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Abstract. Although PAC learning unrestricted regular languages is long
known to be a very difficult problem, one might suppose the existence
(and even an abundance) of natural efficiently learnable sub-families.
When our literature search for a natural efficiently learnable regular
family came up empty, we proposed the shuffle ideals as a prime can-
didate. A shuffle ideal generated by a string u is simply the collection
of all strings containing u as a (discontiguous) subsequence. This fun-
damental language family is of theoretical interest in its own right and
also provides the building blocks for other important language families.
Somewhat surprisingly, we discovered that even a class as simple as the
shuffle ideals is not properly PAC learnable, unless RP=NP. In the posi-
tive direction, we give an efficient algorithm for properly learning shuffle
ideals in the statistical query (and therefore also PAC) model under the
uniform distribution.

1 Introduction

Inferring regular languages from examples is a classic problem in learning theory.
A brief sampling of areas where various automata show up as the underlying for-
malism include natural language processing (speech recognition, morphological
analysis), computational linguistics, robotics and control systems, computational
biology (phylogeny, structural pattern recognition), data mining, time series and
music [10, 23, 25–28, 35, 40]. Thus, developing efficient formal-language learning
techniques and understanding their limitations is of a broad and direct relevance
in the digital realm.

Perhaps the most widely currently studied notion of learning is Valiant’s
PAC model [41], which allows for a clean, elegant theory while retaining a de-
cent measure of empirical plausibility. Since PAC learnability is characterized by
finite VC-dimension and the concept class of n-state Deterministic Finite-state
Automata (DFA) has VC-dimension Θ(n log n) [13], the PAC learning prob-
lem is solved, in an information-theoretic sense, by constructing a DFA on n
states consistent with a given labeled sample. Unfortunately, as shown in the
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works of Angluin [1], Gold [12] and Pitt and Warmuth [34], under standard
complexity assumptions, finding small consistent automata is a computationally
intractable task. Furthermore, attempts to circumvent the combinatorial search
over automata by learning with a different representation class are thwarted
by cryptographic hardness results. The papers of Pitt and Warmuth [33] and
Kearns and Valiant [16] prove the existence of small automata and “hard” dis-
tributions over {0, 1}

n
so that any efficient learning algorithm that achieves a

polynomial advantage over random guessing will break various cryptographic
hardness assumptions.

In a modified model of PAC, and with additional structural assumptions, a
class of probabilistic finite state automata was shown in [8, 30] to be learnable;
see also the literature review therein. If the target automaton and sampling
distribution are assumed to be “simple”, efficient probably exact learning is pos-
sible [31]. When the learner is allowed to make membership queries, it follows
from [3] that DFAs are learnable in this augmented PAC model.

The prevailing paradigm in formal language learning has been to make struc-
tural regularity assumptions about the family of languages and/or the sampling
distribution in question and to employ a state-merging heuristic. Indeed, over
the years a number of clever and sophisticated combinatorial approaches have
been proposed for learning DFAs. Typically, an initial automaton or prefix tree
consistent with the sample is first created. Then, starting with the trivial par-
tition with one state per equivalence class, classes are merged while preserving
an invariant congruence property. The automaton learned is obtained by merg-
ing states according to the resulting classes. Thus, the choice of the congru-
ence determines the algorithm and generalization bounds are obtained from the
structural regularity assumptions. This rough summary broadly characterizes
the techniques of [2, 8, 29–31, 36] and, until recently, this appears to have been
the only general-purpose technique available for learning finite automata.

More recently, Cortes et al. [9,19,20] proposed a substantial departure from
the state-merging paradigm. Their approach was to embed a specific family of
regular languages (the piecewise-testable ones) in a Hilbert space via a kernel and
to identify languages with hyperplanes. A unifying feature of this methodology
is that rather than building an automaton, the learning algorithm outputs a
classifier defined as a weighted sum of simple automata. In a follow-up work
[21], this approach was extended to learning general discrete concepts. These
results, however, provided only margin-based generalization guarantees, which
are weaker than true PAC bounds.

Perhaps somewhat embarrassingly, there does not appear to be any known
natural PAC-learnable family of regular languages. Let us qualify this statement
to rule out the obvious objections. Many concept classes are known to be learn-
able over the boolean cube {0, 1}

n
— conjunctions, disjunctions, decision lists,

etc. [17]. Another way to claim trivial results is by importing learning problems
from continuous domains. For example, the concept class of axis-aligned rect-
angles in R2 is known to be PAC-learnable [17], so certainly these rectangles
are also learnable over the rational plane Q2. Now we may identify Q2 with
{0, 1}

∗
via some bijection, thereby identifying rectangles over Q2 with languages

L ⊂ {0, 1}
∗

(we thank Kobbi Nissim for this example). It is a simple matter
to construct a bijection φ : Q2 → {0, 1}

∗
that maps rectangles to regular lan-

guages and vice versa. Observe, however, that we cannot a priori bound the size



of the hypothesis automaton, since higher-precision rectangles will correspond
to automata with more states. An even more basic reason to disqualify these
examples is that it would be quite a stretch to call them “natural” families of
regular languages.

What we mean by a PAC-learnable family of regular languages is, informally,
the following. Fix some alphabet Σ. For n ≥ 1, let Ln be a collection of regular
languages, each of which is recognized by a DFA on n states or fewer. To avoid
computational trivialities, let us rule out |Ln| = O(poly(n)) — this way, brute-
force search is infeasible. Since, as we mentioned above and will see in more
detail below, the information-theoretic aspects of the learning problem are well-
understood, we focus here exclusively on the algorithmic ones. We say that
L =

⋃

n Ln is properly PAC learnable if there is an algorithm that takes

a labeled sample of size m and finds a consistent hypothesis in L̂ ∈ Ln, in
time O(poly(m, n)). We say that L is improperly PAC learnable if there
is an algorithm that takes a labeled sample of size m and finds a consistent
hypothesis with description length O(poly(n)), in time O(poly(m, n)). A formal
definition is given in Section 2.

Main results. Our main results concern the PAC-learnability of shuffle ideals.
A shuffle ideal generated by a string u is simply the collection of all strings
containing u as a (discontiguous) subsequence (see Figure 1 for an illustration).
Despite being a particularly simple subfamily of the regular languages, shuffle
ideals play a prominent role in formal language theory. Their boolean closure
forms the important family known as piecewise-testable languages, defined and
characterized by Simon in 1975 [39]. The rich structure of this language family
has made it an object of intensive study, with deep connections to computability,
complexity theory, and semigroups (see [18, 24] and the references therein). On
a more applied front, the shuffle ideals capture some rudimentary phenomena
in human-language morphology [22]. In Section 3 we show that shuffle ideals of
known length are exactly [5,7] learnable in the statistical query model under the
uniform distribution, though not efficiently. Permitting approximate learning,
the algorithm can be made efficient; this in turn yields efficient proper PAC
learning under the uniform distribution. On the other hand, in Section 4 we show
that the shuffle ideals are not properly PAC-learnable under general distributions
unless RP=NP. Whether the shuffle ideals can be improperly PAC learned under
general distributions remains an open question.

2 Preliminaries

Notation. Throughout this paper, we consider a fixed finite alphabet Σ, whose
size will be denoted by s. We assume s ≥ 2. The elements of Σ∗ will be referred
to as strings with their length denoted by |·|; the empty string is λ. Define the
binary relation ⊑ on Σ∗ as follows: u ⊑ v holds if there is a witness i = (i1 <
i2 < . . . < i|u|) such that vij

= uj for all j ∈ [|u|]. When there are several
witnesses for u ⊑ v, we may partially order them coordinate-wise, referring to
the unique minimal element as the leftmost embedding. We will write Iu⊑v to
denote the position of the last symbol of u in its leftmost embedding in v (if the
latter exists; otherwise, Iu⊑v = ∞).
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Fig. 1. The canonical DFA for recognizing the shuffle ideal of u = aab over Σ =
{a, b, c}, which accepts precisely those strings that contain u as a subsequence.

Formally, the (principal) shuffle ideal generated by u ∈ Σℓ is the regular
language

X(u) = {x ∈ Σ∗ : u ⊑ x} = Σ∗u1Σ
∗u2Σ

∗ . . .Σ∗uℓΣ
∗

(an example is given in Figure 1). The term shuffle ideal comes from algebra
[24, 32] and dates back to [11].

We use the standard O(·), o(·) notation to denote orders of magnitude. The
following simple observation will be useful in the sequel.

Lemma 1. Evaluating the relation u ⊑ x is feasible in time O(|x|).

Proof. If u = λ, then u is certainly a subsequence of x. If u = au′ where a ∈ Σ,
we search for the leftmost occurrence of a in x. If there is no such occurrence,
then u is certainly not a subsequence of x. Otherwise, we write x = yax′, where
y contains no occurrence of a; then u is a subsequence of x if and only if u′ is a
subsequence of x′, so we continue recursively with u′ and x′. The total time for
this algorithm is O(|x|). ⊓⊔

Learnability. We assume a familiarity with the basics of the PAC learning model
[17]. To recap, consider the instance space X = Σ∗, concept class C ⊆ 2X , and
hypothesis class H ⊆ 2X . An algorithm L is given access to a labeled sample
S = (Xi, Yi)

m
i=1, where the Xi are drawn iid from some unknown distribution

P over X and Yi = f(Xi) for some unknown target f ∈ C, and produces a
hypothesis h ∈ H. We say that L efficiently PAC-learns C if for any ǫ, δ > 0 there
is an m0 ∈ N such that for all f ∈ C and all distributions P , the hypothesis hm

generated by L based on a sample of size m ≥ m0 satisfies

Pm[P ({x ∈ X : hm(x) 6= f(x)}) > ǫ] < δ;

moreover, we require that both m0 and L’s runtime be at most polynomial in
ǫ−1, δ−1. The learning is said to be proper if H = C and improper otherwise.

Most learning problems can be cleanly decomposed into a computational
and an information-theoretic component. The information-theoretic aspects of
learning automata are well-understood. As mentioned above, the VC-dimension
of a collection of DFAs grows polynomially with maximal number of states, and
so any small DFA consistent with the training sample will, with high probability,
have small generalization error. For shuffle ideals, an even simpler bound can be
derived. If n is an upper bound on the length of the string u ∈ Σ∗ generating



the target shuffle ideal, then our concept class contains exactly

n
∑

ℓ=0

|Σ|ℓ = O(|Σ|n)

members. Thus, with probability at least 1− δ, any shuffle ideal consistent with
a sample of size m will achieve a generalization error of

O

(

n log |Σ| − log δ

m

)

. (1)

Hence, the problem of properly PAC-learning shuffle ideals has been reduced
to finding one that is consistent with a given sample. (This justifies our informal
problem statement in the introduction, where the requirements are purely algo-
rithmic and no mention of ǫ, δ is made.) This will turn out to be computationally
hard under adversarial distributions (Theorem 4), but feasible under the uniform
one (Theorem 3). Actually, our positive result is somewhat stronger: since we
show learnability in the statistical query (SQ) model of Kearns [15], this implies
a noise-tolerant PAC-result.

3 SQ Learning under the uniform distribution

The main result of this section is that shuffle ideals are efficiently PAC-learnable
under the uniform distribution. To be more precise, we are dealing with the
instance space X = Σn endowed with the uniform distribution, which assigns a
weight of |Σ|−n to each element of X . Our learning algorithm is most naturally
expressed in the language of statistical queries [15,17]. In the original definition, a
statistical query χ is a binary predicate of a random instance-label pair, and the
oracle returns the value Eχ, additively perturbed by some amount not exceeding
a specified tolerance parameter. We will consider a somewhat richer class of
queries.

3.1 Constructing and analyzing the queries

For u ∈ Σ≤n and a ∈ Σ, we define the query χu,a(·, ·) by

χu,a(x, y) =











0, u 6⊑ x1{σ=a} − 1{σ 6=a}/(s − 1), u ⊑ x, y = +11{σ 6=a}/(s − 1) − 1{σ=a}, u ⊑ x, y = −1

, (2)

where σ is the symbol in x following the leftmost embedding of u (formally,
σ = xIx⊑u+1) and 1{π} represents the 0-1 truth value of the predicate π (recall
that s = |Σ|). Our definition of the query χu,a is legitimate because (i) it can be
efficiently evaluated (Lemma 1) and (ii) it can be expressed as a linear combi-
nation of O(1) standard binary queries (also efficiently computable). In words,
the function χu,a computes the mapping (x, y) 7→ R as follows. If u is not a
subsequence of x, χu,a(x, y) = 0. Otherwise, χu,a checks whether the symbol σ



in x following the leftmost embedding of u is equal to a, and, if x is a positive
example (y = +1), returns 1 if σ = a, or −1/(s − 1) if σ 6= a. If x is a negative
example (y = −1) then the signs of the values returned are inverted.

Suppose for now that the length L = |ū| of the target shuffle ideal ū is known.
Our learning algorithm uses statistical queries to recover ū ∈ ΣL one symbol at
a time. It starts with the empty string u = λ. Having recovered u = ū1, . . . , ūℓ,
ℓ < L, we infer ūℓ+1 as follows. For each a ∈ Σ, the SQ oracle is called with the
query χu,a and a tolerance 0 < τ < 1 to be specified later. Our key technical
observation is that the value of Eχu,a effectively selects the next symbol of ū:

Lemma 2.

Eχu,a =

{

+ 2
s
P (L, n, s), a = ūℓ+1

− 2
s(s−1)P (L, n, s), a 6= ūℓ+1

where

P (L, n, s) =

(

n − 1

L − 1

) (

1

s

)L−1 (

1 −
1

s

)n−L

. (3)

Proof. Fix an unknown string ū of length L ≥ 1; by assumption, we have re-
covered in u = u1 . . . uℓ = ū1 . . . ūℓ the first ℓ symbols of ū. Let u′ = ū0∞ be
the extension of ū obtained by padding it on the right with infinitely many 0
symbols (we assume 0 ∈ Σ).

Let X be a random variable representing the uniformly-chosen sample string
x. Let T be the largest value for which u′

1 . . . u′
T is a subsequence of X . Let

ξ = 1{T≥L} be the indicator for the event that X is a positive instance, i.e.,
that ū1 . . . ūL = u′

1 . . . u′
L is a subsequence of X .

Observe that T has a binomial distribution:

T ∼ Binom(n, 1/s); (4)

indeed, as we sweep across X , each position Xi has a 1/s chance of being the next
unused symbol of u′. An immediate consequence of this fact is that Pr[ξ = 1] is
exactly

∑n

k=L

(

n

k

)

(1/s)k(1 − 1/s)n−k.
Now fix ℓ < L. Let Iℓ = Iu⊑X be the position of uℓ in the leftmost embedding

of u1 . . . uℓ in X (0 if ℓ = 0), or n−1 if u1 . . . uℓ is not a subsequence of X . Then
Iℓ + 1 is the position of σ as defined in (2), or n if u1 . . . uℓ 6⊑ X1 . . . Xn−1.

Define Tℓ to be the number of symbols of a leftmost embedding of u′ in X
excluding XIℓ+1:

Tℓ = max {t : u′
1...u

′
t ⊑ X1...XIℓ

XIℓ+2...Xn} .

Like T , Tℓ also has a binomial distribution, but now

Tℓ ∼ Binom(n − 1, 1/s). (5)

The reason is that we always omit one position in X (the one following uℓ if uℓ

appears before Xn or Xn if it does not), and for each other position, there is
still an independent 1/s chance that it is the next symbol in u′.

An important fact is that Tℓ is independent of XIℓ+1. This is not immediately
obvious: whether XIℓ+1 equals u′

ℓ+1 or not affects the interpretation of later



symbols in X . However, the probability that each symbol XIℓ+2 . . . is the next
unused symbol in u′ is still an independent 1/s whether XIℓ+1 consumes a symbol
of u′ or not. So the distribution of Tℓ is not affected.

We now compute Eχu,a by averaging over all choices of Tℓ. If Tℓ < ℓ, then
u1 . . . uℓ 6⊑ X1 . . . Xn−1 and χu,a = 0. If ℓ ≤ Tℓ ≤ L − 2, then X is a negative
example. Each symbol in Σ contributes 1 to the mean with probability 1/s and
− 1

s−1 with probability s−1
s

; the net contribution is 0. Similarly, if Tℓ ≥ L, X is

a positive example, and the probability-(1/s) gain of 1 is exactly offset by the
probability-

(

s−1
s

)

loss of 1
s−1 .

This leaves the case Tℓ = L−1. Now X is positive if and only if XIℓ+1 = ūℓ+1,
which occurs if σ = ūℓ+1. So the conditional expectation is 1·Pr[σ = ūℓ+1]+

1
s−1 ·

Pr[σ 6= ūℓ+1] = 1
s
+ 1

s−1 ·
s−1

s
= 2/s. For a 6= ūℓ+1, the conditional expectation is

is − 2
s(s−1) . This can be computed directly by considering cases, or by observing

that the change to
∑

a∈Σ χu,a(x) = 0 always, and that all a 6= ūℓ+1 induce same
expectation by symmetry.

Since the only case that produces a nonzero conditional expectation is Tℓ =
L − 1, we have

Eχu,ūℓ+1
= +

2

s
Pr[Tℓ = L − 1], (6)

and for each a 6= ūℓ+1,

Eχu,a = −
2

s(s − 1)
Pr[Tℓ = L − 1]. (7)

The claim follows since Tℓ ∼ Binom(n − 1, 1/s) by (5). ⊓⊔

3.2 Specifying the query tolerance τ

The analysis in Lemma 2 suggests that inferring ū ∈ ΣL amounts to distinguish-
ing the two possible values of Eχu,a. If we set the query tolerance to half the
larger value

τ =
1

s
Pr[Tℓ = L − 1] (8)

then s statistical queries for each prefix of ū suffices to learn ū exactly.

Theorem 1. When the length L of the target string ū is known, ū is exactly
identifiable with O(Ls) statistical queries at tolerance τ = 1

s
P (L, n, s).

In the above SQ algorithm there is no need for a precision parameter ǫ because
the learning is exact, that is, ǫ = 0. Nor is there a need for a confidence parameter
δ because each statistical query is guaranteed to return an answer within the
specified tolerance, in contrast to the PAC setting where the parameter δ protects
the learner against an “unlucky” sample.

However, if the relationship between n and L is such that P (L, n, s) is very
small, then the tolerance τ will be very small, and this first SQ algorithm cannot
be considered efficient. If we allow an approximately correct hypothesis (ǫ > 0),
we can modify the above algorithm to use a polynomially bounded tolerance.



Theorem 2. When the length L of the target string ū is known, ū is approx-
imately identifiable to within ǫ > 0 with O(Ls) statistical queries at tolerance
τ = ǫ/(3sn).

Proof. We modify the SQ algorithm to make an initial statistical query with
tolerance ǫ/3 to estimate Pr[ξ = 1], the probability that x is a positive example. If
the answer is ≤ 2ǫ/3, then Pr[ξ = 1] ≤ ǫ and the algorithm outputs a hypothesis
that classifies all examples as negative. If the answer is ≥ 1 − 2ǫ/3, then Pr[ξ =
1] ≥ 1− ǫ and the algorithm outputs a hypothesis that classifies all examples as
positive.

Otherwise, Pr[ξ = 1] is between ǫ/3 and 1 − ǫ/3, and the first SQ algo-
rithm is used. We now show that P (L, n, s) ≥ ǫ/(3n), establishing the bound on

the tolerance. Let Q(L, n, s) =
(

n

L

) (

1
s

)L (

1 − 1
s

)n−L
and note that Q(L, n, s) =

(n/Ls)P (L, n, s). If L ≤ n/s then Q(L, n, s) is at least as large as every term in
the sum

Pr[ξ = 0] =

L−1
∑

k=0

(

n

k

) (

1

s

)k (

1 −
1

s

)n−k

and therefore Q(L, n, s) ≥ ǫ/(3L) and P (L, n, s) ≥ ǫ/(3n). If L > n/s then
Q(L, n, s) is at least as large as every term in the sum

Pr[ξ = 1] =

n
∑

k=L

(

n

k

) (

1

s

)k (

1 −
1

s

)n−k

and therefore P (L, n, s) ≥ Q(L, n, s) ≥ ǫ/(3n). ⊓⊔

3.3 PAC learning

The main result of this section is now obtained by a standard transformation of
an SQ algorithm to a PAC algorithm.

Theorem 3. The concept class C =
{

X(u) : u ∈ Σ≤n
}

is efficiently properly
PAC learnable under the uniform distribution.

Proof. We assume that the algorithm receives as inputs n, L, ǫ and δ. Because
there are only n + 1 choices of L, a standard method may be used to iterate
through them. We simulate the modified SQ algorithm by drawing a sample of
labeled examples and using them to estimate the answers to the O(Ls) calls
to the SQ oracle with queries at tolerance τ = ǫ/(3sn), as described in [15].
According to [15, Theorem 1],

O

(

1

τ2
log

|C|

δ

)

= O

(

s2n2

ǫ2
(n log s − log δ)

)

examples suffice to determine correct answers to all the queries at the desired
tolerance, with probability at least 1 − δ.

⊓⊔

Remark 1. Our learning algorithm and analysis are rather strongly tied to the
uniform distribution. If this assumption is omitted, it might now happen that
Pr[Tℓ = m − 1] is small even though positive and negative examples are mostly
balanced, or there might be intractable correlations between σ and Tℓ. It seems
that genuinely new ideas will be required to handle nonuniform distributions.



4 Proper PAC learning under general distributions is
hard unless NP=RP

Our hardness result will follow the standard paradigm, exemplified in [17]. We
will show that the problem of deciding whether a given labeled sample admits
a consistent shuffle ideal is NP-complete. A standard argument then shows that
any proper PAC learner for shuffle ideals can be efficiently manipulated into solv-
ing the decision problem, yielding an algorithm in RP. Thus, assuming RP 6=NP,
there is no polynomial-time algorithm that properly learns shuffle ideals.

Theorem 4. Given two disjoint sets of strings S, T ⊂ Σ∗, the problem of de-
termining whether there exists a string w such that w ⊑ x for each x ∈ S and
w 6⊑ x for each x ∈ T is NP-complete.

Proof. To see that this problem is in NP, note that if S is empty, then any string
of length longer than the longest string in T satisfies the necessary requirements,
so that the answer in this case is necessarily “yes.” If S is nonempty, then no
string longer than the shortest string in S can be a subsequence of every string
in S, so we need only guess a string w whose length is bounded by that of the
shortest string in S and check whether w is a subsequence of every string in S
and of no string in T , which takes time proportional to the sum of the lengths
of all the input strings (Lemma 1).

To see that this problem is complete in NP, we reduce satisfiability of 3-CNF
formulas to this question. Given a formula φ containing n clauses Ci, where
each clause contains three literals ℓi,1, ℓi,2 and ℓi,3, the question of whether φ is
satisfiable is equivalent to the question of whether we can select exactly one literal
from each clause in such a way that no two selected literals are complements of
each other.

The heart of the construction is a three-way choice of one part of a sub-
sequence for each clause of the formula. Consider the strings x1 = aba and
x2 = baab. The strings that are subsequences of both of these strings are pre-
cisely

{λ, a, b, aa, ab, ba}.

Thus if we were to specify positive strings x1 and x2, and negative strings a and b,
there are exactly three strings that are subsequences of both the positive strings
and not subsequences of either of the negative strings, namely, {aa, ab, ba}. We
use n copies of this three-way choice to represent the choice of one literal from
each of the n clauses.

We define S to contain the two positive strings:

u1 = (x1d)n

u2 = (x2d)n

where the symbol d acts to delimit the region of each string corresponding to
each clause.

Our first group of negative strings, T1, contains the n strings obtained from
u1 by deleting one occurrence of d. A string w that is a subsequence of u1

and not a subsequence of any string in T1 must have exactly n occurrences of



d. The occurrences of d divide w into regions corresponding to the successive
occurrences of x1 in u1 and x2 in u2.

Our second group of negative strings, T2, contains the 2n strings obtained
from u1 by selecting a region i and replacing the x1 in that region of u1 by a
or b. We precisely characterize the set of strings w that are subsequences of u1

and u2 but not of any string in T1 or T2 as the strings described by the regular
expression ((y1 + y2 + y3)d)n, where y1 = aa, y2 = ab, and y3 = ba. In region i
we associate the choice of string yr with choosing the literal ℓi,r.

Finally, our third group of negative strings, T3, contains a string for each
pair of complementary literals (say ℓi,r and ℓj,s) obtained from u1 as follows. In
region i we substitute yr for x1, and in region j we substitute ys for x1. This
negative string means that a consistent string w cannot make a choice of strings
corresponding to the complementary literals ℓi,r and ℓj,s.

Then there is a string w that is a subsequence of every string in the positive
set S and of no string in the negative set T = T1 ∪ T2 ∪ T3 if and only if the
original formula φ is satisfiable, concluding the NP-completeness proof. ⊓⊔

5 The Difficulty of Learning Unions of Shuffle Ideals

In this section we note that the problem of learning a monotone DNF formula
is efficiently reducible to the problem of learning a union of shuffle ideals. Let φ
be a monotone DNF formula over variables {xi} for i = 1, . . . , n. We consider
an ordered alphabet {x1, . . . , xn} and a union h of shuffle ideals obtained from
φ as follows. Each term, e.g., x6x14x22, of φ is mapped to a shuffle ideal consist-
ing of the symbols (in order) corresponding to the variables in the term, e.g.,
X(x6x14x22). Then h is the union of the shuffle ideals obtained in this way.

If we map each assignment to the variables {xi} to the substring of

x1x2 · · ·xn

obtained by omitting the symbols corresponding to variables assigned 0, then
the assignments satisfying φ are precisely the substrings of x1x2 · · ·xn that are
in the union of shuffle ideals h. Thus an efficient method of learning unions
of shuffle ideals would yield an efficient method of learning for monotone DNF
formulas, which so far is only known in special cases [4, 6, 14, 37, 38].

6 Discussion

We have shown that even a family of regular languages as simple as the shuffle
ideals is not efficiently properly PAC learnable if RP 6=NP. Thus, the search for
a nontrivial (in the sense described in the introduction) properly PAC-learnable
family of languages continues. On the other hand, even with classification noise,
efficient proper PAC learning of shuffle ideals is possible under the uniform dis-
tribution. The major unresolved question is whether it is possible to improperly
learn shuffle ideals under general distributions; this is the subject of ongoing
research. Also open is the question of whether the alphabet size in Theorem 4
can be reduced to 2.



Acknowledgments

We thank Sarah Eisenstat for the construction reducing the alphabet size to 3 in
the proof of Theorem 4 and the anonymous referees for their helpful comments.

References

1. Dana Angluin. On the complexity of minimum inference of regular sets. Informa-
tion and Control, 3(39):337–350, 1978.

2. Dana Angluin. Inference of reversible languages. Journal of the ACM (JACM),
3(29):741–765, 1982.

3. Dana Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

4. Dana Angluin and Donna K. Slonim. Randomly fallible teachers: Learning mono-
tone DNF with an incomplete membership oracle. Machine Learning, 14(1):7–26,
1994.

5. Nader H. Bshouty. Exact learning of formulas in parallel. Machine Learning,
26(1):25–41, 1997.

6. Nader H. Bshouty and Nadav Eiron. Learning monotone DNF from a teacher
that almost does not answer membership queries. Journal of Machine Learning
Research, 3:49–57, 2002.

7. Nader H. Bshouty, Jeffrey C. Jackson, and Christino Tamon. Exploring learnability
between exact and PAC. J. Comput. Syst. Sci., 70(4):471–484, 2005.

8. Alexander Clark and Franck Thollard. Pac-learnability of probabilistic determin-
istic finite state automata. Journal of Machine Learning Research (JMLR), 5:473–
497, 2004.

9. Corinna Cortes, Leonid (Aryeh) Kontorovich, and Mehryar Mohri. Learning lan-
guages with rational kernels. In COLT, pages 349–364, 2007.

10. Colin de la Higuera. A bibliographical study of grammatical inference. Pattern
Recognition, 38:1332–1348, 2005.

11. Samuel Eilenberg and Saunders Mac Lane. On the groups of H(Π,n). I. Ann. of
Math. (2), 58:55–106, 1953.

12. E. Mark Gold. Complexity of automaton identification from given data. Informa-
tion and Control, 3(37):302–420, 1978.

13. Yoshiyasu Ishigami and Seiichi Tani. Vc-dimensions of finite automata and commu-
tative finite automata with k letters and n states. Discrete Applied Mathematics,
74(2):123 – 134, 1997.

14. Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and Andrew Wan. Learning
random monotone DNF. Discrete Applied Mathematics, 159(5):259–271, 2011.

15. Michael Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM,
45(6):983–1006, November 1998.

16. Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM (JACM), 41(1):67–95,
1994.

17. Micheal Kearns and Umesh Vazirani. An Introduction to Computational Learning
Theory. The MIT Press, 1997.
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