simulating allocate-on-update with allocate-on-use

- Idea: Use one-bit registers to mark which ranges have changed.
- Balanced binary tree gives $O(\log m)$ overhead.
- Unbalanced tree gives $O(\log(\text{max address updated}))$.
- So models are equivalent up to log factor.
Allocate-on-use space complexity reveals differences in algorithms that are hidden by worst-case space complexity.

- What other problems allow low allocate-on-use space?
- Space lower bounds for allocate-on-use?
- What happens with an adaptive adversary?
- Low-space mutex with better RMR complexity?
- Implement allocate-on-use in a model that doesn’t provide it?