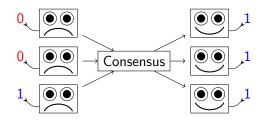
Message-Efficient Randomized Consensus

Dan Alistarh, James Aspnes, Valerie King, and Jared Saia

DISC 2014 / 13 October 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Consensus

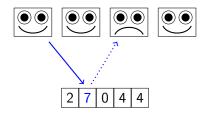


- Consensus (Pease, Shostak, Lamport, 1980) requires all process to agree on the input to some process.
- ► Want to solve in an asynchronous message-passing with f < n/2 crash failures.</p>
- Known to be *impossible* deterministically with even *one* failure (Fischer, Lynch, Paterson, 1985).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

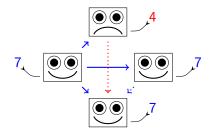
- But can be solved with randomization (Ben-Or 1985).
- How to minimize number of messages?

Shared memory version



- Randomized consensus well-understood in shared memory.
- ► Expected Θ(n²) memory operations *necessary* and *sufficient* for f = n − 1 crash failures with adaptive adversary (Attiya and Censor, 2008).
- Each process can do expected O(n) operations (Aspnes and Censor, 2010).

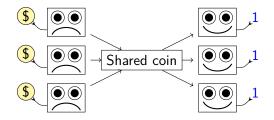
Conversion to message passing



Use standard simulation of (Attiya, Bar-Noy, Dolev, 1995).

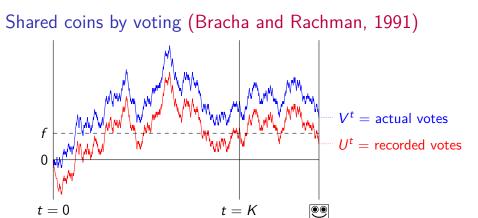
- Write operation: send new value to a majority of processes.
- Read operation
 - Solicit most recent value from a majority.
 - Send this back to a majority to ensure linearizability.
- Cost: $\Theta(n)$ messages per operation.
 - $\Rightarrow \Theta(n^3)$ expected total messages.
 - $\Rightarrow \Theta(n^2)$ expected messages per process.
- Our goal: per-process cost close to trivial $\Omega(n)$ lower bound.

Shared coins



Reduce randomized consensus to a shared coin. (Ben-Or, 1985)

- Each process can repeatedly flip a local coin not visible to other processes.
- ▶ Want to combine these local coins into a single shared coin.
- Adversary can stop a process before it propagates its local coin.
- Adversary wins if it can get control of the shared coin.
- \blacktriangleright \Rightarrow retry until adversary loses.



• Generate sum V^t of $t \ge K = \Omega(f^2)$ independent ± 1 votes.

- Adversary can hide at most f votes by crashing processes.
- ▶ \Rightarrow observed sum U^t satisfies $|U^t V^t| \le f$.
- So if V^t exceeds f at t = K and stays above f until process p looks at U, then p sees majority > 0.

Impatient voting (Aspnes and Waarts, 1996)

- One process might generate all n² votes!
- Solution: have processes cast bigger votes over time.
- One process can generate n^2 variance in O(n) votes.
- Handful of fast processes don't give adversary (much) more power.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How do I preserve a vote in message-passing?

- 1. Send it to all processes.
 - $\Theta(n)$ messages.
 - Adversary can't hide vote once majority receive it.
- 2. Send it to one other process
 - 1 message.
 - Adversary can hide vote but must crash two processes.
 - But what about subsequent votes?

The big idea: Send big piles of votes to big quorums of processes.

Tree of nested quorums

- ▶ Every 2^k votes, I propagate them to 2^{k+1} processes.
- ▶ Cost: *O*(2^{*k*}) messages for each packet of 2^{*k*} votes
 - = O(1) amortized messages per vote per level
 - = $O(\log n)$ amortized messages per vote.
- Lost votes:
 - 2^k unreported votes $\times 2^k$ processes $= 2^{2k}$ votes in subtree.
 - Adversary kills all of them with Θ(2^k) failures!
 - But sum of these votes is $O(2^k \sqrt{\log n})$ with high probability.
 - \blacktriangleright \Rightarrow lost votes per failure is still small.

Node implementation

- Each node in the tree is implemented as a max register (Aspnes, Attiya, Censor-Hillel, 2012).
- Reading a max register returns the largest value written.
- This solves the lost update problem.
 - Every write to a parent combines both children.
 - Writes containing more votes win.
- Max registers are easy in message-passing: use (Attiya, Bar-Noy, Dolev, 1995).
- Messages = O(size of quorum).

The full shared-coin algorithm

At each node, we track (count, variance, total) in a max register ordered by count.

Each process repeats:

- 1. Generate a new vote $v = \pm w$ (initially ± 1).
- 2. Add $(1, w^2, v)$ to local (count, variance, total).
- 3. For each ancestor I am scheduled to update this iteration:
 - 3.1 Read (count, variance, total) from both its children.
 - 3.2 Write sum of counts, variance, and total to ancestor's max register.
- 4. If I have done $4n \log_2 n$ votes since I last doubled my weight, set $w \leftarrow 2 \cdot w$.

- 5. If I just updated the root:
 - 5.1 Read (count, variance, total) from root.
 - 5.2 If variance $\geq n^2 \log_2 n$: return sgn(total).

Analysis: error due to missing votes

Basic idea is same as Bracha-Rachman: $|V_{\text{root}}^t - U_{\text{root}}^t|$ should be small.

- Why are they different?
- ► U^t_x = U^{t0}_{x0} + U^{t1}_{x1} where x0 and x1 are children of x and t0, t1 are times in the past.
- So U_x^t is missing votes from between t0 and t and t1 and t.
- Similarly, U^{t0}_{x0} is missing votes from a similar gap between t0 and when x0's children are read.
- Expanding this out recursively shows that all missing votes are accounted for by these missing intervals.

But there are only polynomially-many such intervals, so w.h.p. every interval with variance v has sum $O(\sqrt{v \log n})$.

After some inequality-crunching, *total* error is $O(n\sqrt{\log n})$.

Analysis: variance and costs

Total messages:

- ▶ With error $O(n\sqrt{\log n})$, we need $O((n\sqrt{\log n})^2) = O(n^2 \log n)$ variance.
- This translates into $O(n^2 \log n)$ total votes.
- ▶ Each vote has O(log n) amortized message overhead.
- $O(n^2 \log^2 n)$ messages total.

Individual messages:

- If I have to generate O(n² log n) variance by myself, I may have to double my votes ⊖(log n) times.
- ► Each doubling happens after $O(n \log n)$ votes.
- So I alone may generate $O(n \log^2 n)$ votes.
- $O(n \log^3 n)$ messages for me.

Conclusion

- We have shown how to implement randomized consensus in asynchronous message-passing with
 - $O(n^2 \log^2 n)$ messages total.
 - $O(n \log^3 n)$ messages per process.
- Corresponding lower bounds are $\Omega(n^2)$ and $\Omega(n)$.
- Can we get rid of the extra log factors?
- Can we use selective propagation idea for other problems?