
Sub-Logarithmic Test-and-Set
Against a Weak Adversary?

Dan Alistarh1 and James Aspnes2

1 EPFL
2 Yale University

Abstract. A randomized implementation is given of a test-and-set register with
O(log logn) individual step complexity and O(n) total step complexity against
an oblivious adversary. The implementation is linearizable and multi-shot, and
shows an exponential complexity improvement over previous solutions designed
to work against a strong adversary.

1 Introduction

A test-and-set object supports an atomic test-and-set operation, which returns 0 to
the first process that executes it and 1 to all subsequent processes. Test-and-set is a
classic synchronization primitive, often used in multiprocessing computer systems as
a tool for implementing mutual exclusion. It also has close connections to the tradi-
tional distributed computing problems of consensus [11] and renaming [2]. For two
processes, test-and-set can be used to solve consensus and vice versa [11]; this implies
that test-and-set has no deterministic wait-free implementation from atomic registers.
Nonetheless, randomized implementations can solve test-and-set efficiently.

The randomized test-and-set object of Afek et al. [1] requires O(log n) steps on
average, where n is the number of processes. It is built from a tree of 2-process test-
and-set objects that are in turn built from 2-process randomized consensus protocols.
The performance bounds hold even when scheduling is under the control of an adap-
tive adversary, which chooses at each step which process executes the next low-level
operation based on complete knowledge of the system, including the internal states of
processes.

In the case of consensus, it is known that replacing an adaptive adversary with an
oblivious adversary, that fixes the entire schedule in advance, improves performance
exponentially, from an Ω(n) lower bound on the expected number of steps performed
by any one process [3] to an O(log n) upper bound [6]. Thus, a natural question is
whether an algorithm with step complexity lower than Θ(log n) is possible for test-
and-set against a weak adversary.

In this paper, we answer this question in the affirmative. We show that, even though
test-and-set has a fastO(log n) implementation against an adaptive adversary, this same
exponential improvement holds: by exploiting the limitations of the oblivious adversary,
we can reduce the complexity of test-and-set from O(log n) to O(log log n).
? The work of Dan Alistarh was supported by the NCCR MICS Project. The work of James

Aspnes was supported in part by NSF grant CCF-0916389.



The essential idea of our algorithm is to rapidly eliminate most processes from con-
sideration using a sequence of sifting rounds, each of which reduces the number of sur-
vivors to roughly the square root of the number of processes that enter the round, with
high probability; in particular, this reduces the number of survivors to polylogarithmic
in O(log log n) rounds.

The intuition behind the sifting technique is quite simple: each process either writes
or reads a register in each round with a carefully-tuned probability. The process contin-
ues to the next round only if it chooses to write, or if it reads the value ⊥, indicating
that its read preceded any writes in that round. Because an oblivious adversary can-
not predict which process will read and which will write, it effectively plays a game
where the processes access the register one at a time, with only writers surviving after
the first write; the probabilities are chosen so that the sum of the expected number of
initial readers and the expected number of writers is minimized. At the same time, this
scheme ensures that at least one process survives each round of sifting, because either
all writers survive, or, if there are no writers, all readers survive. This technique works
despite asynchrony or process crashes.

After Θ(log log n) rounds of sifting, the number of remaining candidates is small
enough that the high-probability bounds used to limit the number of survivors in each
round stop working. On the other hand, we notice that in this case we are left with
O(polylog n) survivors, and we can feed these survivors into a second stage con-
sisting of the adaptive test-and-set implementation of [2], that has step complexity
O(log k) for k participating processes. Thus, the running time of this second stage is
also O(log log n), which yields the step complexity upper bound of O(log log n). A
similar analysis shows that the total number of steps that all processes take during an
execution of the algorithm is O(n), which is clearly optimal.

It is worth noting that in the presence of an adaptive adversary, though the initial
sifting phase fails badly (the adversary orders all readers before all writers, so all pro-
cesses survive each round), the adaptive test-and-set still runs in O(log n) time, and
the O(log log n) overhead of the initial stage disappears into the constant. So our algo-
rithm has the desirable property of degrading gracefully even when our assumption of
an oblivious adversary is too strong.

While it is difficult to imagine an algorithm with significantly less thanO(log log n)
step complexity, the question of whether a better algorithm is possible remains open.
This is also the case for the adaptive adversary model, where there is no lower bound
on expected step complexity to complement the O(log n) upper bounds of [1, 2].

The step complexity of our algorithm is O(log log n) in expectation, and O(log n),
with high probability. We notice that, even against a weak adversary, any step com-
plexity upper bound on test-and-set that holds with high probability has to be at least
Ω(log n). This result follows from a lower bound of Attiya and Censor-Hillel on the
complexity of randomized consensus [4].

Also of note, our algorithm suggests that non-determinism can be used to avoid
some of the cost of expensive synchronization in shared memory, if the scheduler is
oblivious. More precisely, Attiya et al. [5] recently showed that deterministic imple-
mentations of many shared objects, including test-and-set, queues, or sets, have worst-
case executions which incur expensive read-after-write (RAW) or atomic-write-after-



read (AWAR) operation patterns. In particular, ensuring RAW order in shared memory
requires introducing memory fences or barriers, which are considerably slower than
regular instructions.

First, we notice that their technique also applies to randomized read-write algo-
rithms against an adaptive adversary, yielding an adversarial strategy that forces each
process to perform an expensive RAW operation pattern with probability 1. On the other
hand, the sifting procedure of our algorithm bounds the number of processes that may
perform RAW patterns in an execution to O(

√
n), with high probability. This shows

that randomized algorithms can avoid part of the synchronization cost implied by the
lower bound of [5], as long as the scheduler is oblivious.

Roadmap. We review the related work in Section 2, and precisely define the model
of computation, problem statement, and complexity measures in Section 3. We then
present our algorithm and prove it correct in Section 4. In Section 4.4, we present a
simple technique for turning the single-shot test-and-set implementation into a multi-
shot one, and derive lower bounds in Section 5. We summarize our results and give an
overview of directions for future work in Section 6.

2 Related Work

The test-and-set instruction has been present in hardware for several decades, as a sim-
ple means of implementing mutual exclusion. Herlihy [11] showed that this object has
consensus number 2.

Several references studied wait-free randomized implementations of test-and-set.
References [10,14] presented implementations with super-linear step complexity. (Ran-
domized consensus algorithms also implement test-and-set, however their step com-
plexity is at least linear [3].) The first randomized implementation with logarithmic step
complexity was by Afek et al. [1], who extended the tournament tree idea of Peterson
and Fischer [13], where the tree nodes are two-process test-and-set (consensus) imple-
mentations as presented by Tromp and Vitanyi [15]. Their construction has expected
step complexity O(log n). This technique was made adaptive by the RatRace protocol
of [2], whose step complexity is O(log2 k) with probability 1 − 1/kc, for c constant,
where k is the actual number of processes that participate in the execution. We use the
RatRace protocol as the final part of our test-and-set construction. Note that these previ-
ous constructions assume a strong adaptive adversary. The approaches listed above for
sublinear randomized test-and-set incur cost at least logarithmic in terms of expected
time complexity, even if the adversary is oblivious, since they build on the tourna-
ment tree technique. References [7,8] give deterministic test-and-set and compare-and-
swap implementations with constant complexity in terms of remote memory references
(RMRs), in an asynchronous shared-memory model with no process failures (by con-
trast, our implementation is wait-free). The general strategy behind their test-and-set
implementation is similar to that of this paper and that of Afek et al. [1]: the algorithm
runs a procedure to elect a leader process, i.e. the winner of the test-and-set, and then
uses a separate flag register to ensure linearizability.



3 Preliminaries

Model. We assume an asynchronous shared memory model in which at most n pro-
cesses may participate in any execution, t < n of which may fail by crashing. We
assume that processes know n (or a rough upper bound on n). Processes communicate
through multiple-writer-multiple-reader atomic registers. Our algorithms are random-
ized, in that the processes’ steps may depend on random local coin flips. Process crashes
and scheduling are controlled by a weak oblivious adversary, i.e. an adversary that can-
not observe the results of the random coin flips of the processes, and hence has to fix
its schedule and failure pattern before the execution. On the other hand, we assume that
the adversary knows the structure of the algorithm. By contrast, a strong adaptive ad-
versary (as considered in Lemma 5) knows the results of the coin flips by the processes
at any point during the algorithm, and may adjust the scheduling and failure pattern
accordingly.

Problem Statement. The multi-use test-and-set bit has a test-and-set operation which
atomically reads the bit and sets its value to 1, and a reset operation which sets the bit
back to 0. We say that a process wins a test-and-set object if it reads 0 from the object;
otherwise, if it reads 1, the process loses the test-and-set. By the sequential specifica-
tion, each correct process eventually returns an indication (termination), and only one
process may return winner from a single instance of test-and-set (the unique winner
property). Also, no process may return loser before the winner started the execution,
and only the winner of an instance may successfully reset the instance.

Complexity Measures. We measure complexity in terms of process steps: each shared-
memory operation and (local) coin flip is counted as a step. The total step complexity
counts the total number of process steps in an execution, while the individual step com-
plexity (or simply step complexity) is the number of steps a single process may perform
during an execution.

As a second measure, we also consider the number of read-after-write (RAW) pat-
terns that our algorithm incurs. This metric has been recently analyzed by Attiya et
al. [5] in conjunction with atomic write-after-read (AWAR) operations (we consider
read-write algorithms, which cannot employ AWAR patterns). In brief, the RAW pat-
tern consists of a process writing to a shared variable A, followed by the same process
reading from a different shared variable B, without writing to B in between. Enforcing
RAW order on modern architectures requires introducing memory fences or barriers,
which are substantially slower than regular instructions. For a complete description of
RAW/AWAR patterns, please see [5].

4 Test-and-Set Algorithm

In this section, we present and prove correct a randomized test-and-set algorithm, called
Sift, with expected (individual) step complexity O(log log n) and total step complexity
O(n). The algorithm is structured in two phases: a sifting phase, which eliminates a
large fraction of the processes from contention, and a competition phase, in which the
survivors compete in an adaptive test-and-set instance to assign a winner.



Shared:1
Reg , a vector of atomic registers, of size n, initially ⊥2
Resolved , an atomic register3

procedure Test-and-Set()4
if Resolved = true then5

return loser6
/* sifting phase */
for round r from 0 to

⌈
5
2
ln lnn

⌉
do7

πr ← n−(2/3)r/28
flip ← 1 with probability πr , 0 otherwise9
if flip = 1 then10

Reg[r]← pi11
else12

val ← Reg[r]13
if val 6= ⊥ then14

Resolved ← true15
return loser16

/* competition phase */
result ← RatRace(pi)17
return result18

Fig. 1. The Sift test-and-set algorithm.

4.1 Description

The pseudocode of the algorithm is presented in Figure 1. Processes share a vector Reg
of atomic registers, initially ⊥, and an atomic register Resolved , initially false. The
algorithm proceeds in two phases.

The first, called the sifting phase, is a succession of rounds r ≥ 0, with the property
that in each round a fraction of the processes are eliminated. More precisely, in round
r, each process flips a binary biased coin which is 1 with probability πr = n−(2/3)

r/2

and 0 otherwise (line 9). If the coin is 1, then the process writes its identifier pi to the
register Reg[r] corresponding to this round, which is initially ⊥. Every process that
flipped 0 then reads the value of Reg[r] in round r. If this value is ⊥, then the process
continues to the next round. Otherwise, the process returns loser, but first marks the
Resolved bit to true, to ensure that no incoming process may win after a process has
lost (lines 13-16). We will prove that by the end of the

⌈
5
2 ln lnn

⌉
+ 1 rounds in this

phase, the number of processes that have not yet returned loser is O(log7 n), with high
probability.

In the competition phase, we run an instance of the RatRace [2] adaptive test-and-
set protocol, to determine the one winner among the remaining processes. In brief,
in RatRace, each process will first acquire a temporary name, and then compete in a
series of two-process test-and-set instances to decide the winner. Since the number of
processes that participate in this last phase is polylogarithmic, we will obtain that the
number of steps a process takes in this phase is O(log log n) in expectation.



4.2 Proof of Correctness

We first show that the algorithm is a correct test-and-set implementation.

Lemma 1 (Correctness). The Sift algorithm is a linearizable test-and-set implemen-
tation.

Proof. The termination property follows by the structure of the sifting phase, and by
the correctness of the RatRace protocol [2]. The unique winner property also follows
from the properties of RatRace. Also, notice that, by the structure of the protocol, any
process that performs alone in an execution returns winner.

To prove linearizability, we first show that the algorithm successufully elects a
leader, i.e., given an execution E of the protocol and a process p` that returns loser
in E , there exists a (unique) process pw 6= p` such that pw either returns winner in E , or
crashes in E . Second, we show that, using the Resolved bit, the test-and-set operation
by process pw can be linearized before p`’s test-and-set operation.

For the first part, we start by considering the line in the algorithm where process
p` returned loser. If p` returned on line 18, then the above claim follows by the lin-
earizability of the RatRace test-and-set implementation [2]. On the other hand, if p`
returned on line 16, it follows that p` has read the identifier of another process from a
shared registerReg[r] in some round r ≥ 1. Denote this process by q1. We now analyze
the return value of process q1 in execution E . If q1 crashed or returned winner in execu-
tion E , then the claim holds, since we can linearize q1’s operation or crash before p`’s
operation. If q1 returns loser from RatRace, then again we are done, by the linearizabil-
ity of RatRace. Therefore, we are left with the case where q1 returned loser on line 16,
after reading the identifier of another process q2 from a register Reg[r′] with r′ ≥ r.
Notice that q2 and p` are distinct, since the write operations are atomic.

Next, we can proceed inductively to obtain a maximal chain of distinct processes
q1, q2, up to qk for some k ≥ 1 such that for any 1 ≤ i ≤ k − 1, process qi read
process qi+1’s identifier and returned loser in line 16. This chain is of length at most
n− 1. Considering the last process qk, since the chain is maximal, process qk could not
have read any other process’s identifier in line 13 during the sifting phase. Therefore,
process qk either obtains a decision value from RatRace in line 18, or crashes in E after
reading Resolved = false in line 6 of the protocol. Notice that, since the Resolved bit
is atomic, qk’s test-and-set operation could not have started after p`’s operation ended.
Therefore, if qk decides winner or crashes, then we can linearize its operation before
p`’s operation and we are done. Otherwise, if qk decides loser from RatRace, then
there exists another process pw that either returns winner or crashes during RatRace,
and whose RatRace(pw) operation can be linearized before qk’s. Therefore, we can
linearize pw’s test-and-set operation before p`’s to finish the proof of this claim.

Based on this claim, we can linearize any execution in which some process returns
loser as follows. We consider the losing processes in the order of their read operations
on register Resolved . Let p` be the first losing process in this order. We then apply the
claim above to obtain that there exists a process pw that either crashes or returns winner,
whose test-and-set operation can be linearized before that of p`. This defines a valid
linearization order on the operations that return in execution E . The other operations
(by processes that crash, except pw) may be linearized in the order or non-overlapping



operations. The remaining executions can be linearized trivially. We note that, since we
use the Resolved bit to ensure linearization, we avoid the linearizability issues recently
pointed out by Golab et al. [9] for randomized implementations.

4.3 Proof of Performance

We now show that the algorithm has expected step complexity O(log log n). The intu-
ition behind the proof is that, for each round r, the number of processes that keep taking
steps after round r+1 of the sifting phase is roughly

√
nr (in expectation), where nr is

the number of processes that take steps in round r+ 1. Iterating this for d(5/2) ln lnne
rounds leaves at most polylog n active processes at the end of the sifting phase, with
high probability. We begin the proof by showing that the sifting phase reduces the set
of competitors as claimed.

Lemma 2. With probability 1 − o(n−c), for any fixed c, at most ln7 n processes leave
the sifting phase without returning loser.

Proof. Fix some c, and let c′ = c+ 1.
Let

κ = − 1

ln(2/3)

(
1− ln 7 + ln ln lnn

ln lnn

)
.

≤ − 1

ln(2/3)

<
5

2
.

We will show that, with high probability, it holds that for all 0 ≤ r ≤ κ ln lnn, at
most nr = n(2/3)

r

processes continue after r rounds of the sifting phase. The value of
κ is chosen so that

nκ ln lnn = n(2/3)
κ ln lnn

= exp
(
lnn · (2/3)κ ln lnn

)
= exp (exp (ln lnn+ ln(2/3) · κ ln lnn))

= exp

(
exp

(
ln lnn−

(
1− ln 7 + ln ln lnn

ln lnn

)
ln lnn

))
= exp (exp (ln lnn− ln lnn+ ln 7 + ln ln lnn))

= exp (7 ln lnn)

= ln7 n.

This bound is a compromise between wanting the number of processes leaving the
sifting phase to be as small as possible, and needing the number of survivors at each
stage to be large enough that we can characterize what happens to them using standard
concentration bounds. Because κ < 5

2 , and extra rounds of sifting cannot increase the
number of surviving processes, if there are at most ln7 n survivors after κ ln lnn + 1



rounds, there will not be any more than this number of survivors when the sifting phase
ends after

⌈
5
2 ln lnn

⌉
+ 1 rounds, establishing the Lemma.

We now turn to the proof of the nr bound, which proceeds by induction on r: we
prove that if fewer than nr processes enter round r + 1, it is likely that at most nr+1 =

n(2/3)
r+1

processes leave it. The base case is that at most n0 = n(2/3)
0

= n processes
enter round 1.

Note that πr, the probability of writing the register in round r, is chosen so that
πr = n

−1/2
r .

From examination of the code, there are two ways for a process to continue the
execution after round r+ 1: by writing the register (with probability πr = n−(2/3)

r/2),
or by reading ⊥ from the register before any other process writes it. Suppose at most
nr processes enter round r. Then the expected number of writers is at most nrπr =

n
1/2
r . On the other hand, since the adversary fixes the schedule in advance, the expected

number of processes that read ⊥ is given by a geometric distribution, and is at most
1/πr = n

1/2
r , giving an expected total of at most 2n1/2r processes entering round r+1.

(The symmetry between the two cases explains the choice of πr given nr.) We now
compute a high-probability bound for the number of surviving processes.

Let R count the number of processes that read ⊥. For R to exceed some value m,
the first m processes to access the register in round r must choose to read it, which
occurs with probability (1− πr)m ≤ e−mπr . It follows that Pr

[
R ≥ (c′ lnn)n

1/2
r

]
≤

e−c
′ lnn = n−c

′
.

Let W be the number of processes that write the register in round r + 1. Using
standard Chernoff bounds (e.g., [12, Theorem 4.4]), we have Pr

[
W ≥ (c lnn)n

1/2
r

]
≤

2−(c
′ lnn)n1/2

r ≤ n−c′ , provided c′ lnn ≥ 6, which holds easily for sufficiently large n.
Combining these bounds, with probability at least 1−2n−c it holds that the number

of survivors

W +R ≤ 2(c′ lnn)n1/2r

≤ 2(c′ lnn)n(1/2)·(2/3)
r

=
2c′ lnn

n(1/6)·(2/3)r
· n(2/3)

r+1

=
2c′ lnn

n
1/6
r

· nr+1

≤ 2c′ lnn

ln7/6 n
· nr+1

≤ nr+1,

provided ln1/6 n ≥ 2c′, which holds for sufficiently large n.
The probability that the induction fails is bounded by 2n−c

′
= 2n−c−1 = 2

nn
−c per

round; taking the union bound over O(log log n) rounds gives the claimed probability
o(n−c).

To complete the proof of performance, first observe that the cost of the sifting
phase is O(log log n), by the above Lemma. The step complexity cost of a call to



RatRace [2] withO(log7 n)3 other participants isO(log log n), with probability at least
1 − (log n)

−c, and O(log n) otherwise. Choosing c ≥ 2 gives an expected extra cost
of the bad case of o(1). Summing all these costs, we obtain a bound of O(log log n) on
the expected step complexity of Sift.

Since, with high probability, at most log7 n processes participate in the RatRace
instance, by the properties of RatRace, we obtain that the step complexity of the Sift
algorithm is O(log n), with high probability.
We have therefore obtained the following bounds on the step complexity of the algo-
rithm.

Lemma 3 (Step Complexity). The Sift algorithm in Figure 1 runs in expectedO(log log n)
steps, and in O(log n) steps, with high probability.

We can extend this argument to obtain an O(n) bound on the total number of steps that
processes may take during a run of the algorithm.

Corollary 1 (Total Complexity). The Sift algorithm has total step complexity O(n),
with high probability.

Proof. The proof of Lemma 2 states that, with high probability, at most n(2/3)
r

pro-
cesses continue after sifting round r, for any 1 ≤ r ≤ κ ln lnn. Let β = bκ ln lnnc.

It then follows that the total number of shared-memory operations performed by
processes in the sifting phase is at most

∑β
i=0 n

(2/3)r +
∑d(5/2) ln lnne
i=β+1 n(2/3)

β ≤ n+∑(5/2) ln lnn
i=1 n2/3 ≤ 2n, with high probability. Since the total number of operations

that ln7 n participants may perform in RatRace is O(polylog n), with high probability,
the claim follows.

We notice that the processes that return loser without writing to any registers during
an execution do not incur any read-after-write (RAW) cost in the execution. The above
argument provides upper bounds for the number of such processes.

Corollary 2 (RAW Cost). The Sift algorithm incurs O(
√
n) expected total RAW cost.

With high probability, the algorithm incurs O(n2/3 log n) total RAW cost.

Finally, we notice that the algorithm is correct even if the adversary is strong (the sifting
phase may not eliminate any processes). Its expected step complexity in this case is the
same as that of RatRace, i.e. O(log n).

Corollary 3 (Strong Adversary). Against a strong adversary, the Sift algorithm is
correct, and has expected step complexity O(log n).

4.4 Multi-use Test-and-Set

We now present a transformation from single-use to multi-use test-and-set implementa-
tions. This scheme simplifies the technique presented in [1] for single-writer registers,
in a setting where multi-writer registers are available. See Figure 2 for the pseudocode.

3 Reference [2] presents an upper bound of O(log2 k) on the step complexity of RatRace with
k participants, with high probability. A straightforward refinement of the analysis improves
this bound to O(log k), with high probability.



Shared:1
T , a vector of linearizable single-use test-and-set objects2
Index , an atomic register, initially 03
Local:4
crtWinner , a local register, initially false5

procedure Test-and-Set() /* at process pi */6
v ← Index .read()7
res← T [v].test-and-set()8
if res← winner then9

crtWinner i ← true10
return res11

procedure ReSet()12
if crtWinner i = true then13

Index .write(Index .read() + 1)14
crtWinner i ← false15

Fig. 2. The multi-use test-and-set algorithm.

Description. Processes share a list T of linearizable single-use test-and-set objects, and
an atomic register Index . Each process maintains a local flag crtWinner indicating
whether it is the winner of of the current test-and-set instance. For the test-and-set
operation, each process reads in variable v the Index register and calls the single-use
test-and-set instance T [v]. The process sets the variable crtWinner if it is the current
winner of T [v], and returns the value received from T [v]. For the reset operation, the
current winner increments the value of Index and resets its crtWinner local variable.
(Recall that, by the specification of test-and-set [1], only the winner of an instance may
reset it.)

The proof of correctness for the transformation is immediate. The complexity bounds
are the same as those of the single-use implementation.

Improvements. The above scheme has the disadvantage that it may allocate an infi-
nite number of single-use test-and-set instances. This can be avoided by allowing the
current winner to de-allocate the current instance in the reset procedure, and adding
version numbers to shared variables, so that processes executing a de-allocated instance
automatically return loser.

5 Lower Bound

We first notice that any test-and-set algorithm against an oblivious adversary has execu-
tions with step complexityΩ(log n), with probability at least 1/nc, for a small constant
c. In essence, this implies that any bound O(C) on the step complexity of test-and-set
that holds with high probability has to have C ∈ Ω(log n). This bound is a corollary
of a result by Attiya and Censor-Hillel [4] on the complexity of randomized consensus
against a weak adversary, and is matched by our algorithm.



Lemma 4. For any read-write test-and-set algorithm A that ensures agreement, there
exists a weak adversary such that the probability that A does not terminate after log n
steps is at least 1/nγ , for a small constant γ.

Proof. Consider a test-and-set algorithmA. Then, in every execution in which only two
processes participate, the algorithm can be used to solve consensus. We now employ
Theorem 5.3 of [4], which states that, for any consensus algorithm for n processes and f
failures, there is a weak adversary and an initial configuration, such that the probability
that A does not terminate after k(n − f) steps is at least (1 − ckεk)/ck , where c is a
constant, and εk is a bound on the probability for disagreement.

We fix parameters k = log n, εk = 0 (since the test-and-set algorithm guarantees
agreement), n = 2, and f = 1. The claim follows, with the parameter γ = log c.

Strong Adversary RAW Bound. We now apply the lower bound of Attiya et al. [5]
on the necessity of expensive read-after-write (RAW) patterns in deterministic object
implementations, to the case of randomized read-write algorithms against a strong ad-
versary. We state our lower bound in terms of total RAW cost for a test-and-set object;
since test-and-set can be trivially implemented using stronger objects such as consen-
sus, adaptive strong renaming, fetch-and-increment, initialized queues and stacks, this
bound applies to randomized implementations of these objects as well.

Lemma 5 (Strong Adversary RAW Bound). Any read-write test-and-set algorithm
that ensures safety and terminates with probability α against a strong adaptive adver-
sary has worst-case expected total RAW complexity Ω(αn).

Proof (Sketch). Let A be a read-write test-and-set algorithm. We describe an adver-
sarial strategy S(A) that forces each process to perform a read-after-write (RAW) op-
eration in all terminating executions. The adversary schedules process p1 until it has
its first write operation enabled. (Each process has to eventually write in a solo ex-
ecution, since otherwise we can construct an execution with two winners.) Similarly,
it proceeds to schedule each process p2, . . . , pn until each has its first write operation
enabled (note that no process has read any register that another process wrote at this
point). Let R1, R2, . . . , Rn be the registers that p1, p2, . . . , pn write to, respectively
(these registers are not necessarily distinct).

The adversary then schedules process pn to write to register Rn. It then schedules
process pn until pn reads from a register that it did not last write to. This has to occur,
since otherwise there exists an execution E ′ in which process pn takes the same steps,
and a process q 6= pn is scheduled solo until completion, right before pn writes to Rn.
Process q has to decide winner in this parallel execution. On the other hand, process
pn cannot distinguish execution E ′ from a solo execution, therefore decides winner in
E ′, violating the unique winner property. Since the algorithm guarantees safety in all
executions, process pn has to read from a register it did not last write to, and therefore
incurs a RAW in execution E .

Similarly, after process pn performs its RAW, the adversary schedules process pn−1
to perform its write operation. By a similar argument to the one above, if the adversary
schedules pn−1 until completion, pn−1 has to read from a register that it did not write to,



and incur a RAW. We proceed identically for processes pn−2, . . . , p1 to obtain that each
process incurred a RAW in execution E dictated by the strong adversarial scheduler,
which concludes this sketch of proof.

Discussion. This linear bound applies to randomized algorithms against a strong ad-
versary. Since, by Corollary 2, the Sift test-and-set algorithm has expected RAW cost
O(
√
n) against a weak adversary, these two results suggest that randomization can help

reduce some of the inherent RAW cost of implementing shared objects, if the scheduler
is assumed to be oblivious.

6 Summary and Future Work

In this paper, we present a linearizable implementation of randomized test-and-set, with
O(log log n) individual step complexity andO(n) total step complexity, against a weak
oblivious adversary. Our algorithm shows an exponential improvement over previous
solutions, that considered a strong adaptive adversary. Also, it has the interesting prop-
erty that its performance degrades gracefully if the adversary is adaptive, as the algo-
rithm is still correct in this case, and has step complexity is O(log n).

Lower bounds represent one immediate direction of future work. In particular, it is
not clear whether better algorithms may exist, either for the oblivious adversary, or for
the adaptive one. Also, another direction would be to see whether our sifting technique
may be applied in the context of other distributed problems, such as mutual exclusion
or cooperative collect.

Acknowledgements. The authors would like to thank Keren Censor-Hillel for useful
discussions, and the anonymous reviewers for their feedback.

References

1. Yehuda Afek, Eli Gafni, John Tromp, and Paul M. B. Vitányi. Wait-free test-and-set (ex-
tended abstract). In WDAG ’92: Proceedings of the 6th International Workshop on Dis-
tributed Algorithms, pages 85–94, 1992.

2. Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. Fast ran-
domized test-and-set and renaming. In Proceedings of the 24th international conference on
Distributed computing, DISC’10, pages 94–108, Berlin, Heidelberg, 2010. Springer-Verlag.

3. Hagit Attiya and Keren Censor. Tight bounds for asynchronous randomized consensus. J.
ACM, 55(5):1–26, 2008.

4. Hagit Attiya and Keren Censor-Hillel. Lower bounds for randomized consensus under a
weak adversary. SIAM J. Comput., 39(8):3885–3904, 2010.

5. Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, and
Martin T. Vechev. Laws of order: expensive synchronization in concurrent algorithms cannot
be eliminated. In POPL, pages 487–498, 2011.

6. Yonatan Aumann. Efficient asynchronous consensus with the weak adversary scheduler.
In PODC ’97: Proceedings of the Sixteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 209–218, New York, NY, USA, 1997. ACM.



7. Wojciech M. Golab, Vassos Hadzilacos, Danny Hendler, and Philipp Woelfel. Constant-rmr
implementations of cas and other synchronization primitives using read and write operations.
In PODC, pages 3–12, 2007.

8. Wojciech M. Golab, Danny Hendler, and Philipp Woelfel. An o(1) rmrs leader election
algorithm. SIAM J. Comput., 39(7):2726–2760, 2010.

9. Wojciech M. Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do
not suffice for randomized distributed computation. In STOC, pages 373–382, 2011.

10. Maurice Herlihy. Randomized wait-free concurrent objects (extended abstract). In Proceed-
ings of the tenth annual ACM symposium on Principles of distributed computing, PODC ’91,
pages 11–21, New York, NY, USA, 1991. ACM.

11. Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991.

12. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

13. Gary L. Peterson and Michael J. Fischer. Economical solutions for the critical section prob-
lem in a distributed system (extended abstract). In Proceedings of the ninth annual ACM
symposium on Theory of computing, STOC ’77, pages 91–97, New York, NY, USA, 1977.
ACM.

14. Serge Plotkin. Chapter 4: Sticky bits and universality of consensus. Ph.D. Thesis, MIT, 1998.
15. John Tromp and Paul Vitányi. Randomized two-process wait-free test-and-set. Distrib.

Comput., 15(3):127–135, 2002.


