Abstract. This work concerns the general issue of combined optimality in terms of time and space complexity. In this context, we study the problem of counting resource-limited and passively mobile nodes in the model of population protocols, in which the space complexity is crucial. The counted nodes are memory-limited anonymous devices (called agents) communicating asynchronously in pairs (according to a fairness condition). Moreover, we assume that these agents are prone to failures so that they cannot be correctly initialized.

This study considers two classical fairness conditions, and for each we investigate the issue of time optimality of (exact) counting given optimal space. First, with randomly interacting agents (probabilistic fairness), we present a “non-guessing” time optimal protocol of $O(n \log n)$ expected interactions given an optimal space of only one bit (for a population of size n). We prove the time optimality of such protocol.

Then, under weak fairness (where every pair of agents interacts infinitely often), we show that a space optimal (semi-uniform) solution cannot converge faster than in $\Omega(2^n)$ time, in terms of non-null transitions (i.e., the transitions that affect the states of the interacting agents). This result together with the time complexity analysis of an already known space optimal protocol shows that it is also optimal in time (given the optimal space constrains).
1 Introduction

In this paper we are interested in the determination of the \textit{exact} number of nodes in a mobile sensor network. In the considered networks, sensors are typically attached to mobile supports (vehicles, animals, people, etc.) moving in an unpredictable way. Moreover, nodes may be deployed at large scale. Therefore they should be cheap and consequently can be prone to failures. One can think of sensors attached to zebras (ZebraNet [18]), pigeons (Pigeon Air Patrol [27]), or public transport vehicles (EMMA project [21]). In this context, counting can be part of the task being realized (How many animals have a temperature exceeding some bound?), or part of the managing of the network (Should some nodes be added or replaced?). In relation with the domain of application we are looking at, we consider that the nodes are anonymous, undistinguishable, have a bounded memory and poor communication capabilities (no broadcast; only a pairwise communication when two nodes come close enough to each other). A distributed computing model that fits this description is the model of \textit{population protocols} (PP) [4].

In PP, mobile nodes, which are called agents, can be represented as finite state transition systems. One can imagine that, when two agents are close enough, they interact and the effect of the interaction is a transition with a possible change of states. In this work we study the case of \textit{symmetric protocols}, where two agents in a transition are indistinguishable if their states are identical (thus, their states have to be identical also after the transition). This assumption makes the protocol design more difficult, as it restrains the set of possible transition rules.

The mobility and the resulting interactions of agents are completely asynchronous and modeled in a very general way - by a \textit{fairness} assumption. Here, we study the problem of counting considering two classical fairness assumptions. One ensures that each pair of agents is drawn uniformly at random for each interaction, and the other, weaker assumption (called here \textit{weak}), ensures only that every pair of agents interact infinitely often. While the probabilistic fairness captures the randomization inherent to many real systems, weak fairness only ensures progress of system entities.

As the agents are likely to be cheap and prone to failures (memory corruption, crash failures, etc.), re-counting may be required frequently. Since the population of agents may be very large, re-initialization may be infeasible. Hence, it is natural to assume that the agents are not initialized (i.e., an agent can be initially in any possible state). However, it is easy to prove that, in this case, counting in PP is impossible [10]. The solution is to use only one initialized and distinguishable agent, called the \textit{base station} (BS).

1 BS is also the agent that eventually obtains the correct count of the population. Thus the considered protocols are \textit{semi-uniform}, in the sense that all the agents, except BS, are a priori undistinguishable and execute the same protocol. Moreover, the size of the population n, and the upper bound P on n, are not used by the protocols.

In this context, previous works [10, 16, 8] and a companion paper [9] study the issue of space complexity (of the counted nodes), a factor that is particulary important in the considered large-scale and unreliable networks. For instance, [10] shows that under weak fairness, P (or more) agents cannot be counted with strictly less than P states per counted agent, by deterministic protocols (considered here as well). However, as shown in [9], under probabilistic or \textit{global} fairness\footnote{Global fairness can be viewed as simulating the probabilistic one without introducing randomization explicitly [17]. One can see the probabilistic fairness as a quantitative version of the global one. Moreover, it allows to analyze protocols’ time complexity, what is impossible in general with global fairness. See definition in Sec. 2.}, counting can be performed with only two states (one bit) per counted agent. [9] presents two space optimal solutions to counting in PP, one under weak fairness and the other under global fairness (the latter is also correct under probabilistic fairness). The solution for global fairness uses a memory of only one bit per agent, while the solution for weak fairness needs $\log P$ bits (P states) per counted agent.

In addition to the state space optimality, this paper raises the issue of the convergence time. Our objective is to determine the best guarantees on the convergence times given the established

\footnote{In this work, we also show the necessity of such an agent being distinguishable (see Sec. 4).}

\footnote{Here, as a by-product, we present an alternative proof of this result, for the case of symmetric protocols (see Prop. 2).}
necessary minimum on the memory. To obtain this goal, we show, in particular, that the convergence times of the two previous space optimal solutions (in [9]) are exponential. In Sec. 3, for reasons explained there, we restrict our attention to so called “non-guessing” counting protocols. We prove that any such state optimal counting protocol, correct under probabilistic fairness, converges in $\Omega(n \log n)$ expected interactions (Sec. 3.1). In Sec. 3.2, we propose a new state optimal protocol fitting this complexity.

In the case of weak fairness, in Sec. 4, we show that a space optimal solution requires an exponential convergence time (in terms of non-null transitions). In particular, this result shows that the space optimal protocol under weak fairness in [9] is time optimal among the space optimal semi-uniform protocols.

Related Work. We provide here the most relevant and recent works. Please, refer to [9] for additional related literature on the subject.

Considering PP, [10, 16, 8] proposed efficient counting protocols in terms of exact state space that were improved in [9] by space optimal solutions. A recent work [26] studies a somewhat relevant, but strictly weaker, problem in random PP, where agents should determine the difference between the number of agents started in state A and the number of those started in state B. Similarly to the current work, [26] investigates the efficiency in terms of both time and space. It presents an $O(n^{3/2})$-state population protocol that allows each agent to converge to the exact solution by interacting no more than $O(\log n)$ times. Additional very recent works (as [1, 13, 2, 3]) jointly contribute to the time and space trade-offs study of fundamental tasks, as majority and leader election, in random PP. For example, [13] show that it is impossible to achieve sub-linear leader election with only constant state space per agent, but due to [2] this problem can be solved in $O(\log^3 n)$ time with $O(\log^3 n)$ states. For majority, sub-linear time is impossible for protocols with at most four states per node, while there exists a poly-logarithmic time protocol which requires linear in n state space [3]. [1] presents additional upper and lower bounds for these tasks that highlight a time complexity separation between $O(\log \log n)$ and $\Theta(\log^2 n)$ state space for both majority and leader election. The present work contributes to the general study of time-space trade-offs in the case of counting.

In the context of dynamic networks with anonymous nodes, recent works [24, 23, 22, 25], study the counting problem in the synchronous model of dynamic graphs. PP can be also represented by dynamic graphs, but is a completely asynchronous model. Moreover, in contrast with the current study, protocols in these works require that all nodes are initialized. These essential differences make the techniques (e.g., termination detection), extensively used there, inappropriate in our case. Note however that their protocols determining the exact count have exponential convergence time, supporting in some sense the results presented here for weak fairness.

Due to the difficulty of the problem, a lot of work has been devoted to design protocols counting approximately the number of network nodes (see, e.g., [15, 20, 14, 28, 7, 30, 6]). These protocols use gossiping and probabilistic methods, like probabilistic polling, random walks, epidemic-based approaches, and also exploit classical results on order statistics to infer an estimated number of the nodes. Here, we consider only deterministic protocols for exact counting.

2 Model and Notations

A system consists of a collection \mathcal{A} of pairwise interacting agents, also called a population. Each agent represents a finite state sensing and communicating mobile device. Among the agents, there is a distinguishable agent called the base station (BS), which can be as powerful as needed, in contrast with the resource-limited non-BS agents. The non-BS agents are also called mobile, interchangeably. The size of the population is the number of mobile agents, denoted by n, and is unknown (a priori) to the agents.

A (population) protocol can be modeled as a finite transition system whose states are called configurations. A configuration is a vector of states of all the agents. Each agent has a state taken
from a finite set of states, the same for all mobile agents (denoted Q), but generally different for BS.

In this transition system, every transition $C \rightarrow C'$ between two configurations C and C' is modeled by a single transition between two agents happening during an interaction. That is, when two agents x, in state p, and y, in state q, in C, interact (meet), they execute a transition rule $(p,q) \rightarrow (p',q')$. As a result, in C', x changes its state from p to p' and y from q to q'. If $p = p'$ and $q = q'$, the corresponding transition is called null (such transitions are specified by default), and non-null otherwise.\footnote{For simplicity, in some cases, we do not present protocols under the form of transition rules, but under the equivalent form of a pseudo-code.}

If there is a sequence of configurations $C = C_0, C_1, \ldots, C_k = C'$, such that $C_i \rightarrow C_{i+1}$ for all $i, 0 \leq i < k$, we say that C' is reachable from C, denoted $C \rightarrow C'$.

The transition rules of a protocol are deterministic, if for every pair of states (p,q), there is exactly one (p',q') such that $(p,q) \rightarrow (p',q')$. We consider only deterministic transitions and thus, only deterministic protocols. Transitions and protocols can be symmetric or asymmetric. Symmetric means that, if $(p,q) \rightarrow (p',q')$ is a transition rule, then $(q,p) \rightarrow (q',p')$ is also a transition rule. In particular, if $(p,p) \rightarrow (p',q')$ is symmetric, $p' = q'$.

Let $(p_1,q_1) \rightarrow (p_2,q_2), (p_2,q_2) \rightarrow (p_3,q_3), \ldots, (p_{k-2},q_{k-2}) \rightarrow (p_{k-1},q_{k-1}), (p_{k-1},q_{k-1}) \rightarrow (p_k,q_k)$ be the transition rules of a protocol. Then, we shortly write $(p_1,q_1) \rightarrow (p_k,q_k)$ to denote a possible sequence of these transition rules, which can be applied (in the same order) on two agents in states p_1 and q_1, making them interact repeatedly until their states change to p_k and q_k, respectively.

An execution of a protocol is an infinite sequence of configurations C_0, C_1, C_2, \ldots, such that C_0 is the starting configuration and for each $i \geq 0$, $C_i \rightarrow C_{i+1}$. In a real distributed execution, interactions could take place simultaneously, but when writing down an execution we can order those simultaneous interactions arbitrarily.

An execution is said weakly fair, if every pair of agents in A interacts infinitely often. An execution is said probabilistically fair, if, for each interaction in the execution, a pair of agents in A is chosen uniformly at random. An execution is said globally fair, if for every two configurations C and C' such that $C \rightarrow C'$, if C occurs infinitely often in the execution, then C' also occurs infinitely often in the execution. This also implies that, if in an execution there is an infinitely often reachable configuration, then it is infinitely often reached [5]. Global fairness can be viewed as simulating randomized systems without introducing randomization explicitly (any probabilistically fair execution is globally fair with probability 1 [17]).

A problem is defined by a predicate D on executions. A population protocol P is said to solve a problem D, if and only if every execution of P satisfies the conditions defining D. The problem of counting is defined by the following condition: eventually, in any execution, there is at least one agent (BS, in our case) obtaining a value of n in some variable (called c in the following) and this value does not change. Note that the counting predicate has to be satisfied only eventually (and forever after). When it happens, we say that the protocol has converged. The convergence time of a protocol is defined by the maximum number of non-null transitions in an execution till convergence. We consider only semi-uniform protocols in the sense that the size of the population n, and the upper bound P on n, are not used by a protocol and all agents, except BS, are a priori indistinguishable and interact according to the same transition rules [12, 29]. A protocol is called silent, if in any execution, eventually, no state of an agent changes [11].

3 Time and Space Optimal Counting under Probabilistic Fairness

3.1 Time Lower Bound for a Space Optimal Protocol

Defining the time optimality for a counting protocol asks to be cautious. Indeed, a protocol could be efficient for counting some set of agents and slow for counting others. Think of a protocol that “guesses” initially a count and checks afterwards whether this count is correct or not. On the right set of agents, this counting protocol would converge in zero time. For other sets it is certainly less
efficient than the protocols which estimate the count gradually, starting from 0. We would like to avoid such behavior and thus restrict our attention to protocols having a “proof” that the estimate at some time corresponds to a lower bound on the actual population size (i.e., they have observed a sequence of interactions that justifies this count). For such protocols, called here “non-guessing”, the estimate of the size (in the variable \(c \)) is a non-decreasing function along an execution (and so \(c \) is always a lower bound on the number of agents in the population). In the sequel of the section, we denote any such state-optimal protocol by \(\text{Count} \) and we prove that it converges in expected \(\Omega(n \log(n)) \) interactions. \(\text{Count} \) uses (optimally) only two states per mobile agent (with one state, counting is impossible [9]).

We call \(\text{trace of an execution prefix} \) the sequence of transition of BS in this prefix. Thus, a trace \(T \) is a sequence of transitions of the form \((s_{BS,i},i) \rightarrow (s_{BS,j},j)\), where \(s_{BS} \) and \(s'_{BS} \) are states of BS, and \(i \) and \(j \) are states of a mobile agent in the corresponding interaction. Note that this sequence captures all the information that BS has, and completely determines its state. Let us denote by \(x(T) \) the minimal population size for which there exists at least one execution prefix with trace \(T \). Thus, since the estimate counter \(c \) is non-decreasing, we have \(c \leq x(T) \). We denote by \(x_i(T) \) the minimal number of mobile agents in state \(i \) (w.l.o.g., \(i \in \{0,1\} \)) in all configurations in an execution prefix with trace \(T \) and \(x(T) \) agents. Obviously, for all execution prefixes with \(n \) agents and a trace \(T \), we have \(x_0(T) + x_1(T) \leq x(T) \leq n \).

The idea behind Lemma 1 is that, if there is such a transition rule of mobile agents that can decrease the number of agents in state \(i \), then when several such agents are present in the population, making them interact and execute this transition will decrease their number to the minimum. The formal proof appears in the appendix.

Lemma 1. If the considered protocol \(\text{Count} \) has a transition rule that allows to decrease the number of agents in state \(i \) through interactions between mobile agents (rules \((i,i) \rightarrow (i, 1-i), (i,i) \rightarrow (1-i, 1-i) \) or \((i,1-i) \rightarrow (1-i, 1-i)\)), then for any trace \(T \), we have \(x_i(T) \leq 1 \).

Lemma 2. Let \(T' \) be a trace obtained from a trace \(T \) by adding a transition \((s_{BS,i},i) \rightarrow (s'_{BS,j},j)\) between BS and a mobile agent. If \(x(T') > x(T) \), then \(x_{i-1}(T') = x(T) \).

Proof. Let the added interaction in \(T' \) be \((s_{BS,i},i) \rightarrow (s'_{BS,j},i)\):

- If \(x_{i-1}(T) < x(T) \), some executions with trace \(T \) and \(x(T) \) agents lead to a configuration with \(x(T) - x_{i-1}(T) > 0 \) agents in state \(i \). These agents may interact with BS, so that there still exist executions with trace \(T' \) and with \(x(T) \) agents, and with the same number of agents in both states. Thus \(x(T') = x(T), x_0(T') = x_0(T), \) and \(x_1(T') = x_1(T) \).
- If \(x_{i-1}(T) = x(T) \) (which implies that \(x_i(T) = 0 \)), all executions with trace \(T \) and \(x(T) \) agents contain no agent in state \(i \). Thus, \(x(T') = x(T) + 1 \) (it cannot be higher, since one can build an execution with \(x(T) \) agents interacting in pattern resulting in trace \(T \), and an extra agent in state \(i \) that does not interact, then released for this last interaction). Since, as a result of this interaction, an agent in state \(i \) remains, if no rule \((i, 1-i) \rightarrow (1-i, 1-i)\) can remove it, \(x_i(T') = 1, x_i(T) = 0 \). In addition, \(x_{i-1}(T') = x_{i-1}(T) \), because the execution described above with \(x(T') = x(T) + 1 \) agents results in a configuration with \(x_{i-1}(T) \) agents in state \(i \).

Finally, we have: \(x(T') = x(T) + 1, x_i(T') \leq 1, \) and \(x_{i-1}(T') = x_{i-1}(T) \).

Now, let the added interaction in \(T' \) be \((s_{BS,i},i) \rightarrow (s'_{BS,1-i})\):

- If \(x_{1-i}(T) < x(T) \), some executions with trace \(T \) and \(x(T) \) agents contain agents in state \(i \). These agents may interact with BS, so that there still exist executions with trace \(T' \) and with \(x(T) \) agents, and with an agent in state \(i \) that has changed its state. Thus \(x(T') = x(T), x_i(T') = \max\{x_i(T) - 1, 0\}, \) and \(x_{1-i}(T') = x_{1-i}(T) + 1 \).
- If \(x_{1-i}(T) = x(T) \) (which implies that \(x_i(T) = 0 \)), all executions with trace \(T \) and \(x(T) \) agents contain no agent in state \(i \). Thus, trace \(T' \) cannot be achieved with \(x(T) \) agents, and \(x(T') \geq x(T) + 1 \). \(T' \) can be achieved by adding an extra agent in state \(i \) during trace \(T \) and releasing it to realize the last interaction, so that \(x(T') = x(T) + 1 \). An agent in state \(i \) has its state changed to \(1 - i \), so that \(x_i(T') = \max\{x_i(T) - 1, 0\} \), and \(x_{1-i}(T') \leq x_{1-i}(T) + 1 \).
Thus, \(x \) can increase only as the result of an interaction of BS with an agent in state \(i \) such that \(x_{i-1} = x \). After this interaction, to increment \(x \) again, BS must increment \(x_{i-1} \), which it can do only by switching an agent state to \(1 - i \).

In particular, this implies that, if interactions between mobile agents can decrease the number of agents in both states 0 and 1, \(x_i \leq 1 \) for \(i \in \{0,1\} \), and \(x \leq 2 \), i.e., any trace can be obtained with two agents only, and Count is incorrect. By eliminating this case and by Lemma 2, we obtain the following corollary.

Corollary 1. The convergence of Count cannot be reached before BS has interacted with every agent in a non-null transition.

Proof. If interactions between mobile agents cannot decrease the number of agents in both states (Lem. 1), for \(x \) to reach \(n \), \(x_i \) should go from 0 to \(n \), for an \(i \) for which no rule can decrease the number of agents in state \(i \). Since \(x_i \) can increase only through a transition \((s_{BS}, 1 - i) \rightarrow (s'_{BS}, i)\) (Lem. 2), in the course of the execution, BS must meet all \(n \) agents, and change their states from 1 – \(i \) to \(i \) to reach a configuration with \(x = n \). Now, since \(c \leq x \), the protocol cannot converge before BS has met all agents. \(\square \)

The expected time for BS to meet all \(n \) agents (under probabilistic fairness) is \(\Theta(n \log n) \), by a coupon collector argument [19].

Theorem 1. A two-state counting protocol Count (correct under probabilistic fairness) converges in \(\Omega(n \log n) \) expected time.

3.2 Time and Space Optimal Protocol (Prot. 1)

The one bit space optimal protocol of [9] is recalled in the appendix (Prot. 2) together with its time complexity analysis that gives the average convergence time of \(\Theta(2^n) \) interactions. In this section, we modify Prot. 2 to obtain an (asymptotically) time optimal protocol, Prot. 1, converging in \(O(n \log n) \) time, and still optimally using only one bit of memory per mobile agent. We present and prove this protocol and its convergence time below.

In Prot. 1, each mobile agent can be in one of two states 0 or 1, and respectively called 0 or 1 agent. We write \(c_0 \) and \(c_1 \) for the protocol’s count of 0 and 1 agents resp., and \(n_0 \) and \(n_1 \) for the actual number of 0 and 1 agents in the population. The total number of agents is then \(n = n_0 + n_1 \) and the base station’s estimate of \(n \) is \(c = c_0 + c_1 \). The values \(c_0 \) and \(c_1 \) are both initialized to 0. They may be seen as the implementations of the \(x_0 \) and \(x_1 \) used in the lower bound proof in the previous subsection.

The modified protocol proceeds in alternating phases. In a **zero phase**, BS only converts zeros to ones. Whenever it does so, it decrements \(c_0 \) if it is positive and increments \(c_1 \). In a **one phase**, it does the reverse. We start the protocol in a zero phase.

The same argument as for the original protocol shows that \(c_b \leq n_b \) holds as an invariant and that \(c = c_0 + c_1 \) is non-decreasing over time (Lemma 1 in [9]). If, in addition, we can stay in two phases long enough that every agent is converted from \(b \) to \(1 - b \) in the first phase, and then every agent is converted from \(1 - b \) to \(b \) in the second phase, at the end of the second phase we will have \(c = n \), giving convergence.

Let us now specify when BS switches between phases. Suppose that BS is going to start in a \(b \) phase. We adopt the following procedure (in two stages):

1. **(pre-phase)** Flip any \(b \) agents we encounter to \(1 - b \) as long as \(c_b > 0 \).
2. **(the phase itself)** Continuing flipping any \(b \) agents BS encounters to \(1 - b \) until it sees \(6(c_b \ln c_b + 1) \) agents marked \(1 - b \) in a row without seeing an agent marked \(b \). If this event occurs, flip the phase (switch to the \(1 - b \) phase).
Protocol 1 – Time and Space Optimal Counting under Probabilistic Fairness

Variables at BS:
- c_0: non-negative integer, initialized to 0; eventually holds n_0
- c_1: non-negative integer, initialized to 0; eventually holds n_1
- c: non-negative integer initialized to 0; eventually holds n
- cnt: non-negative integer initialized to 0
- $phase \in \{0, 1\}$, initialized to 0

Variable at a mobile agent x:
- $b \in \{0, 1\}$, initialized arbitrarily

1: when a mobile agent x with mark b interacts with BS do
2: if $b = phase$ then
3: $cnt \leftarrow 0$
4: if $c_b > 0$ then
5: $c_b \leftarrow c_b - 1$
6: $b \leftarrow 1 - b$
7: $c_b \leftarrow c_b + 1$
8: else if $cnt \geq 6(c_b \ln c_b + 1)$ then
9: $cnt \leftarrow 0$
10: $phase \leftarrow 1 - phase$
11: else if $c_{phase} = 0$ then
12: $cnt \leftarrow cnt + 1$
13: $c \leftarrow c_0 + c_1$

The first rule (the pre-phase) guarantees that whenever we start a b phase, c_{1-b} is always zero. This in turn guarantees that c_b is never lower at the start of a b phase than it is at the start of any previous b phase.

For the convergence bound, begin by bounding the likely length of a phase:

Lemma 3. Each phase requires $O(n \log n)$ interactions with high probability.

Proof. Suppose we are in a b phase. Using standard bounds on the Coupon Collector Problem [19], it holds with high probability that BS has interacted with every agent after $O(n \log n)$ interactions. So either the phase has already ended, or every agent now carries $1 - b$. In the latter case, the phase can run for at most $6(n \ln n + 1) = O(n \log n)$ steps before ending.

We now show that, on average, the protocol executes $O(1)$ phases. This requires the following technical lemma showing that BS finds all b agents in a b phase if there are enough to begin with.

Lemma 4. If phase b starts with $n_b \geq n/2$, then it ends with $n_b = 0$ with probability at least $1/2$.

Proof. For simplicity we will assume $b = 0$; the $b = 1$ case is symmetric. So we are looking at a zero phase that starts with $n_0 \geq n/2$. From the structure of the protocol, we know that at the start of this phase, $c_1 = 0$, but c_0 might be larger. It happens that the worst case is when $c_0 = 0$, but we will analyze the process for any initial value of c_0.

In the analysis below we will fix n_0, n_1, to their values at the start of the phase. To keep track of what happens, let i be the number of zero values converted to ones so far during this phase; given the value of i, this gives $n_0 - i$ zeros and $n_1 + i$ ones in the population, and the value of the c_1 register will be i. We fail to convert all zeros to ones if we exit the phase while i is less than n_0.

For each particular value of i, this occurs only if (a) c_0 is already 0, and (b) BS observes $6(n \ln n + 1)$ ones in a row. Whether or not $c_0 = 0$, the latter event occurs with probability exactly

$$\left(\frac{n_1 + i}{n} \right)^{6(i \ln i + 1)} \quad (1)$$

which by the union bound gives an upper bound on the probability that we leave the phase for any $i < n_0$ of

$$\sum_{i=0}^{n_0-1} \left(\frac{n_1 + i}{n} \right)^{6(i \ln i + 1)} \quad (2)$$
We will bound this sum by considering the terms with \(i < n_0/2 \) and \(i \geq n_0/2 \) separately. The detailed computations for each case appear in the appendix and give a bound of \(2/5 \) for the case \(i < n_0/2 \), and \(1/200 \) for \(i \geq n_0/2 \). The original sum is thus bounded by \(2/5 + 1/200 < 1/2 \) for all \(n > 0 \), giving the claimed bound.

Theorem 2. The modified protocol (Prot. 1) converges to \(c = n \) in an expected \(O(n \log n) \) interactions with BS.

Proof. There are two cases, depending on the initial value of \(n_0 \).

1. If \(n_0 \geq n/2 \) in the starting configuration, then \(n_0 \geq n/2 \) at the start of each zero phase. From Lemma 4, BS converts all zeros to ones in any of these phases with probability at least \(1/2 \). If this event occurs, the following one phase converts all ones to zeros with probability at least \(1/2 \) as well, giving a probability of at least \(1/4 \) for each pair of phases that we converge to the correct count. Thus the protocol converges in an expected \(4 \cdot 2 = 8 \) phases.

2. If \(n_0 < n/2 \), then the initial zero phase ends with at least \(n/2 \) ones (because any conversion during this phase can only increase the number of ones). So the first one phase starts with \(n_1 = n/2 \). Repeating the above analysis shows that the protocol converges after at most 8 phases on average on top of the initial zero phase, giving an expected 9 phases total.

Because each of these \(O(1) \) phases takes \(O(n \log n) \) expected steps (Lemma 3), this gives a total expected number of steps of \(O(n \log n) \).

4 Time Lower Bound for Space Optimal Counting under Weak Fairness

To obtain this lower bound we first prove properties that have to be satisfied by any space optimal symmetric counting protocol functioning under weak fairness. These properties are important by themselves, as they can be useful in future studies of counting under weak fairness in PP. For instance, Prop. 1, states that a counting protocol has to distinctly name all the agents in any population of size \(n < P \). Recall that \(P \) is the unknown upper bound on the size \(n \) of population.

Next, from Prop. 1 and Lemma 5, it easily follows that any symmetric counting protocol under weak fairness has to use at least \(P \) states per mobile agent (to be able to count any population of at most \(P \) agents). This gives a somewhat simpler proof than the original one in [10].

The next important property, given in Prop. 3, is that any space optimal symmetric counting protocol under weak fairness has a unique “sink” state \(m \) s.t., for every possible state \(s \in Q \) of a mobile agent, there is a transition sequence \((s, s) \rightarrow (m, m) \), with \((m, m) \rightarrow (m, m) \) and \(m \) cannot be one of the distinct names given by the protocol in case \(n < P \).

Using the above-mentioned properties, we prove the lower bound given in Theorem 4. This is one of the main results of the paper. It shows that, under weak fairness, counting undistinguishable, state-optimal and non-initialized agents in symmetric PP is a costly task in terms of convergence time (expressed by the number of non-null transitions). We emphasize that the result concerns semi-uniform protocols, in the sense that the actual values of the size of the population \(n \), or the upper bound \(P \) on \(n \), are not used by a protocol and all agents, except BS, are (a priori) indistinguishable and interacting according to the same transition rules.

Finally, we show (Prop. 4 in the appendix) that the space optimal protocol for weak fairness presented in [9] converges in \(\Theta(2^n) \) time. This proves that this is a time optimal protocol among all the space optimal semi-uniform protocols, under weak fairness.

Proposition 1. Let Count be a (silent or not) counting protocol correct under weak fairness (for any \(n \leq P \)). For any weakly fair execution \(e = C_1, C_2, C_3, \ldots, C_j, \ldots \) of Count on a population \(A \) of size \(n < P \), there is an integer \(k \) such that, for any \(j \geq k \), no two mobile agents are in the same state in \(C_j \).

Proof. Let us assume, by contradiction, that in \(e \), there are infinitely many configurations with two agents in the same state. Since the state space is finite and the number of agents too, two specific
agents x_2 and x_3 from \mathcal{A} are necessarily simultaneously in some state $s \in Q$ in infinitely many configurations. Let $C_{j_1}, C_{j_2}, C_{j_3}, \ldots$ be these configurations such that $e = e_1, C_{j_1}, e_2, C_{j_2}, e_3, C_{j_3}, \ldots$. W.l.o.g., we choose these configurations such that, in every execution segment e_i, every agent in \mathcal{A} interacts with every other (this is possible with weak fairness).

Now consider a population $\mathcal{A}' = \mathcal{A} \cup \{x_1\}$ of size $n + 1$. To prove the proposition, we will construct a weakly fair execution e' of Count in population \mathcal{A}' where no agent can distinguish e' from e, and where consequently Count wrongly counts only n agents instead of the existing $n + 1$.

We construct e' based on e. First, we assume that in e', x_1 is in state s in the starting configuration, and $e' = e'_1, C'_{j_1}', e'_2, C'_{j_2}', e'_3, C'_{j_3}', \ldots$ such that each segment e'_i follows the same transition sequence as in e_i, but where the agents x_2 or x_3 participating in the corresponding interactions can be replaced by x_1 in the appropriate state, as we explain below. We ensure also that in every C'_{j_i}, each of the three agents x_1, x_2, x_3 is in state s.

More precisely, in segment e'_{3r+1}, C'_{3r+1} ($r \geq 0$), agent x_1 does not interact with the rest of the agents, and all the others interact exactly as in e_{3r+1}, C_{3r+1} (each agent x_i is in state s in C'_{3r+1}). In e'_{3r+2}, C'_{3r+2} agent x_2 does not interact with the rest of the agents, and x_1 replaces x_2 in all the interactions where x_2 interacts in e_{3r+2}, C_{3r+2}, and all the others interact as in e_{3r+2} (but with x_1 instead of x_2 in the corresponding interactions). Each agent x_i is in state s in C'_{3r+2}. In e'_{3r+3}, C'_{3r+3} agent x_3 does not interact with the rest of the agents, and x_1 replaces x_3 in all the interactions where x_3 interacts in e_{3r+3}, C_{3r+3}, and all the others interact as in e_{3r+3} (but with x_1 instead of x_3 in the corresponding interactions). Each agent x_i is in state s in C'_{3r+3}.

We emphasize again that e' is possible, because in every C'_{j_i}, each of the three agents x_1, x_2, x_3 is in state s, so any of them can replace any other in the transition sequence of the next segment e_{i+1}. Moreover, e' is weakly fair, because each agent x_i interacts with all the other agents in the appropriate e'_i segments (and by the assumption on e_i), and other agents too, due to the weak fairness of e. Finally, in e', every agent from \mathcal{A} (including BS), executes exactly the same sequence of transition rules as it does in e, so no agent can distinguish the fact that the population is actually \mathcal{A}' with $n + 1$ agents, and Count counts only n agents as it does in e. This is a contradiction to the assumption that Count is a correct counting protocol.

The proof of Lemma 5 uses similar techniques as the proof of Prop. 1 and appears in the appendix.

Lemma 5. Let Count be a symmetric (silent or not) counting protocol correct under weak fairness (for any $n \leq P$). Consider any weakly fair execution $e = C_1, C_2, C_3, \ldots, C_j, \ldots$ of Count on a population \mathcal{A} of size $n < P$. There is an integer k such that, for any $j \geq k$, no mobile agent is in a state $m \in Q$ such that there is a possible sequence of transitions of Count $(m, m) \xrightarrow{n} (m, m)$.

The following two propositions follow from Proposition 1 and Lemma 5. A simple proof of Prop. 2 uses similar techniques as the proof of Prop. 3 and appears in the appendix.

Proposition 2. Any symmetric counting protocol Count correct for any $n \leq P$ (undistinguishable and non-initialized) mobile agents, under weak fairness, has to use at least P states per mobile agent.

Proposition 3. Consider any symmetric (silent or not) counting protocol Count correct under weak fairness (for any $n \leq P$), and using at most P states per mobile agent. For every state $s \in Q$, there is a transition sequence $(s, s) \xrightarrow{s} (m, m)$, s.t. m is unique and does not appear infinitely often in executions with $n < P$. Moreover, $(m, m) \xrightarrow{m} (m, m)$.

Proof. As Count is symmetric, any two agents, both in some state $s \in Q$, in an interaction, have to execute a symmetric transition of the form $(s, s) \xrightarrow{s} (s_1, s_1)$. Thus there is a possible sequence of transitions $(s, s) \xrightarrow{s} (s_1, s_1) \xrightarrow{s} (s_2, s_2) \xrightarrow{s} (s_3, s_3) \ldots$ as mobile agents are finite state, for some $j > i \geq 1$, $s_i = s_j$, i.e. $(s_i, s_i) \xrightarrow{s} (s_i, s_i)$. By Lem. 5, $s_i = m$ s.t. m does not appear infinitely often in executions with $n < P$. As there are at least $P - 1$ states appearing infinitely often in an
execution with \(n = P - 1 \) (by Prop. 1), there is at most one such possible state \(m \) in a \(P \) state protocol. Thus, the first part of the lemma holds.

Finally, by contradiction, if \((m, m) \rightarrow (s, s)\) s.t. \(s \neq m \), then by the similar argument of agents’ finite state as in the previous paragraph, this implies \((s, s) \rightarrow (s, s)\). As \(m \) is unique, this is a contradiction to Lem. 5. Thus, \((m, m) \rightarrow (m, m)\). \(\Box \)

The results above show in particular that, for any considered space-optimal counting protocol, if mobile agents are not named yet, agents in state \(m \) in state \(m \) with \(n \) BS that eventually counts the other \(n \) (mobile) agents. Note that having a distinguishable agent is necessary. To see this, consider a starting configuration where all agents start at the same state and equal to the state of the only initialized agent. If the size of the population is even, by Proposition 3, there is a weakly fair execution reaching and staying in the configuration where all agents are in state \(m \), and by Proposition 1, no counting can be realized.

To prove the lower bound (Theorem 4), in addition to the results above, we use the following definitions and an observation about semi-uniform protocols.

Definition 1.

- We call homonyms, or homonymous agents, mobile agents in the population having the same state, but different from \(m \).
- We say that two (or more) homonyms (in state \(s \)) are reduced (to \(m \)) whenever a sequence of transitions \((s, s) \rightarrow (m, m)\) is applied to them.
- We say that a mobile agent is named if it has a state different from \(m \) (a name). A group of agents is named if each of them is named with a distinct name. Similarly, a configuration of agents is named, if all the agents in this configuration are named.
- A reduced (from homonyms) configuration is a configuration without any homonym. By abuse of terminology, we sometimes consider a reduced configuration as a set of names (excluding \(m \)-state), instead of a vector of states of all agents.
- For any two sets \(E, E' \subseteq \{1, \ldots, n\} \), we denote by \(E \Delta E' \equiv E \cup E' - E \cap E' \) their symmetric difference. In particular, \(E \Delta \{e\} \{e \in \{1, \ldots, n\}\} \) is \(E \cup \{e\} \) if \(e \notin E \), and \(E - \{e\} \) if \(e \in E \).
- A stationary point (or state) of BS is a state \(s_{BS} \) of BS such that \((s_{BS}, m) \rightarrow (s'_{BS}, m)\) and \(s'_{BS} \) is also stationary.

Note that this transition sequence can be broken, i.e., BS can change its state to a non-stationary one, after an interaction with an agent in a state \(s \neq m \).

Observation 3 Consider a semi-uniform protocol Count and any execution prefix \(e \) for some upper bound \(P \). Assume that, in \(e \), only agents from a subset \(S \subseteq \mathcal{A} \) (including BS) interact. Let \(|S| < P' < P\). Moreover, any starting state of a mobile agent in \(S \) is in the set of possible states for \(P' \). Then, the (standard) projection \(e|_S \) of \(e \) on the agents of \(S \) is an execution prefix of Count for a bound \(P' \).

Similarly, if \(e \) is an execution prefix of Count for \(n' \leq P' \), it is also an execution prefix of Count for \(n \) s.t. \(n' \leq n \leq P \) and \(P \leq P' \), if we extend the configurations of \(e \) with \(n - n' \) agents (missing in \(e \) and performing no interactions in the extended prefix).

To obtain the result of Theorem 4, we focus on the set of the longest execution prefixes where BS meets and names agents in state \(m \) (according to a fixed “naming sequence”\(^3\)). In such prefixes, we study the possibility of the occurrence of a stationary point (Def. 1). We show that, for a semi-uniform counting protocol (i.e., when \(n \) and \(P \) are unknown), for any \(n < P \), such a point does not exist before BS has named the \(n \) agents. By observing that the number of starting unnamed configurations is \(2^n - 1 \), for \(n = P - 1 \), we conclude that the “naming sequence” at BS, and thus the length of the execution prefix, is \(\Omega(2^n) \). This is for being able to name \(n = P - 1 \) agents starting from any unnamed configuration. Intuitively, as \(P \) is unknown, for any population \(n \), BS should behave like the bound is \(n \), even if it is larger (see Obs. 3). Thus, the theorem follows for any \(n \) and \(P \).
Theorem 4. Let Count be a symmetric (silent or not) semi-uniform counting protocol correct under weak fairness (for any \(n \leq P \)) and using \(P \) states per mobile agent. The convergence time of Count is at least \(2^n - 1 \) non-null transitions.

Proof. For any execution of Count, let us consider only the non-null transitions involving BS. Let \(T \) be the consecutive sequence of such transitions involving a mobile agent in state \(m \) (i.e., non-null transitions between BS and an agent in state \(m \)), starting from BS's initial state \(s^0_{BS} \) (\(|T| \geq 0 \)), i.e., \(T = (s^0_{BS}, m) \rightarrow (s^1_{BS}, s_1), (s^1_{BS}, m) \rightarrow (s^2_{BS}, s_2), (s^2_{BS}, m) \rightarrow (s^3_{BS}, s_3) \ldots \). Denote by \(T_i \) the prefix of \(T \) containing the transition \(i \geq 1 \), \((s^i_{BS}, m) \rightarrow (s^i_{BS}, s_i) \). We build an execution of Count where the length of \(T \) (and thus the convergence time of Count) is at least \(2^n - 1 \).

Consider a population of \(2n \) mobile agents composed of two disjoint groups, \(G_1 \) and \(G_2 \), each of size \(n \). Consider a possible execution prefix \(e' \) where only the agents of \(G_1 \) communicate between them and BS. Moreover, in this prefix, BS interacts only with \(m \)-state agents till they are not distinctly named. If the agents in \(G_1 \) are not distinctly named, by Proposition 3, in \(G_1 \), there is always either at least one agent in state \(m \), or some homonyms that can be reduced to \(m \). So, for \(e' \), assume that, if the mobile agents in \(G_1 \) are not distinctly named, and there is no agent in state \(m \), a reduction of some homonyms in \(G_1 \) is done. Then, an agent in state \(m \) interacts with BS.

In the following we first prove that, for any starting unnamed configuration, if in \(e' \) the naming of the agents of \(G_1 \) is not yet obtained, no stationary point is possible (see definition Def. 1), i.e., for any \(i > 0 \) there is \(j \geq i \) in \(T \) s.t. \((s^{j-1}_{BS}, m) \rightarrow (s^j_{BS}, s_j) \) and \(s_j \neq m \).

Assume by contradiction that there is \(i > 0 \) for which the property is not satisfied, i.e., starting a transition \(i \) in \(T \), or a state \(s^{j-1}_{BS} \) of BS, \(m \)-state agent interacting with BS stays in state \(m \). By the assumption that the naming is not yet obtained, when BS is in state \(s^{i-1}_{BS} \), after the resolution of the homonyms, there are \(x < n \) named agents in \(G_1 \).

Now, assume that in \(G_2 \) there are \(x \) agents named exactly the same as the \(x \) agents in \(G_1 \) in the configuration corresponding to this stationary point (and after the resolution of homonyms), and all the other agents in \(G_2 \) are in \(m \)-state. Make the agents of \(G_1 \) and \(G_2 \) interact until the reduced (from homonyms) configuration is obtained. This configuration contains only mobile agents in state \(m \) and no one can change its state forever (by Prop. 3). Thus, in state \(s^{i-1}_{BS} \), BS has to estimate the correct size of the population, i.e., \(2n \).

Consider now an execution prefix \(e'' \), similar to \(e' \), but where \(|G_2| = x < n \), and these are the same \(x \) named agents that are in \(G_2 \), in \(e' \). As the missing \(n-x \) agents in \(e'' \) (comparing to \(e' \)) are not involved in any transition of \(e' \), no agent (including BS) in \(e'' \) or in \(e' \), can distinguish between the two executions. Similarly to \(e' \), in \(e'' \), in state \(s^{i-1}_{BS} \), BS has to estimate the correct size of the population, i.e., \(n + x < 2n \). This is a contradiction. Thus, for a population of size \(2n \), in any \(e' \), i.e., when only \(n \) agents of \(G_1 \) communicate between them and BS, and before the naming of agents in \(G_1 \) is obtained, no stationary point is possible.

By Observation 3, the same execution prefix \(e' \) projected on \(n \) agents of \(G_1 \) (\(e'|_n \)) is also an execution prefix of Count for a population of size \(n = P' - 1 \) (\(P' \) being the actual upper bound on the size of the population and on the number of states per mobile agent). Thus, also in \(e'|_n \) there is no stationary point. Let \(e \equiv e'|_n \). Consider a prefix \(T_i \) of transitions in \(T \), applied in \(e \):

\[
T_i = (s^0_{BS}, m) \rightarrow (s^1_{BS}, s_1), (s^1_{BS}, m) \rightarrow (s^2_{BS}, s_2), \ldots, (s^{i-1}_{BS}, m) \rightarrow (s^i_{BS}, s_i).
\]

Consider a starting reduced and unnamed configuration \(C_i \) over \(n = P' - 1 \) agents. By Proposition 1, Count has to name \(n = P' - 1 \) mobile agents. For this specific case of \(n = P' - 1 \), there is exactly one possible configuration where all \(n \) mobile agents are named. Thus, for a given \(T_i \), there is exactly one such reduced configuration \(C_i \) such that \(C_i \Delta \{s_1, s_2, s_3, \ldots, s_i\} = \{a_1, a_2, \ldots, a_{P'-1}\} \) and \(\forall 1 \leq i, j \leq P' - 1, a_i \neq a_j \neq m \), i.e., after execution of \(T_i \) starting \(C_i \), all the \(P' - 1 \) agents are distinctly named. As there are \(2^{P'-1} - 1 \) different reduced and unnamed (starting) configurations of \(P' - 1 \) mobile agents, the length of \(T \) is at least \(2^{P'-1} - 1 = 2^n - 1 \).

By Observation 3, \(e \) is also an execution prefix for any \(P > P' \), for the same population size \(n \). Thus the theorem holds for any \(n \) and \(P \).

\[\square\]
References

At least one execution with this trace can lead to a configuration with a single agent in state x in state 1 decrease, to use the same kind of reasoning, one must first show that there can always be an agent i of what happens, let c_{start} of this phase, c_{end} of this phase, to some execution ending with some agent in state 1 decrease. Any case, the trace is such that x, so that BS, and thus, has the same trace. The last configuration of this execution prefix contains at most one agent in state i. So, $x_i(T) \leq 1$.

Proof. Consider such a protocol, with a rule $(i, i) \rightarrow (i, 1 - i)$ or $(1 - i, 1 - i)$. Consider a trace T. This trace can be obtained by an execution prefix $x = C_1, C_2, \ldots, C_k$, such that in configuration C_k, there are ℓ agents in state i, and $x(T) - \ell$ agents in state $1 - i$. Now, we can expand this execution prefix by making agents in state i interact, until they all are in state $1 - i$, except one in the case of the interaction $(i, i) \rightarrow (1 - i, 1 - i)$. This new execution prefix contains the same interactions with BS, and thus, has the same trace. The last configuration of this execution prefix contains at most one agent in state i.

Now, if $(i, 1 - i) \rightarrow (1 - i, 1 - i)$ is the only rule allowing the number of agents in state i to decrease, to use the same kind of reasoning, one must first show that there can always be an agent in state $1 - i$ in the configuration, to allow this rule to be executed. So let us show that a situation with $x_i(T) = x(T) > 1$ cannot be reached. Indeed, consider a trace T such that $x(T) = x_i(T) = 1$. At least one execution with this trace can lead to a configuration with a single agent in state i. In this configuration, transition $(s_{BS}, i) \rightarrow (s_{BS}', i)$ is always possible, so that either transition $(s_{BS}, 1 - i) \rightarrow (s_{BS}', *)$ or $(s_{BS}, i) \rightarrow (s_{BS}', 1 - i)$ must eventually occur for $x(T)$ to increase. When the transition $(s_{BS}, 1 - i) \rightarrow (s_{BS}', *)$ takes place, all executions with this trace contain at least one agent in state $1 - i$ in the configuration before, and this agent can interact with any agent in state i, so that $x_i(T') = x_i(T) = 0$. If an interaction $(s_{BS}, i) \rightarrow (s_{BS}', 1 - i)$ occurs, then $x_i(T') = 0$. In any case, the trace is such that $x_i(T') = 0 < x(T')$, so that any traces built upon T' corresponds to some execution ending with some agent in state $1 - i$ and one or zero agent in state i. Thus, any trace T can be expanded with $(i, 1 - i) \rightarrow (1 - i, 1 - i)$ interactions until at most one agent in state i remains, and $x_i(T) \leq 1$.

Lemma 4. If phase b starts with $n_b \geq n/2$, then it ends with $n_b = 0$ with probability at least $1/2$.

Proof. For simplicity we will assume $b = 0$; the $b = 1$ case is symmetric. So we are looking at a zero phase that starts with $n_0 \geq n/2$. From the structure of the protocol, we know that at the start of this phase, $c_1 = 0$, but c_0 might be larger. It happens that the worst case is when $c_0 = 0$, but we will analyze the process for any initial value of c_0.

In the analysis below we will fix n_0, n_1, to their values at the start of the phase. To keep track of what happens, let i be the number of zero values converted to ones so far during this phase; given the value of i, this gives $n_0 - i$ zeros and $n_1 + i$ ones in the population, and the value of the c_1 register will be i. We fail to convert all zeros to ones if we exit the phase while i is less than n_0.

For each particular value of i, this occurs only if (a) c_0 is already 0, and (b) BS observes $6(n \ln n + 1)$ ones in a row. Whether or not $c_0 = 0$, the latter event occurs with probability exactly

$$\left(\frac{n_1 + i}{n}\right)^{6(i \ln i + 1)}$$

(3)

which by the union bound gives an upper bound on the probability that we leave the phase for any $i < n_0$ of

$$\sum_{i=0}^{n_0-1} \left(\frac{n_1 + i}{n}\right)^{6(i \ln i + 1)}$$

(4)

We will bound this sum by considering the terms with $i < n_0/2$ and $i \geq n_0/2$ separately.
For $i < n_0/2$, we have

\[
\sum_{i=0}^{[(n_0-1)/2]} \left(\frac{n_1 + i}{n} \right)^6 \leq \sum_{i=0}^{[(n_0-1)/2]} \left(\frac{n/2 + n/4}{n} \right)^6 \leq 2 \cdot (3/4)^6 + \sum_{i=2}^{\infty} (3/4)^6 \approx 0.37926 \leq 2/5.
\]

For $i \geq n_0/2$, we have

\[
\sum_{i=[n_0/2]}^{n_0-1} \left(\frac{n_1 + i}{n} \right)^6 \leq \sum_{i=[n_0/2]}^{n_0-1} \left(\frac{n_1 + n_0 - 1}{n} \right)^6 \leq (n_0/2) \left(\frac{1}{n} \right)^6 (n_0/4)^6 (n_0/2)^6 \approx (0.004957) \cdot n^{-1/2} \leq \frac{1}{200} \cdot n^{-1/2}.
\]

The original sum is thus bounded by $2/5 + 1/200 < 1/2$ for all $n > 0$, giving the claimed bound.

Lemma 5. Let Count be a symmetric (silent or not) counting protocol correct under weak fairness (for any $n \leq P$). Consider any weakly fair execution $e = C_1, C_2, C_3, \ldots, C_j, \ldots$ of Count on a population A of size $n < P$. There is an integer k such that, for any $j \geq k$, no mobile agent is in a state $m \in Q$ such that there is a possible sequence of transitions of Count $(m, m) \rightarrow (m, m)$.

Proof. Let us assume, by contradiction, that there are infinitely many configurations in e with a mobile agent in state m. Since there is a finite number of agents, there is a particular mobile agent x in A which is in state m in infinitely many configurations. Let $C_{j_1}, C_{j_2}, C_{j_3}, \ldots$ be these configurations such that $e = e_1, C_{j_1}, e_2, C_{j_2}, e_3, C_{j_3}, \ldots$. W.l.o.g., we choose these configurations such that, in every execution segment e_i, every agent in A interacts with every other (this is possible with weak fairness).

Now consider a population $A' = A \cup \{x'\}$ of size $n + 1$. To prove the lemma, we will construct a weakly fair execution e' of Count in population A' where no agent can distinguish e' from e, and where consequently Count wrongly counts only n agents instead of the existing $n + 1$.

We construct e' based on e. First, we assume that in e', x' is in state m in the starting configuration, and $e' = e'_1, C'_i, e'_2, C'_i, e'_m, C'_i, e'_m, \ldots$. Every segment e'_i follows exactly the same transition sequence as in e_i. In every segment e'_{2r+1}, C'_{2r+1} (for $r \geq 0$) the interactions are exactly the same as in e_{2r+1}, C_{2r+1}, and x' does not interact. However, in e'_{2r}, C'_{2r}, all the interactions are as in e_{2r-1}, C_{2r-1}, but the interactions with x. In this case, x is replaced by x' in the appropriate state, and x does not interact. Finally, e^m is an execution segment where only x and x' interact. They both start in state m, performing the sequence $(m, m) \xrightarrow{\theta} (m, m)$. The configurations at the beginning and at the end of e^m are identical. The construction of e' ensures that in every C'_i, both x and x' are in the state m.

It is easy to verify that e' is possible. In particular, this is because, at the end of every segment e'_i, C'_i, e^m, both x and x' are in the state m, so they can be exchanged in the following transitions of e'_{i+1}. Moreover, e' is weakly fair, because x' interacts with x in every e^m; in every e'_{2r+1} and e'_{2r+2}, x and x', respectively, interact with every other agent (by the assumption on e_i); and all the other agents interact with all the others infinitely often, by the later arguments and by weak fairness of e.

Finally, in e', every agent from A (including BS), executes exactly the same sequence of transition rules as it does in e, so no agent can distinguish the fact that the population is actually A' with $n+1$ agents, and Count counts only n agents as it does in e. This is a contradiction to the assumption that Count is a correct counting protocol. \hfill \square

Proposition 2. Any symmetric counting protocol correct for any $n \leq P$ (undistinguishable and non-initialized) mobile agents, under weak fairness, have to use at least P states per mobile agent.

Proof. As Count is symmetric, any two agents, both in some state $s \in Q$, in an interaction, have to execute a symmetric transition of the form $(s, s) \rightarrow (s_1, s_1)$. Thus there is a possible sequence of transitions $(s, s) \rightarrow (s_1, s_1) \rightarrow (s_2, s_2) \rightarrow (s_3, s_3) \ldots$ As mobile agents are finite state, for some $j > i \geq 1$, $s_i = s_j$, i.e. $(s_i, s_i) \xrightarrow{e} (s_i, s_i)$. By Lem. 5, s_i does not appear infinitely often in executions with $n < P$. As there are at least $P-1$ states appearing infinitely often in an execution with $n = P-1$ (by Proposition 1), and there is at least one such state s_i exists, there are at least P distinct states to be maintained by mobile agents. \hfill \square

Proposition 4. The convergence time of the space optimal protocol under weak fairness presented in [9] is $O(2^n)$ non-null transitions.

Proof. Following the study of the Gros sequence U_n, in [9], used by the protocol to name n agents ($U_n \equiv U_{n-1}, n, U_{n-1}$, where $U_1 \equiv 1$), the number of terms in U_n is $2^n - 1$. In consequence, the number of non-null transitions, before convergence, between BS and an agent in state 0 (the m-state) or $> n$ (whom BS gives a new name), is at most 2^n. Other possible non-null transitions are between homonyms. Each agent in such a transition changes its state to 0, and its next non-null transition necessarily involves BS. Thus, there cannot be more than 2^n non-null transition between homonyms. Hence, the proposition follows. \hfill \square

Convergence Time Analysis of Protocol 2 [9]

We evaluate the convergence time of Protocol 2 in terms of the average number of transitions, assuming probabilistic fairness (uniformly random interactions). Below, we sketch the analysis and after we give the details.

To compute the convergence time, we use the observation (stated by Lemma 6 appeared and proven below) that Protocol 2 must first reach a configuration with all mobile agents in the same state, and then a configuration with all the agents in the other state (recall that there are only two mobile agent states).

Thus, consider a population of n agents, and let t_k be the average number of transitions that happen before all agents are in state 0, starting from a configuration with k agents in state 1. Then, $t_0 = 0$ trivially. For $1 \leq k \leq n-1$, $t_k = 1 + \frac{k}{n} t_{k-1} + \frac{n-k}{n} t_{k+1}$. This is because, at the current
Protocol 2 – Space Optimal Counting under Global or Probabilistic Fairness [9]

Variables at BS:
- \(v_0\): non-negative integer, initialized to 0;
- \(v_1\): non-negative integer, initialized to 0;
- \(c\): non-negative integer initialized to 0; eventually holds \(n\)

Variable at a mobile agent \(x\):
- \(b\): in \(\{0, 1\}\), initialized arbitrarily

1: when a mobile agent \(x\) interacts with BS do
2: if \(c_0 > 0\) then
3: \(c_0 \leftarrow c_0 - 1\)
4: \(b \leftarrow 1 - b\)
5: \(c_0 \leftarrow c_0 + 1\)
6: \(c \leftarrow c_0 + c_1\)

step, there are \(k\) chances out of \(n\) that an agent in state 1 meets BS, leading to a configuration with \(k - 1\) agents in state 1; and \(n - k\) chances out of \(n\) that an agent in state 0 interacts with BS resulting in a configuration with \(k + 1\) agents in state 1. Finally, \(t_n = 1 + t_{n-1}\).

From that we have \(t_n = 2^{n-1} \sum_{k=0}^{n-1} \frac{1}{\binom{n}{k}} = 2^n + o(2^n)\), and the average convergence time of Protocol 2 is \(\Theta(2^n)\) transitions. The formal proof is below.

Lemma 6. In the first configuration \(C^1\) after the convergence of Protocol 2, i.e., the first time when \(c = n\) (and does not change after), all agents have the same mark \(m \in \{0, 1\}\). Moreover, there is a configuration \(C^0\) s.t. \(C^0 \rightarrow C^1\), and all agents in \(C^0\) are in state \(1 - m\).

Proof. Thus, the counting is achieved in \(C^1\). This happens following an interaction of BS with an agent, let us say w.l.o.g., in state 0. By definition, \(c = c_0 + c_1 = n\), and since \(c\) increases in this interaction, we had and we still have \(c_0 = 0\) (otherwise, \(c\) cannot increase). Then, after this transition, \(c_1\) becomes \(n\).

We show now that at the last transition with \(c_1 = 0\), before \(C^1\) has been reached (at least the first step is such), all agents were in state 0 (this will prove the existence of \(C^0\)). Denote by \(r\) the number of 1-0 transitions (transitions changing a state of a mobile agent from 1 to 0). Then, the number of 0-1 transitions is \(n + r\), since 1-0 transitions increment \(c\), and 0-1 ones decrement it (\(c_1\) never goes to 0, by assumption). Thus, BS meets \(n + r\) agents in state 0 that turn to 1, and \(r\) in state 1 that turn to 0. This creates \(n\) new agents in state 1 thus, at the step when \(c_1 = 0\), all agents were in state 0.

Thus, consider a population of \(n\) agents, and let \(u_k\) be the average number of transitions that happen before all agents are in state 0, starting from a configuration with \(k\) agents in state 1.

We have the following relations:

- \(u_0 = 0\) by definition;
- for \(1 \leq k \leq n - 1\), \(u_k = 1 + \frac{k}{n} u_{k-1} + \frac{n-k}{n} u_{k+1}\): at the current step, there is \(k\) chances in \(n\) that an agent with mark 1 meets BS, leading to a configuration with \(k - 1\) agents with mark 1, and \(n - k\) chances in \(n\) that an agent marked 0 interacts with BS resulting in a configuration with \(k + 1\) agents marked 1;
- \(u_n = 1 + u_{n-1}\).

For \(0 \leq k \leq n - 1\), set \(v_k = u_{k+1} - u_k\). We have:

- \(v_{n-1} = 1\)
- \(\forall 1 \leq k \leq n - 1, v_{k-1} = u_k - u_{k-1} = u_k - \frac{n}{k} (u_k - 1 - \frac{n-k}{n} u_{k+1}) = \frac{k-n}{k} u_k + \frac{n}{k} + \frac{n-k}{k} u_{k+1} = \frac{n-k}{k} v_k + \frac{n}{k}\)

Thus, for \(0 \leq k \leq n - 1\)
\[v_{n-k} = \prod_{i=n-k+1}^{n-1} \frac{n-i}{i} + \sum_{i=1}^{k-1} \frac{k}{j} \sum_{n-j}^{n-1} \frac{j}{i} = \frac{(n-k)!}{(k-1)!} \frac{(k-1)!}{(n-1)!} + n \sum_{i=1}^{k-1} \frac{(k-1)!}{i!} \frac{(n-k)!}{(n-i)!} = \]
\[= n \sum_{i=0}^{k-1} \frac{(k-1)!}{i!} \frac{(n-k)!}{(n-i)!} \]

\[v_{n-k} = \frac{1}{\binom{n-1}{k-1}} + n \sum_{i=1}^{k} \frac{(k-1)!(n-k)!}{n!} \frac{n!}{i!} \frac{1}{(n-i)!} = \frac{1}{\binom{n-1}{k-1}} + n \sum_{i=1}^{k-1} \frac{\binom{n-1}{i}}{\binom{n-1}{k-1}} = \sum_{i=0}^{k-1} \frac{\binom{n}{i}}{\binom{n-1}{k-1}} \]

From that, we get:

\[u_n = \sum_{k=0}^{n-1} \frac{\binom{n-1}{k}}{\binom{n-1}{k-1}} \]

First, consider the case when \(n\) is even:

\[u_n = \sum_{k=0}^{n/2-1} \frac{\binom{n}{k}}{\binom{n-1}{k-1}} + \sum_{k=n/2}^{n-1} \frac{\binom{n}{k}}{\binom{n-1}{k-1}} \]

\[= \sum_{k=0}^{n/2-1} \frac{\binom{n}{k}}{\binom{n-1}{k-1}} + \sum_{k=n/2}^{n-1} \frac{2^n - \sum_{i=k+1}^{n} \binom{n}{i}}{\binom{n-1}{k-1}} \]

since \(\sum_{i=0}^{n} \binom{n}{i} = 2^n\)

\[u_n = \sum_{k=0}^{n/2-1} \frac{\binom{n}{k}}{\binom{n-1}{k-1}} + \sum_{k=n/2}^{n-1} \frac{2^n - \sum_{i=0}^{n-k-1} \binom{n}{i}}{\binom{n-1}{k-1}} \]

by setting \(i' = n - i\)

\[u_n = \sum_{k=0}^{n/2-1} \frac{\binom{n}{k}}{\binom{n-1}{k-1}} + \sum_{k=n/2}^{n-1} \frac{2^n - \sum_{i=0}^{n-k-1} \binom{n}{i}}{\binom{n-1}{k-1}} \]

by setting \(k' = n - k - 1\)

\[u_n = 2^n \sum_{k=0}^{n/2-1} \frac{1}{\binom{n-1}{k}} \]

\[u_n = 2^{n-1} \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}} \]

The case when \(n\) is odd is similar:

\[u_n = \sum_{k=0}^{(n-3)/2} \frac{\binom{k}{n}}{\binom{n-1}{k}} + \sum_{i=0}^{(n-1)/2} \frac{\binom{k}{i}}{\binom{n-1}{(n-1)/2}} + \sum_{k=(n+1)/2}^{n-1} \frac{\binom{k}{0}}{\binom{n-1}{k}} \]

And, similarly

\[u_n = \sum_{k=0}^{(n-3)/2} \frac{\binom{k}{n}}{\binom{n-1}{k}} + \sum_{i=0}^{(n-3)/2} \frac{2^n - \sum_{i=0}^{k} \binom{n}{i}}{\binom{n-1}{k}} + \sum_{k=(n+1)/2}^{n} \frac{n!}{\binom{n-1}{k}} \]
by setting $k' = n - k - 1$

$$u_n = 2^n \times \sum_{k=0}^{(n-3)/2} \frac{1}{\binom{n-1}{k}} + 2^{n-1} \times \frac{1}{\binom{n-1}{(n-1)/2}}$$

$$u_n = 2^{n-1} \times \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}}$$

Now, for $2 \leq k \leq n - 3$, $\frac{1}{\binom{n-1}{k}} \leq \frac{1}{\binom{n-1}{2}} = \frac{2}{(n-1)(n-2)}$, so that

$$2 = \frac{1}{\binom{n-1}{0}} + \frac{1}{\binom{n-1}{n-1}} \leq \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}} \leq 2 + \frac{2}{n-1} + \frac{2(n-4)}{(n-1)(n-2)} = 2 + O\left(\frac{1}{n}\right)$$

Thus, $u_n \geq 2^n$, and $u_n \sim_{n \to \infty} 2^n$.

The average complexity of the protocol is $\Theta(2^n)$. The best starting configurations, for the complexity, is when all agents have the same mark. The average complexity is then $2^n + o(2^n)$. Starting from any other configuration, the protocol first has to reach a configuration where all agents have identical marks. This takes less than $2^n + o(2^n)$ transitions, since starting with all agents having the same mark, and switching it, makes the protocol traverse all configurations. Hence, in this case, the overall complexity is less than $2 \times (2^n + o(2^n))$.