
Communication-Efficient Randomized Consensus

Dan Alistarh1, James Aspnes2, Valerie King3, and Jared Saia4

1 Microsoft Research, Cambridge, UK. Email: dan.alistarh@microsoft.com
2 Yale University, Department of Computer Science. Email: aspnes@cs.yale.edu.

3 University of Victoria; Simons Institute for the Theory of Computing, Berkeley; Institute for
Advanced Study, Princeton. Email: val@cs.uvic.ca

4 University of New Mexico, Department of Computer Science. Email: saia@cs.unm.edu

Abstract. We consider the problem of consensus in the challenging classic model.
In this model, the adversary is adaptive; it can choose which processors crash at
any point during the course of the algorithm. Further, communication is via asyn-
chronous message passing: there is no known upper bound on the time to send a
message from one processor to another, and all messages and coin flips are seen
by the adversary.
We describe a new randomized consensus protocol with expected message com-
plexity O(n2 log2 n) when fewer than n/2 processes may fail by crashing. This
is an almost-linear improvement over the best previously known protocol, and
within logarithmic factors of a known Ω(n2) message lower bound. The pro-
tocol further ensures that no process sends more than O(n log3 n) messages in
expectation, which is again within logarithmic factors of optimal. We also present
a generalization of the algorithm to an arbitrary number of failures t, which uses
expected O(nt + t2 log2 t) total messages. Our protocol uses messages of size
O(logn), and can therefore scale to large networks.
Our approach is to build a message-efficient, resilient mechanism for aggregat-
ing individual processor votes, implementing the message-passing equivalent of a
weak shared coin. Roughly, in our protocol, a processor first announces its votes
to small groups, then propagates them to increasingly larger groups as it gener-
ates more and more votes. To bound the number of messages that an individual
process might have to send or receive, the protocol progressively increases the
weight of generated votes. The main technical challenge is bounding the impact
of votes that are still “in flight” (generated, but not fully propagated) on the fi-
nal outcome of the shared coin, especially since such votes might have different
weights. We achieve this by leveraging the structure of the algorithm, and a tech-
nical argument based on martingale concentration bounds. Overall, we show that
it is possible to build an efficient message-passing implementation of a shared
coin, and in the process (almost-optimally) solve the classic consensus problem
in the asynchronous message-passing model.

1 Introduction

Consensus [28, 29] is arguably the most well-studied problem in distributed comput-
ing. The FLP impossibility result [21], showing that consensus could not be achieved
deterministically in an asynchronous message-passing system with even one crash fail-
ure, sparked a flurry of research on overcoming this fundamental limitation, either by
adding timing assumptions, e.g. [19], employing failure detectors, e.g. [17], or by re-
laxing progress conditions to allow for randomization, e.g. [13]. A significant amount

of research went into isolating time and space complexity bounds for randomized con-
sensus in the shared-memory model, e.g. [4, 5, 9, 10, 12, 15, 20], developing elegant and
technically complex tools in the process. As a result, the time complexity of consen-
sus in asynchronous shared memory is now well characterized: the tight bound on total
number of steps is Θ(n2) [12], while the individual step bound is Θ̃(n) [5].5

Somewhat surprisingly, the complexity of randomized consensus in the other core
model of distributed computing, the asynchronous message-passing model, is much less
well understood. In this model, communication is via full-information, asynchronous
message passing: there is no known upper bound on the time to send a message from
one processor to another, and all messages are seen by the adversary. Further, as in the
shared memory model, the adversary is adaptive; it can choose which processors crash
at any point during the course of the algorithm. We refer to this as the classic model.

While simulations exist [11] allowing shared-memory algorithms to be translated to
message-passing, their overhead is at least linear in the number of nodes. It is therefore
natural to ask if message-efficient solutions for randomized consensus can be achieved,
and in particular if quadratic shared-memory communication cost for consensus can be
also achieved in message-passing systems against a strong, adaptive adversary.

In this paper, we propose a new randomized consensus protocol with expected mes-
sage complexityO(n2 log2 n) against a strong (adaptive) adversary, in an asynchronous
message-passing model in which less than n/2 processes may fail by crashing. This
is an almost-linear improvement over the best previously known protocol. Our proto-
col is also locally-efficient, ensuring that no process sends or receives more than ex-
pected O(n log3 n) messages, which is within logarithmic factors of the linear lower
bound [12]. We also provide a generalization to an arbitrary number of failures t < n/2,
which uses O(nt+ t2 log2 t) messages.

Our general strategy is to construct a message-efficient weak shared coin. A weak
shared coin with parameter δ > 0 is a protocol in which for each possible return value
±1, there is a probability of at least δ that all processes return that value. We then show
that this shared coin can be used in a message-efficient consensus protocol modeled on
a classic shared-memory protocol of Chandra [16].

Since early work by Bracha and Rachman [15], implementations of weak shared
coins for shared-memory systems with an adaptive adversary have generally been based
on voting. If the processes between them generate n2 votes of ±1, then the absolute
value of the sum of these votes will be at least n with constant probability. If this event
occurs, then even if the adversary hidesΘ(n) votes by crashing processes, the total vote
seen by the survivors will still have the same sign as the actual total vote.

Such algorithms can be translated to a message-passing setting directly using the
classic Attiya-Bar-Noy-Dolev (ABD) simulation [11]. The main idea of the simulation
is that a write operation to a register is simulated by distributing a value to a majority of
the processes (this is possible because of the assumption that a majority of the processes
do not fail). Any subsequent read operation contacts a majority of the processes, and
because the majorities overlap, this guarantees that any read sees the value of previous
writes.

The obvious problem with this approach is that its message complexity is high:
because ABD uses Θ(n) messages to implement a write operation, and because each

5 We consider a model with n processes, t < n/2 of which may fail by crashing. The Θ̃ notation
hides logarithmic factors.

vote must be written before the next vote is generated if we are to guarantee that only
O(n) votes are lost, the cost of this direct translation is Θ(n3) messages. Therefore, the
question is whether this overhead can be eliminated.

Our approach. To reduce both total and local message complexity, we employ two
new ingredients.

The first is an algorithmic technique to reduce the message complexity of distributed
vote counting by using a binary tree of process groups called cohorts, where each leaf
corresponds to a process, and each internal node represents a cohort consisting of all
processes in the subtree. Instead of announcing each new vote to all participants, new
±1 votes are initially only announced to small cohorts at the bottom of the tree, but are
propagated to increasingly large cohorts as more votes are generated. As the number
of votes grows larger, the adversary must crash more and more processes to hide them.
This generalizes the one-crash-one-vote guarantee used in shared-memory algorithms
to a many-crashes-many-votes approach.

At the same time, this technique renders the algorithm message-efficient. Given a
set of generated votes, the delayed propagation scheme ensures that each vote accounts
for exactly one update at the leaf, 1/2 updates (amortized) at the 2-neighborhood, and
in general, 1/2i (amortized) updates at the ith level of the tree. Practically, since the ith
level cohort has 2i members, the propagation cost of a vote is exactly one message per
tree level. In total, that is log n messages per vote, amortized.

A limitation of the above scheme is that a fast process might have to generate all
the Θ(n2) votes itself in order to decide, which would lead to high individual message
complexity. The second technical ingredient of our paper is a procedure for assigning
increasing weight to a processes’ votes, which reduces individual complexity. This gen-
eral idea has previously been used to reduce individual work for shared-memory ran-
domized consensus [5,7,10]; however, we design and analyze a new weighting scheme
that is customized for our vote-propagation mechanism.

In our scheme, each process doubles the weight of its votes every 4n log n votes,
and we run the protocol until the total reported variance—the sum of the squares of
the weights of all reported votes—exceeds n2 log n. Intuitively, this allows a process
running alone to reach the threshold quickly, reducing per-process message complex-
ity. This significantly complicates the termination argument, since a large number of
generated votes, of various weights, could be still making their way to the root at the
time when a process first notices the termination condition. We show that, with con-
stant probability, this drift is not enough to influence the sign of the sum, by carefully
bounding the weight of the extra votes via the structure of the algorithm and martingale
concentration bounds. We thus obtain a constant-bias weak shared coin. The bounds
on message complexity follow from bounds on the number of votes generated by any
single process or by all the processes together before the variance threshold is reached.

We convert the shared coin construction into a consensus algorithm via a simple
framework inspired by Chandra’s shared-memory consensus protocol [16], which in
turn uses ideas from earlier consensus protocols of Chor, Israeli, and Li [18] and Aspnes
and Herlihy [9]. Roughly, we associate each of the two possible decision values with a
message-passing implementation of a max register [6, 8], whose value is incremented
by the “team” of processes obtaining that value from the shared coin. If a process sees
that its own team has fallen behind, it switches to the other team, and once one of the
max register’s values surpasses the other by two, the corresponding team wins. Ties

are broken (eventually) by having processes that do not observe a clear leader execute
a weak shared coin. This simple protocol maintains the asymptotic complexity of the
shared coin in expectation.

Finally, we present a more efficient variant of the protocol for the case where t =
o(n), based on the observation that we can “deputize” a subset of 2t+1 of the processes
to run the consensus protocol, and broadcast their result to all n processes. The resulting
protocol has total message complexity O(nt+ t2 log2 t), and O(n+ t log3 t) individual
message complexity.

Overall, we show that it is possible to build message-efficient weak shared coins
and consensus in asynchronous message-passing systems. Our vote counting construc-
tion implements a message-efficient, asynchronous approximate trigger counter [25],
which may be of independent interest. An interesting aspect of our constructions is that
message sizes are small: since processes only communicate vote counts, messages only
require O(log n) bits of communication.

2 System Model and Problem Statement

We consider the standard asynchronous message-passing model, in which n processes
communicate with each other by sending messages through channels. We assume that
there are two uni-directional channels between any pair of processes. Communication
is asynchronous, in that messages can be arbitrarily delayed by a channel, and in par-
ticular may be delivered in arbitrary order. However, we assume that messages are not
corrupted by the channel.

Computation proceeds in a sequence of steps. At each step, a process checks in-
coming channels for new messages, then performs local computation, and sends new
messages. A process may become faulty, in which case it ceases to perform local com-
putation and to send new messages. A process is correct if it takes steps infinitely often
during the execution. We assume that at most t < n/2 processes may be faulty during
the execution.

Message delivery and process faults are assumed to be controlled by a strong (adap-
tive) adversary. At any time during the computation, the adversary can examine the en-
tire state of the system (in particular, the results of process coinflips), and decide on
process faults and messages to be delivered.

The (worst-case) message complexity of an algorithm is simply the maximum, over
all adversarial strategies, of the total number of messages sent by processes running
the algorithm. Without loss of generality, we assume that the adversary’s goal is to
maximize the message complexity of our algorithm.

In the (binary) randomized consensus problem, each process starts with an input
in {0, 1}, and returns a decision in {0, 1}. A correct protocol satisfies agreement: all
processes that return from the protocol choose the same decision, validity: the deci-
sion must equal some process’s input, and probabilistic termination: every non-faulty
process returns after a finite number of steps, with probability 1.

3 Related Work

The first shared-memory protocol for consensus was given by Chor, Israeli, and Li [18]
for a weak adversary model, and is based on a race between processors to impose their

proposals. Abrahamson [1] gave the first wait-free consensus protocol for a strong ad-
versary, taking exponential time. Aspnes and Herlihy [9] gave the first polynomial-time
protocol, which terminates in O(n4) expected total steps. Subsequent work, e.g. [4, 10,
15, 30], continued to improve upper and lower bounds for this problem, until Attiya
and Censor [12] showed a tight Θ(n2) bound on the total number of steps for asyn-
chronous randomized consensus. In particular, their lower bound technique implies an
Ω(t(n−t)) total message complexity lower bound and aΩ(t) individual message com-
plexity lower bound for consensus in the asynchronous message-passing model. Our
(n/2 − 1)-resilient algorithms match both lower bounds within logarithmic factors,
while the t-resilient variant matches the first lower bound within logarithmic factors.

To our knowledge, the best previously known upper bound for consensus in asyn-
chronous message-passing requires Θ(n3) messages. This is obtained by simulating
the elegant shared-memory protocol of Attiya and Censor-Hillel [12], using the simu-
lation from [11]. A similar bound can be obtained by applying the same simulation to
an O(n)-individual-work algorithm of Aspnes and Censor [7].

In the message passing model, significant work has focused on the problem of
Byzantine agreement, which is identical to consensus except that the adversary con-
trols up to t processes, and can cause them to deviate arbitrarily from the protocol. In
1983, Fischer, Lynch and Patterson [21] showed that no deterministic algorithm could
solve consensus, and hence Byzantine agreement, in the classic model. In the same
year, Ben-Or gave a randomized algorithm for Byzantine agreement which required an
expected exponential communication rounds and number of messages [13]. His algo-
rithm tolerated t < n/5. Subsequent work extended this idea in two directions: to solve
message-passing Byzantine agreement faster and with higher resilience, and to solve
agreement wait-free, in asynchronous shared-memory tolerating crash failures.

Resilience against Byzantine faults was improved to t < n/3 in 1984 by Bracha [14].
However, the communication rounds and number of messages remained exponential
in expectation. This resilience is the best possible for randomized Byzantine agree-
ment [24]. In 2013, King and Saia gave the first algorithm for Byzantine agreement
in the classic model with expected polynomial communication rounds and number of
messages [26]. Their algorithm required in expectationO(n2.5) communication rounds,
O(n6.5) messages, and O(n7.5) bits sent. It tolerated t < n/500. Unfortunately, lo-
cal computation time was exponential. In 2014, the same authors achieved polynomial
computation time. However, the new algorithm required expected O(n3) communica-
tion rounds, O(n7) messages, and O(n8) bits sent. Further, the resilience decreased to
t < 0.000028n [27].

4 A Message-Passing Max Register

To coordinate the recording of votes within a group, we use a message-passing max
register [6]. The algorithm is adapted from [8], and is in turn based on the classic ABD
implementation of a message-passing register [11]. The main change from [8] is that we
allow for groups consisting of g < n processes. Recall that a max register maintains a
value v, which is read using the MaxRead operation, and updated using the MaxUpdate
operation. A MaxUpdate(u) operation changes the value only if u is higher than the
current value v.

Description. We consider a group G of g processes, which implement the max regis-
ter R collectively. Each process pi in the group maintains a current value estimate vi
locally. The communicate procedure [11] broadcasts a request to all processes in the
group G, and waits for at least dg/2e replies.6

To perform a MaxRead, the process communicates a MaxRead(R) request to all
other processes, setting its value vi to be the maximum value received. Before returning
this value, the process communicates a MaxReadACK (R, vi) message. All processes
receiving such a message will update their current estimate of R, if this value was less
than vi. If it receives at least dg/2e replies, the caller returns vi as the value read. This
ensures that, if a process pi returns vi, no other process may later return a smaller value
for R.

A MaxUpdate with input u is similar to a MaxRead: the process first communicates
a MaxUpdate(R, u) message to the group, and waits for at least dg/2e replies. Process
pi sets its estimate vi to the maximum between u and the maximum value received in
the first round, before communicating this value once more in a second broadcast round.
Again, all processes receiving this message will update their current estimate of R, if
necessary. The algorithm ensures the following properties.

Lemma 1. The max register algorithm above implements a linearizable max register.
If the communicate procedure broadcasts to a group G of processes of size g, then the
message complexity of each operation is O(g), and the operation succeeds if at most
bg/2c processes in the group are faulty.

5 The Weak Shared Coin Algorithm

We now build a message-efficient asynchronous weak shared coin. Processes generate
random votes, whose weight increases over time, and progressively communicate them
to groups of nodes of increasing size. This implements a shared coin with constant bias,
which in turn can be used to implement consensus.
Vote Propagation. The key ingredient is a message-efficient construction of an ap-
proximate asynchronous vote counter, which allows processes to maintain an estimate
of the total number of votes generated, and of their sum and variance. The distributed
vote counter is structured as a binary tree, where each process is associated with a leaf.
Each subtree of height h is associated with a cohort of 2h processes, corresponding
to its leaves. To each such subtree s, we associate a max register Rs, implemented as
described above, whose value is maintained by all the processes in the corresponding
cohort. For example, the value at each leaf is only maintained by the associated process,
while the root value is tracked by all processes.

The max registerRs corresponding to the subtree rooted at smaintains three values:
the count, an estimate of the number of votes generated in the subtree, total, an estimate
of the sum of generated votes, and var, an estimate of the variance of the generated
votes. Values are ordered only by the first component. Practically, the implementation

6 Since t < n/2 processes may crash, and g may be small, a process may block while waiting
for replies. This only affects the progress of the protocol, but not its safety. Our shared coin
implementation will partition the n processes into max register groups, with the guarantee that
some groups always make progress.

1 Let K = n2 log2 n
2 Let T = 4n log2 n
3 count← 0
4 var← 0
5 total← 0
6 for k ← 1, 2, . . . ,∞ do
7 Let wk = 2b(k−1)/Tc

8 Let vote = ±wk with equal probability
9 count← count + 1

10 var← var + w2
k

11 total← total + vote
12 Write 〈count, var, total〉 to max register for my leaf
13 for j ← 1 . . . log2 n do
14 if 2j does not divide k then
15 break
16 Let s be my level-j ancestor, with children s` and sr
17 in parallel do

/* read left and right counts */
18 〈count`, var`, total`〉 ← ReadMax(s`)
19 〈countr, varr, totalr〉 ← ReadMax(sr)

/* update the parent */
20 WriteMax(s, 〈count` + countr, var` + varr, total` + totalr〉)
21 if n divides k then
22 〈countroot, varroot, totalroot〉 ← ReadMax(root)

/* if the root variance exceeds the threshold */
23 if varroot ≥ K then
24 return sgn(totalroot) /* return sign of root total */

Algorithm 1: Shared coin using increasing votes.

is identical to the max register described in the previous section, except that whenever
sending the count, processes also send the associated total and var. Processes always
adopt the tuple of maximum count. If a process receives two tuples with the same count
but different total/var components, they adopt the one with the maximum total.

A process maintains max register estimates for each subtree it is part of. Please see
Algorithm 1 for the pseudocode. In the kth iteration of the shared coin, the process
generates a new vote with weight±wk chosen as described in the next paragraph. After
generating the vote, the process will propagate its current set of votes up to level r,
the highest power of two which divides k (line 15). At each level from 1 (the leaf’s
parent) up to r, the process reads the max registers left and right children, and updates
the 〈count, total, var〉 of the parent to be the sum of the corresponding values at the
child max registers (lines 17–20).

If n divides k, then the process also checks the count at the root. If the root variance
count is greater than the threshold of K votes, the process returns the sign of the root
total as its output from the shared coin. Otherwise, the process continues to generate
votes.

Vote Generation. Each process generates votes with values ±wk in a series of epochs,
each epoch consisting of T = 4n log2 n loop iterations. Within each epoch, all votes
have the same weight, and votes are propagated up the tree of max registers using the
schedule described above. At the start of a new epoch, the weight of the votes doubles.
This ensures that only O(log n) epochs are needed until a single process can generate
enough variance by itself to overcome the offsets between the observed vote and the
generated vote due to delays in propagation up the tree.

Because votes have differing weights, we track the total variance of all votes in-
cluded in a max register in addition to their number, and continue generating votes
until this total variance exceeds a threshold K = n2 log2 n, at which point the process
returns the sign of the root total (line 24).

6 Algorithm Analysis

We prove that the algorithm in Section 5 implements a correct weak shared coin. We
first analyze some of the properties of the tree-based vote counting structure. For sim-
plicity, we assume that the number of processes n is a power of two. Due to space
constraints, the complete argument is given in the full version of the paper [3].
Vote Propagation. The algorithm is based on the idea that, as processes take steps,
counter values for the cohorts get increased, until, eventually, the root counter value
surpasses the threshold, and processes start to return. We first provide a way of associ-
ating a set of generated votes to each counter value.

We say that a process pi counts a number xi of (consecutive) locally-generated votes
to node s if, after generating the last such vote, process pi updates the max register at s
in its loop iteration. We prove that this procedure has the following property:

Lemma 2. Consider a subtree rooted at node s with ` leaves, corresponding to mem-
ber processes q1, q2, . . . , q`. Let x1, x2, . . . , x` be the number of votes most recently
counted by processes q1, q2, . . . , q` at node s, respectively. Then the value of the count
component of the max register at s is at least

∑`
m=1 xm.

Proof Strategy. The proof can be divided into three steps. The first shows that the coin
construction offers a good approximation of the generated votes, i.e. the total vote U t

observed in the root max register at any time t is close to the actual total generated
vote V t at the same time. The second step shows that when the threshold K is crossed
at some time t, the common votes total |V t| is likely to be far away from 0. The last
step shows that, for any subsequent time t′, the combination of the approximation slack
U t

′ −V t′ and any extra votes V t
′ −V t observed by a particular process at time t′ will

not change the sign of the total vote.
The first step involves a detailed analysis of what votes may be omitted from the

visible total combined with an extension of the Azuma-Hoeffding inequality [10]; the
second step requires use of a martingale Central Limit Theorem [23, Theorem 3.2];
the last follows from an application of Kolmogorov’s inequality. (For background on
martingales, we point the reader to [22].) We begin by stating a few technical claims.

Lemma 3. Fix some execution of Algorithm 1, let ni be the number of votes generated
by process pi during this execution, and let wni

be the weight of the ni-th vote. Then

1.
∑n
i=1

∑ni

j=1 w
2
j ≤ K+2n2

1−8n/T = O(n2 log n).

2. wni ≤
√

1 + 4K+8n2

T−8n = O(
√
n).

3. For all j, nj = O(n log2 n).
4.
∑
i w

2
ni
≤ n+ 4K+8n2

T−8n = O(n).

5.
∑
i ni = O(n2 log n).

For any adversary strategy A, let τA be a stopping time corresponding to the first time
t at which U root[t].var ≥ K. We will use a martingale Central Limit Theorem to show
that V root[τA].total converges to a normal distribution as n grows, when suitably scaled.
This will then be used to show that all processes observe a population of common votes
whose total is likely to be far from zero. The notation X

p−→ Y means that X converges
in probability to Y , and Y d−→ Y means that X converges in distribution to Y . We show
that the following convergence holds.

Lemma 4. Let {An} be a family of adversary strategies, one for each number of pro-
cesses n ∈ N. Let τn = τAn be as above. Then

V root[τn].total√
K

d−→ N(0, 1). (1)

Once this is established, for each subtree s and time ts, let Ds[ts] = V s[ts].total−
Us[ts].total be the difference between the generated votes in s at time ts and the votes
reported to the max register corresponding to s at time ts. Let s` and sr be the left and
right subtrees of s, and let ts` and tsr be the times at which the values added to produce
Us[ts].total were read from these subtrees. Recursing over all proper subtrees of s, we
obtain that

Ds[ts] = V s[ts].total− Us[ts].total =
∑
s′

(
V s

′
[tparent(s′)].total− V s

′
[ts′].total

)
,

where s′ ranges over all proper subtrees of s.
To bound this sum, we consider each (horizontal) layer of the tree separately, and

observe that the missing interval of votes
(
V s

′
[tparent(s′)].total− V s′ [ts′].total

)
for

each subtree s in layer h consists of at most 2h votes by each of at most 2h processes.
For each process pi individually, the variance of its 2h heaviest votes, using Lemma 3,
is at most 2h

(
1 + (4/T)

∑ni

j=1 w
2
j

)
. If we sum the total variance of at most 2h votes

from all processes, we get at most

2h

n2 + (4/T)

n∑
i=1

ni∑
j=1

w2
j

 ≤ 2h
(
n2 +

K + 2n2

1− 8n/T

)
,

again using Lemma 3.
We would like to use this bound on the total variance across all missing intervals

to show that the sum of the total votes across all missing intervals is not too large.
Intuitively, if we can apply a bound to the total variance on a particular interval, we

expect the Azuma-Hoeffding inequality to do this for us. But there is a complication in
that the total variance for an interval may depend in a complicated way on the actions
taken by the adversary during the interval. So instead, we attack the problem indirectly,
by adopting a different characterization of the relevant intervals of votes and letting
the adversary choose between them to obtain the actual intervals that contributed to
Droot[t]. We will use the following extended version of the classic Azuma-Hoeffding
inequality [10]:

Lemma 5 ([10, Theorem 4.5]). Let {S0,F0}, 0 ≤ i ≤ n be a zero-mean martingale
with difference sequence {Xi}. Let wi be measurable Fi−1, and suppose that for all i,
|Xi| ≤ wi with probability 1; and that there exists a boundW such that

∑n
i=1 w

2
i ≤W

with probability 1. Then for any λ > 0,

Pr [Sn ≥ λ] ≤ e−λ
2/2W . (2)

Fix an adversary strategy. For each subtree s, let Xs
1 , X

s
2 , . . . be the sequence of

votes generated in s. For each s, t, and W , let Y tsWi = Xs
i if (a) at least t votes

have been generated by all processes before Xs
i is generated, and (b)

∑
j<i(Y

tsW
i)2 +

(Xs
i)

2 ≤ W . Otherwise, let Y tsWi be 0. If we let Fi be generated by all votes pre-
ceding Xs

i , then the events (a) and (b) are measurable Fi, so {Y tsWi ,Fi} forms a
martingale. Furthermore, since only the sign of Y tsWi is unpredictable, we can define
wi = (Y tsWi)2 to fit Lemma 5. From (b), we have that

∑
w2
i ≤ W always. It follows

that, for any c > 0,

Pr

[∑
i

Y tsWi ≥
√
2cW lnn

]
≤ e−c lnn = n−c.

There are polynomially many choices for the parameters t, s, andW . Union bound-
ing over all such choices shows that, for c sufficiently large, with high probability∑
i Y

tsW
i is bounded by

√
2cW lnn for all such intervals. We now use this to show

the following.

Lemma 6. For any adversary strategy and sufficiently large n, with probability 1 −
o(1), it holds that at all times t,∣∣V root[t].total− U root[t].total

∣∣ ≤ 6n
√
log2 n.

Proof. We are trying to bound Droot[t] =
∑
s(V

s[tparent(s)]− V s[ts]), where s ranges
over all proper subtrees of the tree and for each s of size 2h, the interval (ts, tparent(s)]
includes at most 2h votes for each process.

Suppose that for each t, s, W , it holds that Y tsW ≤
√
9W lnn. By the preceding

argument, each such event fails with probability at most n−9/2. There are O(n2 log n)
choices for t, O(n) choices for s, and O(n2 log n) choices for W , so taking a union
bound over all choices of Y tsW not occurring shows that this event occurs with proba-
bility O(n−1/2 log2 n) = o(1).

If all Y tsW are bounded, then it holds deterministically that

∑
s

(V s[tparent(s)]− V s[ts]) =
log2 n−1∑
h=0

∑
s,|s|=2h

(V s[tparent(s)]− V s[ts])

=

log2 n−1∑
h=0

∑
s,|s|=2h

Y tssWs ≤
log2 n−1∑
h=0

∑
s,|s|=2h

√
2cWs lnn

=
√
2c lnn

log2 n−1∑
h=0

∑
s,|s|=2h

√
Ws ≤

√
9 lnn

log2 n−1∑
h=0

∑
s,|s|=2h

√
Ws,

where Ws is the total variance of the votes generated by s in the interval (ts, tparent(s)].

Note that this inequality does not depend on analyzing the interaction between vot-
ing and when processes read and write the max registers. For the purposes of computing
the total offset we are effectively allowing the adversary to choose what intervals it in-
cludes retrospectively, after carrying out whatever strategy it likes for maximizing the
probability that any particular values Y tsW are too big.

Because each process i in s generates at most 2h votes, and each such vote has
variance at most w2

ni
, we have

Ws ≤ 2h
∑
i∈s

w2
ni
.

Furthermore, the subtrees at any fixed level h partition the set of processes, so applying
Lemma 3 gives

∑
s,|s|=2h

Ws ≤
∑

s,|s|=2h

2h
∑
i∈s

w2
ni

= 2h
∑
i

w2
ni
≤ 2h

(
n+

4K + 8n2

T − 8n

)
.

By concavity of square root,
∑√

xi is maximized for non-negative xi constrained
by a fixed bound on

∑√
xi by setting all xi equal. Setting all n/2h values Ws equal

gives the following upper bound.

Ws ≤
2h

n
· 2h

(
n+

4K + 8n2

T − 8n

)
= 22h

(
1 +

4K + 8n2

Tn− 8n2

)
, and thus

√
Ws ≤ 2h

√
1 +

4K + 8n2

Tn− 8n2
,

which gives the bound

√
9 lnn

log2 n−1∑
h=0

∑
s,|s|=2h

√
Ws ≤

√
9 lnn

log2 n−1∑
h=0

2h
√

1 +
4K + 8n2

Tn− 8n2

=

√
9 lnn

(
1 +

4K + 8n2

Tn− 8n2

) log2 n−1∑
h=0

2h = 3(n− 1)
√
lnn

√
1 +

4K + 8n2

Tn− 8n2

= 3(n− 1)
√
lnn

√
1 +

log2 n+ 2

log2 n− 2
≤ 6n

√
log2 n,

when n is sufficiently large. The last step uses the fact that for K = n2 log n and T =
4n log n, the value under the radical converges to 2 in the limit, and 3

√
2/ ln 2 < 6.

For the last step of the proof, we need to show that the extra votes that arrive after
K variance has been accumulated are not enough to push V root[t] close to the origin. For
this, we use Kolmogorov’s inequality, a martingale analogue to Chebyshev’s inequality,
which says that if we are given a zero-mean martingale {Si,Fi}with bounded variance,
then Pr [∃i ≤ n : |Si| ≥ λ] ≤ λ2

Var[Sn]
.

Consider the martingale S1, S2, . . . where Si is the sum of the first i votes after
V root[i].var first passes K. Then from Lemma 3,

Var[Si] ≤
K + 2n2

1− 8n/T
−K =

8K(n/T) + 2n2

1− 8n/T
=

8n2 + 2n2

1− 2/(log2 n)
= O(n2).

So for any fixed c, the probability that |Si| exceeds cK for any i is O(1/ log n) = o(1).
Final argument. From Lemma 4, we have that the total common vote V root[τn].total
converges in distribution to N(0, 1) when scaled by

√
K = n

√
log2 n. In particular,

for any fixed constant c, there is a constant probability πc > 0 that for sufficiently large
n, Pr

[
V root[τn] ≥ cn

√
log2 n

]
≥ πc.

Let c be 7. Then with probability π7 − o(1), all of the following events occur:

1. The common vote V root[τn].total exceeds 7n
√
log2 n;

2. For any i, the next i votes have sum o(n
√
log2 n);

3. The vote U root[t].total observed by any process differs from V root[t].total by at
most 6n

√
log2 n.

If this occurs, then every process observes, for some t, U root[t].total ≥ 7n
√
log2 n −

6n
√
log2 n− o(n

√
log n) > 0. In other words, all processes return the same value +1

with constant probability for sufficiently large n. By symmetry, the same is true for−1.
We have therefore constructed a weak shared coin with constant agreement probability.

Theorem 1. Algorithm 1 implements a weak shared coin with constant bias, message
complexity O(n2 log2 n), and with a bound of O(n log3 n) on the number of messages
sent and received by any one process.

Proof. We have just shown that Algorithm 1 implements a weak shared coin with con-
stant bias, and from Lemma 3 we know that the maximum number of votes generated by
any single process is O(n log2 n). Because each process communicates with a subtree
of 2h other processes every 2−h votes, each level of the tree contributesΘ(1) amortized
outgoing messages and incoming responses per vote, for a total of Θ(log n) messages
per vote, or O(n log3 n) messages altogether.

In addition, we must count messages received and sent by a process p as part of the
max register implementation. Here for each process q in p’s level-h subtree, pmay incur
O(1) messages every 2h votes generated by q. Each such process q generates at most
O(n log2 n) votes, and there are 2h such processes q. So p incurs a total of O(n log2 n)
votes from its level-h subtree. Summing over all log n levels gives the sameO(n log3 n)
bound on messages as for max-register operations initiated by p.

This gives the final bound of O(n log3 n) messages per process. Applying the same
reasoning to the total vote bound from Lemma 3 yields the bound of O(n2 log2 n) on
total message complexity.

7 Consensus Protocol and Extension for General t

Consensus. We now describe how to convert a message-efficient weak shared coin
into message-efficient consensus. We adapt a shared-memory consensus protocol, due
to Chandra [16], which, like many shared-memory consensus protocols has the early
binding property identified by Aguilera and Toueg [2] as necessary to ensure correct-
ness of a consensus protocol using a weak shared coin.

Chandra’s protocol uses two arrays of bits to track the speed of processes with pref-
erence 0 or 1. The mechanism of the protocol is similar to previous protocols of Chor,
Israeli, and Li [18] and Aspnes and Herlihy [9]: if a process observes that the other team
has advanced beyond it, it adopts that value, and if it observes that all processes with
different preferences are two or more rounds behind, it decides on its current preference
secure in the knowledge that they will switch sides before they catch up. The arrays of
bits effectively function as a max register, so it is natural to replace them with two max
registers m[0] and m[1], initially set to 0, implemented as in Section 4. The complete
description, pseudocode, and proof are given in the full version of the paper [3].

Theorem 2. Let SharedCoinr, for each r, be a shared coin protocol with constant agree-
ment parameter, individual message complexity T1(n), and total message complex-
ity T (n). Then the algorithm described above implements a consensus protocol with
expected individual message complexity O(T1(n) + n) and total message complexity
O(T (n) + n2).

Extension for General t. We can decrease the message complexity of the protocol by
taking advantage of values of t = o(n). The basic idea is to reduce message complexity
by “deputizing” a set of 2t+1 processes to run the protocol described above and produce
an output value, which they broadcast to all other participants. For this, we fix processes
p1, . . . , p2t+1 to be the group of processes running the consensus protocol, which we
call the deputies. When executing an instance of the protocol, each process first sends
a Start message to the deputies. If the process is a deputy, it waits to receive Start
notifications from n− t processes. Upon receiving these notifications, the process runs

the consensus algorithm described above, where the only participants are processes
p1, . . . , p2t+1. Upon completing this protocol, each deputy broadcasts a 〈Result , value〉
message to all processes, and returns the decided value. If the process is not a deputy,
then it simply waits for a Result message from one of the deputies, and returns the
corresponding value. Correctness follows from the previous arguments.

Theorem 3. Let n, t > 0 be parameters such that t < n. The algorithm described
above implements randomized consensus using O(nt + t2 log2 t) expected total mes-
sages, and O(n+ t log3 t) expected messages per process.

8 Conclusions and Future Work

We have described a randomized algorithm for consensus with expected message com-
plexity O(n2 log2 n) that tolerates t < n/2 crash faults; this algorithm also has the
desirable property that each process sends and receives expected O(n log3 n) messages
on average, and message size is logarithmic. We also present a generalization that uses
expected O(nt+ t2 log2 t) messages.

Two conspicuous open problems remain. The first is whether we can close the re-
maining poly-logarithmic gap for the message cost of consensus in the classic model.
Second, can we use techniques from this paper to help close the gap for message-cost
of Byzantine agreement in the classic model? To the best of our knowledge, the current
lower bound for message cost of Byzantine agreement is Ω(n2), while the best upper
bound is O(n6.5) — a significant gap.

References

1. K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC ’88, pages
291–302, New York, NY, USA, 1988. ACM.

2. M. K. Aguilera and S. Toueg. The correctness proof of Ben-Or’s randomized consensus
algorithm. Distributed Computing, 25(5):371–381, 2012.

3. D. Alistarh, J. Aspnes, V. King, and J. Saia. Communication-efficient randomized consen-
sus. 2014. Full version available at http://www.cs.yale.edu/homes/aspnes/papers/disc2014-
submission.pdf.

4. J. Aspnes. Lower bounds for distributed coin-flipping and randomized consensus. J. ACM,
45(3):415–450, May 1998.

5. J. Aspnes, H. Attiya, and K. Censor. Randomized consensus in expectedO(n logn) individ-
ual work. In PODC ’08: Proceedings of the Twenty-Seventh ACM Symposium on Principles
of Distributed Computing, pages 325–334, Aug. 2008.

6. J. Aspnes, H. Attiya, and K. Censor-Hillel. Polylogarithmic concurrent data structures from
monotone circuits. J. ACM, 59(1):2, 2012.

7. J. Aspnes and K. Censor. Approximate shared-memory counting despite a strong adversary.
ACM Transactions on Algorithms, 6(2):1–23, 2010.

8. J. Aspnes and K. Censor-Hillel. Atomic snapshots in O(log3 n) steps using randomized
helping. In Proceedings of the 27th International Symposium on Distributed Computing
(DISC 2013), pages 254–268. 2013.

9. J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Journal of
Algorithms, 11(3):441–461, Sept. 1990.

10. J. Aspnes and O. Waarts. Randomized consensus in expected o(n log2 n) operations per
processor. SIAM J. Comput., 25(5):1024–1044, Oct. 1996.

11. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems.
J. ACM, 42(1):124–142, Jan. 1995.

12. H. Attiya and K. Censor. Tight bounds for asynchronous randomized consensus. J. ACM,
55(5):20:1–20:26, Nov. 2008.

13. M. Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous
agreement protocols. In Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing, PODC ’83, pages 27–30, New York, NY, USA, 1983. ACM.

14. G. Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol. In PODC ’84: Pro-
ceedings of the third annual ACM symposium on Principles of distributed computing, pages
154–162, New York, NY, USA, 1984. ACM.

15. G. Bracha and O. Rachman. Randomized consensus in expected O(n2log n) operations. In
S. Toueg, P. G. Spirakis, and L. M. Kirousis, editors, WDAG, volume 579 of Lecture Notes
in Computer Science, pages 143–150. Springer, 1991.

16. T. D. Chandra. Polylog randomized wait-free consensus. In Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 166–175, Philadel-
phia, Pennsylvania, USA, 23–26 May 1996.

17. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J.
ACM, 43(2):225–267, Mar. 1996.

18. B. Chor, A. Israeli, and M. Li. On processor coordination using asynchronous hardware. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’87, pages 86–97, New York, NY, USA, 1987. ACM.

19. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J.
ACM, 35(2):288–323, Apr. 1988.

20. F. Fich, M. Herlihy, and N. Shavit. On the space complexity of randomized synchronization.
J. ACM, 45(5):843–862, Sept. 1998.

21. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

22. G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University
Press, 2001.

23. P. Hall and C. Heyde. Martingale Limit Theory and Its Application. Academic Press, 1980.
24. A. Karlin and A. Yao. Probabilistic lower bounds for byzantine agreement and clock syn-

chronization. Unpublished manuscript.
25. R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed mon-

itoring of thresholded counts. In Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’06, pages 289–300, New York, NY, USA, 2006.
ACM.

26. V. King and J. Saia. Byzantine agreement in polynomial expected time. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), 2013.

27. V. King and J. Saia. Faster agreement via a spectral method for detecting malicious behavior.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms(SODA), 2014.

28. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst., 4(3):382–401, July 1982.

29. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J.
ACM, 27(2):228–234, Apr. 1980.

30. M. Saks, N. Shavit, , and H. Woll. Optimal time randomized consensus - making resilient
algorithms fast in practice. In Proc. of the 2nd ACM Symposium on Discrete Algorithms
(SODA), pages 351–362, 1991.

