
Message-Efficient Randomized Consensus

Dan Alistarh, James Aspnes, Valerie King, and Jared Saia

DISC 2014 / 13 October 2014

Consensus

1

0

0

Consensus

1

1

1

I Consensus (Pease, Shostak, Lamport, 1980) requires all process
to agree on the input to some process.

I Want to solve in an asynchronous message-passing with
f < n/2 crash failures.

I Known to be impossible deterministically with even one failure
(Fischer, Lynch, Paterson, 1985).

I But can be solved with randomization (Ben-Or 1985).
I How to minimize number of messages?

Shared memory version

2 7 0 4 4

I Randomized consensus well-understood in shared memory.
I Expected Θ(n2) memory operations necessary and sufficient for

f = n − 1 crash failures with adaptive adversary (Attiya and
Censor, 2008).

I Each process can do expected O(n) operations (Aspnes and
Censor, 2010).

Conversion to message passing

7

7

4

7

I Use standard simulation of (Attiya, Bar-Noy, Dolev, 1995).
I Write operation: send new value to a majority of processes.
I Read operation

I Solicit most recent value from a majority.
I Send this back to a majority to ensure linearizability.

I Cost: Θ(n) messages per operation.
I ⇒ Θ(n3) expected total messages.
I ⇒ Θ(n2) expected messages per process.

I Our goal: per-process cost close to trivial Ω(n) lower bound.

Shared coins

$

$

$

Shared coin

1

1

1

Reduce randomized consensus to a shared coin. (Ben-Or, 1985)

I Each process can repeatedly flip a local coin not visible to
other processes.

I Want to combine these local coins into a single shared coin.
I Adversary can stop a process before it propagates its local coin.
I Adversary wins if it can get control of the shared coin.
I ⇒ retry until adversary loses.

Shared coins by voting (Bracha and Rachman, 1991)

0

f
V t = actual votes

Ut = recorded votes

t = 0 t = K

I Generate sum V t of t ≥ K = Ω(f 2) independent ±1 votes.
I Adversary can hide at most f votes by crashing processes.
I ⇒ observed sum Ut satisfies |Ut − V t | ≤ f .
I So if V t exceeds f at t = K and stays above f until process p

looks at U, then p sees majority > 0.

Impatient voting (Aspnes and Waarts, 1996)

$

I One process might generate all n2 votes!
I Solution: have processes cast bigger votes over time.
I One process can generate n2 variance in O(n) votes.
I Handful of fast processes don’t give adversary (much) more

power.

How do I preserve a vote in message-passing?

1. Send it to all processes.
I Θ(n) messages.
I Adversary can’t hide vote once majority receive it.

2. Send it to one other process
I 1 message.
I Adversary can hide vote but must crash two processes.
I But what about subsequent votes?

The big idea: Send big piles of votes to big quorums of processes.

Tree of nested quorums

I Every 2k votes, I propagate them to 2k+1 processes.
I Cost: O(2k) messages for each packet of 2k votes

I = O(1) amortized messages per vote per level
I = O(log n) amortized messages per vote.

I Lost votes:
I 2k unreported votes × 2k processes = 22k votes in subtree.
I Adversary kills all of them with Θ(2k) failures!
I But sum of these votes is O(2k√log n) with high probability.
I ⇒ lost votes per failure is still small.

Node implementation

7

4 3

I Each node in the tree is implemented as a max register
(Aspnes, Attiya, Censor-Hillel, 2012).

I Reading a max register returns the largest value written.
I This solves the lost update problem.

I Every write to a parent combines both children.
I Writes containing more votes win.

I Max registers are easy in message-passing: use (Attiya,
Bar-Noy, Dolev, 1995).

I Messages = O(size of quorum).

The full shared-coin algorithm
At each node, we track (count, variance, total) in a max register
ordered by count.

Each process repeats:

1. Generate a new vote v = ±w (initally ±1).
2. Add (1,w2, v) to local (count, variance, total).
3. For each ancestor I am scheduled to update this iteration:

3.1 Read (count, variance, total) from both its children.
3.2 Write sum of counts, variance, and total to ancestor’s max

register.

4. If I have done 4n log2 n votes since I last doubled my weight,
set w ← 2 · w .

5. If I just updated the root:
5.1 Read (count, variance, total) from root.
5.2 If variance ≥ n2 log2 n: return sgn(total).

Analysis: error due to missing votes

Basic idea is same as Bracha-Rachman: |V t
root − Ut

root| should be
small.

I Why are they different?
I Ut

x = Ut0
x0 + Ut1

x1 where x0 and x1 are children of x and t0, t1
are times in the past.

I So Ut
x is missing votes from between t0 and t and t1 and t.

I Similarly, Ut0
x0 is missing votes from a similar gap between t0

and when x0’s children are read.
I Expanding this out recursively shows that all missing votes are

accounted for by these missing intervals.

But there are only polynomially-many such intervals, so w.h.p. every
interval with variance v has sum O(

√
v log n).

After some inequality-crunching, total error is O(n
√
log n).

Analysis: variance and costs

Total messages:

I With error O(n
√
log n), we need O((n

√
log n)2) = O(n2 log n)

variance.
I This translates into O(n2 log n) total votes.
I Each vote has O(log n) amortized message overhead.
I O(n2 log2 n) messages total.

Individual messages:

I If I have to generate O(n2 log n) variance by myself, I may have
to double my votes Θ(log n) times.

I Each doubling happens after O(n log n) votes.
I So I alone may generate O(n log2 n) votes.
I O(n log3 n) messages for me.

Conclusion

$ 1

I We have shown how to implement randomized consensus in
asynchronous message-passing with

I O(n2 log2 n) messages total.
I O(n log3 n) messages per process.

I Corresponding lower bounds are Ω(n2) and Ω(n).
I Can we get rid of the extra log factors?
I Can we use selective propagation idea for other problems?

